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4- CONCLUSIONS:

The main purpose of this paper is to develop a convenient
Bayesian approach to forecast the future observations for the
seasonal ARMAX model. This was achieved by'approximating the
conditional liklihood function by a normal gamma function . Thus
the marginal predictive distribution of the first future observation is
approximated by a non-central univariate t distribution , and the
conditional predictive distribution of observations at higher lags
are approximated by a non-central univariate t distribution. In
addition it was shown that the highest predictive density region
(HPD region) for any future observation may be constructed.
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E(Yne2 | Yne1, Sn) Hiw2 ne2ame1) - [PYne2 | Ynst, $p)] 05
L (3.8)
where E(Yns2 | Yne1  Sn) @nd p(¥ns2 | Ynet, Sn) @re asit definedin
(3.5) and (3.6) respectively, 0 <o <1, and tis obtained from the
student's tables.
Thus , using the condiatinoal predictive density of yp4, K> 2,
VN Ynit = Ynet | Yne2 = Yne2 | oo , Yk =Yn+k-1 , ON€ may
forecast the kth future observation , and hence by a sequence of
conditional expectations , one may forecast k steps ahead .

Suppose that one can't or unwilling to specify the parameters a, b
, 1, and R of the normal gamma prior density , (2.8 ) , one might
prefer to use a non-informative prior density , (2.9 ). For such
case , the following corollary may be used .

Corollary (3.2)

If the aproximate likelihood function (2.7) is combined with the non-

informative prior density (2.9) , the marginal predictive density of
the frist future observation , yn+1 , Will be a non-central univariarte t

distribution with df = n-m-K degrees of freedom , location
E(Ynst SN) = (1-By'A1By )1 ByA1B
........... (3.9)
and precision :
P(Yn+1 [SN) = (n+K-m) (1-B4'A-1B4)
YY-BAB-E2D . (3.10)
where A B1 and B are as defined in (3.3).
By a sequence of conditional expectations , one may forecast k
steps ahead with the aid of coroliaries (3.1) and (3.2).
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(3.2) respectively , 0<a<1,and tis obtained from the student t
tables.

The following corollary shows how one can forecast k step ahead
, K> 2, assuming we have n observations generated

by a seasonal ARMAX model.

Corollary (3.1)

If the approximate conditional likelihood function (2.7) is combined
with the normal gamma prior density (2.8) , The conditional
predictive density of the second future observation , yp4p , Will be
a non-central univariate t distribution with df = n+2a-m+1 degrees
of freedom , location :

E(Yne2 | Ynet SN =E/D (3.5)
and precision

P( Yn+2 |Yn+1,8n)= dfD
FE2D (3.6)

where; :
Sh, IL,a,band R are as it were defined in (2.7) and (2.8)
, m=max(p+Ps,h+HS) ,andY, E, D, F are as it were defined
in (3.3), but the quantities A,B1 , B are modified by letting n=n-+1
Yn+1= El¥n+1/8n) ,(3.2) , and ~
Bnst = Ynet - Y1- Bi+ Xq. B2t By s
o (3.7)
In addition , a highest predictive density region (HPD region ) for
Yn+o Of content (1- o) is:
-10-




THEORM(3.1)

If the approximate conditional likelihood function (2.7) is combined
with the normal gamma prior density (2.8) , The marginal
predictive density of tha first future observation, yp4¢, Willbe a
non-cenfral univariate t distribution with df = n+2a-m degrees of
freedom, location ;

E(yp+1|SN) = ED (3.1)

and precision

P(Yn#t | 8= 4D .. (3.2)
F-E2ID

where

E =By’ (A+R) (B+Ry)

D =1-B'(A+R)-1B4

F= WRu+2b+Y'Y - (B+RuJ(A+R)1(B+Ry) .....(3.3)

and S, 1,a,bandRare as it were defined in (2.7) and (2.8)

, m= max(p+Ps h+HS).

