### SOME HEAVY METALS RESIDUE IN EDIBLE OFFALS AND MEAT OF NATIVE CATTLE AT ALEXANDRIA GOVERNORATE

#### Sawsan M. Arafa

Animal health institute . Alexandria

#### ABSTRACT

Heavy metal residues are considered among the most important chemical pollutants in food especially meat and offals which leads to several public health hazards.

This study was conducted to determine the levels of some heavy metals residue as lead ( Pb ), cadmium ( Cd ), copper (Cu), zinc (Zn), chromium (Cr) and mercury (Hg)

The residues were determined in 120 samples of meat and offal samples (20) of each (meat, liver, kidney, heart, spleen and lung) of cattle, the samples were collected from retail stores and butchers at Alexandria governorate. These samples were analyzed far levels of lead, Cadmium, Copper, zinc. Chromium and mercury by using Atomlc Absorption Spectro photometer.

Our results showed that the mean values of lead (Pb) were 0.110, 0.320, 0.223, 0.150, 0.040 and 0.004 p.p.m respectively in meat, kidney, liver, heart, spleen and lung. in case of cadmium (Cd), the concentration of mean values were 0.022, 0.038, 0.022, 0.056, 0.048 and 0.066 p.p.m respectively in the examined samples. Concerning copper (Cu), the mean values were 1.590, 2.580, 2.100, 1.910, 2.080, and 1.300 p.p.m respectively which in case of zinc (Zn) the mean values were ranged from 0.854 to 10.060 p.p.m respectively in the examined samples while the mean values of chromium (Cr) were 0.006, 0.023, 0.030, 0.040, 0.002, and 0.032 p.p.m respectively in the examined samples but in case of mercury (Hg), the mean values ranged from 0.081 to 0.340 p.p.m respectively.

From the pervious results, it was reported that most of this studied samples had levels of heavy metals within the maximum permisible limits with the Egyptian standard except the mean concentration of cadmium (Cd) with exceeded the limit in case of heart and lung samples (0.056, 0.066 ug/g) p.p.m respectively.

The public health importance and toxic effect of these heavy metals as well as suggestive recommendations to minimize pollution with these heavy metals were discussed.

#### INTRODUCTION

Nowadays, environmental pollution is considered one of the most important problem affecting meat production capacity of grazing animal. Metal of environmental interest include elements that are macronutrients in the

Mansoura, Vet. Med. J. (65 - 81 )

biosphere (Na.K.Ca) or micronutrients (Fe,Cu, Zn,ete) and some that have uoknown biological function e.g. (Pb,Cd) and that are generally regards as toxic elements. Metalic elements are cumulative toxicant because they are excreted slowly and their toxicity depends on their dosage the route, frequency and duration of administration (Under wood 1977 and JECFA2005).

Heavy metals liberated into the environment through the air, drinking water, food or countless human made chemical and products. Heavy metals enter and accumulate in body tissues via inhalation, ingestion and skin absorption (**Pouls, 2005**).

Toxic elements cadmium. lead and mercury are widely distributed in the environment since the industrial revolution in the last 50 vears. They are frequently found in minute amounts in food (Pouls 2005). Their toxicity depends on their classical form, the dosage, the route, frequency and duration of administration (Underwood 1977 & JECFA, 2005). Cadmium is used extensively in the mining and electroplating industries and is form bone meal fcrtilizers and fungicides. Cadmium accumulates in body over many years because the body have homeostatic mechanism to keep cadmium at a constant level (Nasri A (2006) sources of lead exposure are air pollution, batteries, chemical fertilizers, dust, foods grown around industrial areas. gasolinc, paints, pesticides, soil and tapwater (Osumex, 2006).

Sources of mercury exposure are air pollution, diuretics (mercurial, fungicides, insecticides, posticides and tapwater, the high amount of mercury entering the food from industrial sources (FAO/WHO 2005). the major sources of heavy metals come from agricultural, industrial and sewage wastes which may accumulated in animal tissues and organs causing severe healthy problem to the consumers. Environmental pollution represent a major problem in the world especially in the less developed countries and Egypt Is one of these countries which suffer from biosphere pollution (air, soil, and water) (Magouz et al 1996).

Cattle offal (liver, kidney, heart, spleen and lung) have a nutritive values as regard of its constituents. So in Egypt, offal represent on the main foods of large part of populations and these offals can be contaminated by heavy metal as mercury, cadmium, lead, chromium, copper, iron and zinc directly or indirectly through agricultural compound as fertilizer, pesticides, etc. Industrially through polluted water with wastes discharges of factories and/or environmentally by gases from mining or the motor vehicles (WHO, 1994).