Y= (Yt Yma2 coeeeenns Yn)'

B=Ag'Y , A= Ay Ag+B4By ,and Ag is (n-m).k matrix in the form
Ao = (Yos : X @ Eny) ,andBy=(Yy: Xy :Eq) is avector of
order k.1 '

Y1 = ( Yn .............. y“_p+1 y“_s+1.... y“_Ps+1 Yn_s ...... Yn_p_Ps+1 )'

§1 =( Xn#1 Xy o Xnchet Xpegttoo XnPesd Xpog oo /{n—h-Hs+1 )
A A A A

E1 - ( en ............. en_h+1 en_s+1 ..... en_Hs+1 én_s ..... en_q_Qs+1 )'

In addition , a highest predictive density region: (HPD region ) for
Yn+1 Of content (1- o) is:

‘E(Yn+1 | Sn) *ta2, n+2a.m) - [ P(Ynet [sp)]02

) - (3 .4)



where By , PBs, psare asltwere definedin(2.3)and B, 3,. Y,
Yi1, X, Epq, are as it were defined in (2.5), >0,

m= max(p+Ps,h+Hs) .

An apropariate choice of prior density function is normal -gamma
in the form:
H(B, 1) « 10-5(2a+k- eyp(/2)((B -u)R(B-) +2b)

......... (2.8)
where >0 |, a>0 b>0,yis the vector of condtional expectation of B,
givent and R s a positsive definite matrix of order
K=p+P+pP+h+H+hH+q+Q+qQ+1
However, if there is no prior information one may use anon-
informative prior density function in the form :

HB,t)a <! ;0 ... (2.9)
Equation (2.9) may be obtained from the normal gamma density |
(2.8), by lefting a —-k/2,b -0, and R=0x x

3. BAYESIAN FORECASTING FOR THE SEASONAL
ARMAX MODEL

The Bayesian approach requi'res information about the parameters
in the form of the proper or improper prior density function , like
functions (2.8) and (2.9) respectively . The prior density function is
combined with the likelihood function to give predictive inferences .
The marginal predictive density of the first future observation,
Yn+1 , Will be infroduced through the following theorm:

8-




Many invesigations Tor sunplnng the IKethood unchon canbe
found in Newbold (1974) , Ali (1977) , Broemeling and Shaarawy
(1983) and others . The proposed approximation here is similar to
the one used by Broemeling and Shaarawy (1985) with
nonseasonal ARMA model and is based on : equating the inifial
values of the errors Ep=(em €mg -oooovreverenenne. em-g-Qst+1) DY
their unconditional expectation namely zero and replacing the
exact residuals by their Ieast squares estimates . The least
squares estimates , say E (em+1 em,,z .................. 'én ) are
obtained by sefrching over the parameters space for the value of
vector B, say B, which minimizes the residuals sum of squares .

n
EE=2¢2 .. (2.6)
t=m+1
where m = max (p+Ps,h+Hs).
Using the eshmated residuals
E= (em+1 em+2 .................. ’én ), and equating the initial values
of the errors Ep = (€ €t cvrevereverrrreveennns €mg-Qst+1) DY their

unconditional expectation namely zero , we can rewrite the
likelihood function (2.5) approximately as ;

A

A
L(B/cSp)atl™M)2 exp(-tfy )(Y-Yp.4 B1-Xy.Bo-Epq-Ba) (Y-Yy4
By -XeB2-Eir B3)
......... 27



L(B,z|Sp)e ¢ (-m)2
eXP(-tlz)(Y-Yt-1 P1-Xy. [32-EM Ba) (Y-Yy 1 B1-X, Bo-Ey 1 Bs)

............. (2.5)
where
B=(Py B2 B3’
is a K.1 vector of parameters 1 >0,
Sp = [YO XO]
Y IX
K=p+P+pP+h+H+hH+q+Q+qQ+1
Y = Ymet Ymed v yn )’ is the vector of n-m
observations on y,
X =( Xept X2 oo Xp ) is the vector of n-m
observations on x,

m= max ( p+Ps , h+Hs )
The likelihood function (2.5) is conditioned on the starting values

Yo - (Ym Ym_1 Cereeretettraeneeanane Ym_p_Ps-H )'
XO = (Xm Xm_1 ....................... Xm_h_Hs+1 )' ) and
EO = (em em.‘] ....................... em_q_Qs+1 )'

However the conditional likelihood function (2.5) is analytically
infractable because there is no closed form for the precision matrix
or for the determinant of the covariance matrix interms of the
parameters direcly . Further more , with any prior distribution the
predictive densities are not standard which mean that inferences
about the future observations must be done numerically. For the
above reasons a simple analytic form for the the likelihood function
is needed .