Water is a very critical environmental problem facing public health official, the greatest volume of waste discharged the water course is sewage. sewage contains debris wastes, sanitary from domestics baths (Omer et al 2004). chemical analysis of water significant increase in heavy metal especially lead, Cadmium, Zinc and Copper and increase than other trace elements (Radwan and Ali 2003).

Heavy metals and other trace elements have been considered as a dangerous substance causing serious health hazards to human and other living organisms through progressive irreversible accumulation in their bodies as a result of a repeat consuming of small amount of these elements (wheaton and Lawson 1985).

The concentration of toxic elements in animal tissue and organs depends mainly on the dietary concentration of the elements, absorption of this element, thomeostatic control mechanism of the body for the element and the species of animal involved (**Under wood 1977**).

Heavy metals toxicity represent an uncommon yet clinically significant medical condition. If unrecognized or inappropriately treated, heavy metal, toxicity can result in significant morbidity and mortality. the most common heavy metals implicated in acute and for chronie conditions include lead, arsenic, cadmium and mereury in non-industrial situations, the major source exposure of human and animal to toxic element occurs principally through their food supply (Sunderman, 1998).

So, the present study was to determine the levels of some heavy metals especially cadmium, eopper, lead, zine, chromium and mercury in meat and offals of cattle at Alexandria provinces with their relation to public health and to detect the safety to human consumption through comparing with the permissible limits and discussed this because there is a few reports were explain the hygienic quality of these offals, and some studies tries to focus some light on the relationship between heavy metal pollution (Hg, Cd, Cu, Zn, Cr, etc) in the offals and meat (Mansour et al, 1988).

Therefore the objective of the present investigation was iniliated to estimations of chemical quality of meat and native cattle offai (liver, kidney, heart, spleen and lung) with special reference to some heavy metals residue.

#### MATERIAL AND METHODS

# 1- Collection and preparation of samples:

A total of one hundred and twenty samples (20 each of meat, kidney, liver, heart, spleen and lung) were collected from butcher shops in Alexandria governorate. The collected samples were washed with deionized water and separately wrapped in acid washed polyethylene bags. Such samples were transferred without delay to the laboratory and then stored in frozen condition at  $-20^{\circ}$ C until analysis was carried out.

#### 2- Analysis of samples :

#### a- Digestion procedure :

Each sample was thoroughly minced and digested according to the technique recommended by khan et al 1995).

#### b- Heavy metal analysis :

Heavy metals including cadmium. lead, copper, zinc, and chromium were determine in using atomic absorption spectrophotometer (PERKIN ELMER 2380) according to **Richard and Rubin Shapiro (1986)**. In ease of mercury, the analysis was conducted according to **Honway and Donny (1985)** using flameless atomic absorption spectrophotometer.

#### Statistical analysis :

The obtained data were analyzed statistically according to the method recommended by Petrie and Watson (1999).

#### RESULTS

The heavy metals concentrations in meat and offals were statistically analyzed and summarized in table (1) with the recommend permissible limits and with figures (1,2,3, 4,5,6) to detect which was highly meat or edible offals in the monitoring of the heavy met-

#### Mansoura, Vet. Med. J.

als residues, also, there, was a table (2) to evaluate the correlation coefficient between different organs according to the levels of the examined heavy metals.

#### DISCUSSION

It has become important to determine the content of heavy metals in meat and olfals as an essential part in human diet, and this elements make up one of the serious groups of pollutants and this come from various sources as a result of modern industerization so, it is necessary to monitor the levels of this metals residue to evaluate the acceptability to human consumption.

Heavy metals or toxic elements are trace elements with density at least five times that of water . as such they are stable clements, they eannot be serious health hazards to human and other living organism ( Wheaton and Lawson 1985). These include cadmium (Cd), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn)and ehromium (Cr). Human exposure to heavy metals has risen dramatically in the last fifteen years and from daily or weekly diet of human is from meat or offals so, a topic of public health concern because metals may be concentrated with along time and lead to be a dangerous level by meat and offals in the human ehain (Albert 2002, Smith and Tichochine 2002).