~
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Assuming that the errors ( E;) are normal random variables with
mean vector zero and precision matrix [z, Tis an identity matrix

Xm+1 ........................................................ Xn
Xm ......................................................... Xn_1
KR ceereeneererereoencsecsreeeesera e esesenees Xk
Xm-5+1 ......................................................... Xn_s
Xm_HS+1 ....................................................... Xn-HS
Xm_s ............................................................. Xn_s_1
L Xm_h_HS+1 ..................................................... Xn_h_Hs
em ............................................................ en_1
em_q+1 .......................................................... en_q
em_5+1 .......................................................... en_s
em_Qs+1 ................................................... en_Qs
em_s ......................................................... en_5_1
L em_q_os+1 ............................................... en_q_os
.................. (2.4)

1> 0, we canwrite the conditional likelihood function as:

-
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The class of models (2.1) may be written in a matrix notation as:

Y= Yig o+ X Bt Ery B3 +Ey

.................... (2.3)
where
Y =( Ymet Y2 oo ¥n )
Et = €mt1  Cme e €n )
B1= (91 ..... ¢p Gy ... ®p aqg....... Opp )
B2=(apy O, Q1o O P11 By )
Bz= (B4 ... Gq O1..00 Y11 oo Taq
- -
Ym o Yn-1
Yep oo Ynp
YMeg#] -oerveerremreenreiene e Yn-s
YH: .....................................................................
YM-PEH] veveermmreminerininine e Yn-Ps
YIeg coeereree e Yn-s-1
i YREp-Pett oveememeniimi Yn-p-Ps




2- THE SEASONAL ARMAX MODEL AND THE LIKELIHOQD
FUNCTION
The seaonal ARMAX class of models my by defined as:

o(B) @ (BS)yy= o(B) £3(BS) % + O(B) © (BS)ey
............................ (2.)

where :
yi is the observation attimet,t=1,23,....... n

Xt 's are exogenous variables independent of

€ 's are asequence of independent random variables with mean
zero and precision +> 0, §(B), o(B), O(B) are polynomials in B of
orders p,h and g respectivaly , ®(BS) , £(BS), and ©(BS)are
polynomials in BS of orders P, H and Q respectivaly i.e

OB) =1-01B -2 B2 ... - ¢, BP
O(Bs) = 1-Bg BS Oy B - ... - §p BPs
®B) = ag- ©1B-0y B2 ... - o BN
QBs) =1-QiBS - (KhB= - ... - Qy BHs
8B) =1-04B-0,B2- ... -4 B4
OBs) =1-®Bs -@, B2 - ... - @ BAS
and the backshift operator B is such that :

B"Yi =V, r=0,12... (2.2)

s is the number of the sesons.

The series generated by model (2.1) is assumed o be stationary -

prehaps after an appropriate transformation - and there is no
feedback from the oufput ( ;) fo the input (%) variablesi.e x's

areé exogenous. 2



1-INTRODUCTION .

Forecasting the future values of an observed time series is very
important in many areas , including business , economics ,
production planning , quality control , environmental studies and
others. The time series analysis of the seasonal ARMAX model
have been discussed in great detal - from a non-Bayesian
viewpoint - in many text and surveys . Some of these text and
surveys are : Gaynor and Krikpatrick (1994) , McGraw et
al(1993), Lutkepohl(1893) ,  Mills(1981) , wei(1980) :
Bierens(1887) , Spanos(1986) , Judge etal (1985), Hendry et
al(1984) , Deistler (1980), Box and Jenkins (1976) |,
Nerlove(1972), and others. On the other hand the Bayesian
analysis of the ARMAX model is unknown because of the
“complexity of the likelihood function.

Through this paper a Bayesian procedure to forecast the future
values of time series generated by seasonal autoregressive
moving average model with exogenous variable , abbreviately
seasonal ARMAX model , will be infroduced. The predictive
density of the future observations is the Bayesian ool to achieve
this goal . The marginal predictive density of the first future
observation will be derived . Also the conditional predictive
densities of the observations at higher lags will be derived . In
addition a highest predictive density regions (HPD regions ) for the
future observations will be constructed .
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