The statical analytical results of heavy metals in cattle meat and its offals illustrated in table (1) and revealed that the mean values of all samples not exceed the permissible limit which recommended by FAO / WHO (1989) and Egyptian organization standardization (1993) except in two samples of heart and lung, we found that the mean values of eadmium (Cd) were (0.056, 0.66 ug/g)p.p.m resistively. these results were nearly similar to these reported by **Rabice A. E. (2001)** who found that cadmium (Cd) residues in liver, heart of cattle were 0.081, 0.063 ug/g ppm respectively and also similar to **Khan et al** (1995) while they were lower than those obtained by Abdel-Rahman (2004) which the reported result of cd residues in liver, kidney were 6.180 and 5.355 ug/g p.p.m respectively and also lower than those recorded by **EL-Atabany (1995)** who found that cadmium (Cd) residues in museles, liver and kidney of cattle were 0.11, 0.024 and 0.38 ug/g p.p.m respectively.

Mean while the obtained results were higher than those recorded by **Omima et al** (2000) which found that (Cd) residues of liver of cattle was 0.022 ug/g p.p.m respectively and also the results reported here, lower than that were recorded In livers of Canadian slaughtered cattle and sheep (Salisubry et al 1991).

#### Lead Pb :

The resulted presented in table (1) and figure (1) pointed out that the mean values of lead (Pb) in all examined samples were within P.P.L but was in high average and within permissible limit in kidney sample (0.32) ug/g p.p.m respectively and the lowest average was in the lung sample (0.004 ug/g p.pm) respectively and this result was similar to those which obtained by Alaa M. Morshdy et al (2006) found the pb residue mean value 0.032 ug/g p.p.m in kidney of camel carcasses and lower than the result obtained by Hassouba and Omima (2007) found lead (Pb) mean value was 0.70 ug/g p.p.m respectively in meat sample and not agreed with Hala (2004) reported the concentration of pb in

muscle of cattle was 1.39 p.p.m respectively. Mean while, Mousa and Samha (1993) recorded higher lead (Pb) residues in cattle meat. The exposure to lead (Pb) of concern mainly because of possible detrimental effect on intelligence. Studies on exposure to lead and intelligence have indicated an adverse effect of low level lead exposure on new physiological development (WHO, 1994). Food is one of the major sources of lead exposure, the other are air (mainly lead dust originating from petrol) and drinking water (Ysart at al 2000). Exposure from these three sources should be reduced and can be demonstrated through following up the blood levels of different Egyptian population. Although industrial and agricultural discharges are the primary source of lead poisoning in Egypt (EL-Nabawi et al. 1987) lead is used in many industrial process. lcad paint, lead gasoline and lead arsenate quantities and ehronic lead polsoning is characterized by anemia, muscular pain. lead nephropathy and neuropathy of both central and peripheral nervous system (Daoud and Rashed 2002).

#### Cadmium (Cđ):

At the same table (1) and figure (2) we can demonstrated that mean value of cadmium was higher in heart and lung samples (0.056 and 0.066) p.p.m respectively and exceeded the permsible limit, this may be due to higher heavy metal environmental pollution which resulting from various industrial activities in Alexandria.

This result was agreed with J. Lee et al (2007) which detect the accumulation of Cd in organs of cattle carcasses (0.058, 0.060 p.p.m respectively) (In 4dney and liver samples) Daoud et al. (1998) determined Cd in 20 eattle slaughtered in Zagazig eity, the ob-

tained results revealed that the mean values of Cd residues in muscles were 0.309 p.p.m. wet weight and also the recorded mean concentration of cd were stated by Doganoe (1996) which estimated the concentration in bovine meat was 0.004 mg / kg wet weight . Koh et al (1998) recorded that a survey to assess the extend of Cd accumulation in south Australian cattle. None of 262 muscle samples assayed contained cd levels above the maximum permitted concentration of 0.2 mg/kg wet weight. Avram et al., (2000) re ported that 44 a samples of various organs and tissues were collected from 8 cows older than 5 years in an area of heavy industrial pollution with lead and cadmium in particular, the results evidenced the (Pb) and (Cd) accumulation and concentration markedly exceed maximum admitted limits charaeterization cumulative chronie intoxication in this area. Miranda et al (2004) determined the levels of (Cd) in ealves from Asturias, the average. concentration in meat was 2.03 ug/ g. Korenekova et al. ( 2002 ) determined the occurrence of heavy metals in 21 cattle slaughtered on agricultural farms, the highest mean level of (Cd). in the muscle 0.126 mg / kg. Cadmium inhibits essential enzymes in the Krebs energy cycle. directly damages nerve cells resulting in hyperaetivity of the nervous system affects on bones and joints by altering caleium and phosphorous metabolism contributes to arthritis, accumulates in the kidneys resulting in high blood pressure and kidney disease (Zakrzewiska et al 2002).

The hazards of eadmium as a food contaminant, this referred to the use of Cd. for several decades in many industrial fields, especially in the production of the paint, plastic and special alloys ( Lucisano, 1989).

#### Mansoura, Vet. Med. J.

#### Copper (Cu) :

Concerning in the table (1) and figure (3) showed that the mean values of Copper (Cu) concentrations of all samples was within the permissible limit and the highest copper concentration was dated in kidney (2.58ug/g p.p.m) respectively and the lowest was detected in lung (1.30 ug/g p.p.m) respectively. These results are inagreement with those obtained by Pouls (2005) which found copper concentration in kidney and muscles ( 2.50 and 1.50 p.p.m respectively and also was nearly agreement with Lars Johem (1992) while the resulted recorded in this study were lower than the results obtained by EL-Sherif (1991). Copper is an essential trace element for man and animal. In addition to its role in promoting haematopolesis, it is also required for normal activity for many enzymes, and copper is normally present in sufficient amounts in forage and feed stuffs but may be used as food supplement where levels in soil are low .

#### Zinc(Zn) :

Zinc is an essential element for human, as being involved in protein synthesis and as a constituent of many metaloenzemes , Relativity low toxicity of zinc coupled with efficient homeostatic control mechanisms make chronic zinc toxicity from dietary sources as unlikely hazard to men. From table (1) and figure (4) showed that the mean value of examined samples within the permissible limit of Zn and the highest concentration found in kidney sample (10.06ppm) and the lowest concentration found in spleen sample is (0.85ppm) respectively and this was similar with the obtained results by Thanae A. (1999) which found the mean value concentration of zinc is highest in kidney sample (13.78 p.p.m) while lower result in were reported by **Salisbury et al (1991)**.

Zinc is necessary for normal growth and development in animal and birds, Oral toxication by zinc leads to bloody watery diarrhea. Intense abdominal pain, central nervous system depression and tremors Falandyz (1993).

#### Chromium (Cr) :

Chromium is an essential nutrient required for sugar and fat metabolism . insufficient dietary intake of (Cr) leads to signs and symptoms that are similar to those observed for diabetes and cardiovascular diseases (Anderson R. 1997). Food is a major source to chromium and found in meat, fish, sea foods and cereals were rich sources but fruits, milk, oils, fats and sugar were poor sources of chromium (Brata kos et al. 2002).

At the same table (1) and figure (6) which demonstrated that the lowest mean valve comcentration of chromium (Cr) was found in meat sample (0.006 ug/g p.p.m respectively and the highest concentration present in heart sample (0.030 ug/g p.p.m) respectively followed by lung sample (0.032 ug/g p.p.m) respectively and in liver and kidney mean values were (0.030 and 0.023 ug/g p.p.m) respectively and this obtained results were nearly similar wilt those recorded with Thanae. A. (1999) which gives the mean values of (Cr) in liver and kidney were 0.028 and 0.030 ug/g p.p.m. These results agreed to certain extent with those reported by (Reglus et al, 1990).

#### Mercury (Hg):

The results presented in table (I) and figure (6) showed that the mean value of mercury (Hg) residues was high in heart sample from other sample (0.34 ug/g p.p.m) respectively and within the permisible limit and the lowest mean was in meat (0.116 mg/kg p.p.m), this was agreed with Hassouba and **Omima**, (2007) which found that mean values of Hg residues were 0.02.0.01 ug/g p.p.m in meat samples and also agreed with S.K. Pathaka and M.K.Bhoumik (2007) and in accordance with those reported by Omima (1995) which recorded that mercury was 0.002 ug/g in beef meat.

In a study of a typical Canadian dict including red meat, organs, poultry and fish are found mercury intake which is know to accumulate in aquatic food chain (Davia and Mertz w 1996).

Mercury toxicity causes abnormal nervous and physical development (fetal and childhood), ancmia, anorexia, blood changes, blindness, blue linc on gums, colliis, dermatitis, difficulty chewing and swallowing, headache, hypretension, memory loss, Kidney damage or failure and nerve damage (Skibnienska 2002) Chronic Toxicity which are toxic signs of gastrointestinal disturbances and renal dysfunction developed from 43 days on wards without any mortality. The toxicity also induced nephritis and tubular nephritis, centrilobular, necrosis of liver, mild to moderate necresis in splcen, intestine and lymph nodes. Zenkers degeneration of cardinc musclcs. The kidneys contained the largest residues of mercury, followed by liver, spleen, intestine. lymph node, skeletal muscle, lungs and heart. The intensity of cgtotoxic changes in various organs was proportional to the amount of mercury accumulated (S.K. Pathak and Bhoumik 2007) studies of the content of another heavy metals which found naturally in food in different species for example arsenic and fron which vary in toxicity and bencht in the diet Buchet et al 1994 and

#### Schoof et al 1999.

From table (2) we detected that there was a weak strong correlation (r) between different organs according to the levels of the examined heavy metals and illustrated that data from this table revealed that ther was a strong positive correlation betwon the samples for lead (Pb) residue such as between meat, kidney (r=0.2), spleen, lung (r=0.5) and heart, lung (r=0.04) and also there were a weak negative correlatin between examined samples for (Pb) between liver, lung (r=-0.12) Meat, lung (r=-0.13), liver, spleen (r=-0.3), kidney heart (r=-0.3), and meat, liver (r=-0.3).

And also for cadmium (cd) we found a strong positive correlation between examined samples such as between meat, kidney (r= 0.6) meat, heart (r= 0.3) and kidney, heart (r=0.2) and there was a weak negative correlation between kidney. lung (r=-0.2), liver, heart (r=-0.2) heart, lung (r=-0.1) and spicen, lung (r=-0.2) all other heavy metals such as Cu, Zn, Cr and Hg had this correlation. Therefore, from the last discussion we can observe that the accumulation of heavy metal residues in animal organs was higher than those in meat and this was agreed to the results obtained by Gary P. K. (1992) which proved that mean residues of cd, cu, pb, Hg and zinc in kidney, liver, heart of bull and cow and showed that these trace metals in edible tissues of livestock was higher than those obtained in meat and also Antoniou et al, 1995 showed that the general, adverse toxic effects are cumulative especially in adipose tissue than in meat. other effects include off flavour in food when present at high concentrations and this was referred to which in developing countries, the problems regarding the unhealthy environ-

Mansoura, Vet. Med. J.

ment, bad sanitation and problem of poor environment have a negative direct on the health, therefore the present study aims to monitor the levels of some heavy metals in meat and offals to ensure the availability of offals for consumption, so the study of heavy metals in edible offals has recently become a topic of public health concern because metals such as cd. pb. cu, et may be concentrated to a dangerous level by this offals in human food chain ( Gordon 1986 ).

The variations of pb, cd, cu, cn, zn and Hg as to be a heavy metal residues concentration among the results and those recorded by other investigator are considered logical due to the differences in animal species, size localities the analytical procedures, season, salinity, habitats as well as environmental pollution (Jehan.R and Abdel Aziz 2002).

In conclusion one can safety that Mercury. Cadmium and Lead are more toxic and not essential to human and constitute the public health hazard. These minerals accumulate in meat and organs and therefore their levels must be continually monitored especially in ready to eat one in liver, lung, spleen, kidney and heart (Gordon 1986).

In general, retailed offal (liver, kidney, etc) showed the highest significant heavy metals concentration and this may be attributed to the excess and continues exposure of cut surface and contamination through the air, dusting and rusting of utensils (Thanae. A 1999) but meat is of low significant concentration than in offals and this is proved by Sinigo (2000), Zahrzewska et al (2002) and Korenkova et al, (2002).

The recommended international codes of hygiene practice for fresh meat and offals and food standard program codex alimestaries commission (CAC) and Egyptian standards showed be followed. Moreover transport in hygiene vehicles adequate chilling and storage of offal, also the persentive measures of significant concern intended for minimizing the pollution with residues of heavy metals in animal tissues (muscles) and organs and those include:

- Minimize the use of phosphate and sludge for fertilization as possible and preventing industrial and agriculture discharges into the surface water.
- (2) A void contamination of water surfaces with industrial waste products.
- (3) Periodical examination of water surface for animal.
- (4) Regular analysis of meat and offals for heavy metal pollution and their load should be evaluated according to the international guidelines as a fruitful advise.

Mansoura, Vet. Med. J.

#### Sawsan M. Arafa

| CV=coefficient of variation SE=standard error SD=standard deviation Max | lax=maximum | Min=minimum |
|-------------------------------------------------------------------------|-------------|-------------|
|-------------------------------------------------------------------------|-------------|-------------|

| CV=coefficient of variation SE=standard error SD=standard d<br>Heavy metal residues mg/kg (p. |                     |       |       |       |       |       | Max=max | imum Min=minimum Permissible limits of               |
|-----------------------------------------------------------------------------------------------|---------------------|-------|-------|-------|-------|-------|---------|------------------------------------------------------|
| Heavy<br>metals                                                                               | Examined<br>samples | min   | max   | Mean  | SD    | ± SE  | cv      | heavy metals in food<br>FAO / WHO 1989<br>EOS (1993) |
| Lead<br>(Pb)                                                                                  | meat                | 0.000 | 0.24  | 0.110 | 0.080 | 0.020 | 72.72   |                                                      |
|                                                                                               | kidney              | 0.300 | 0.350 | 0.320 | 0.020 | 0.004 | 6.250   |                                                      |
|                                                                                               | Liver               | 0.000 | 0.410 | 0.223 | 0.16  | 0.04  | 7.174   | <b>4</b> • • • • •                                   |
|                                                                                               | heart               | 0.000 | 0.42  | 0.19  | 0.15  | 0.030 | 78.94   | 1 p.p.m                                              |
|                                                                                               | spleen              | 0.000 | 0.070 | 0.04  | 0.03  | 0.007 | 75.00   |                                                      |
|                                                                                               | lung                | 0.000 | 0.009 | 0.004 | 0.003 | 0.000 | 75.00   |                                                      |
|                                                                                               | meat                | 0.000 | 0.048 | 0.022 | 0.017 | 0.004 | 77.27   |                                                      |
|                                                                                               | kiðney              | 0.010 | 0.061 | 0.038 | 0.016 | 0.004 | 42.10   | ]                                                    |
| Cadmium                                                                                       | Liver               | 0.020 | 0.048 | 0.022 | 0.060 | 0.003 | 272.7   | Not exceed                                           |
| (cd)                                                                                          | heart               | 0.000 | 0.30  | 0.056 | 0.06  | 0.010 | 120.0   | 0.04 – 0.05 p.p.m                                    |
| ((1)                                                                                          | spleen              | 0.009 | 0.082 | 0.048 | 0.027 | 0.006 | 56.25   |                                                      |
|                                                                                               | lung                | 0.030 | 0.089 | 0.066 | 0.018 | 0.004 | 28.4    |                                                      |
|                                                                                               | meat                | 0.800 | 1.800 | 1.590 | 0.230 | 0.052 | 14.46   |                                                      |
|                                                                                               | kidney              | 2.300 | 2.900 | 2.580 | 0.200 | 0.170 | 7.751   |                                                      |
| Copper                                                                                        | Liver               | 1.900 | 2.300 | 2,100 | 0.150 | 0.030 | 7.142   |                                                      |
| (Cu)                                                                                          | heart               | 1.500 | 2.20  | 1.91  | 0.24  | 0.054 | 12.56   | 3.5 p.p.m                                            |
|                                                                                               | spleen              | 1.900 | 2.810 | 2.080 | 0.200 | 0.040 | 9.615   |                                                      |
|                                                                                               | lung                | 1.000 | 1.400 | 1.300 | 0.140 | 0.031 | 10.76   |                                                      |
|                                                                                               | meat                | 6.000 | 7.500 | 7.060 | 0.530 | 0.120 | 7.507   |                                                      |
|                                                                                               | kidney _            | 9.000 | 10.80 | 10.06 | 0.540 | 0.120 | 5.367   |                                                      |
| Zinc                                                                                          | Liver               | 6.600 | 8.900 | 8.074 | 0.850 | 0.030 | 10.52   | 40 n n m                                             |
| (Zn)                                                                                          | heart               | 7.600 | 8.10  | 7.83  | 0.18  | 0.040 | 2.298   | 40 p.p.m                                             |
| ~ /                                                                                           | spleen              | 0.780 | 0.910 | 0.857 | 0.050 | 0.010 | 5.834   |                                                      |
|                                                                                               | lung                | 6.200 | 6.500 | 6.300 | 0.110 | 0.020 | 1.746   |                                                      |
|                                                                                               | meat                | 0.000 | 0.010 | 0.006 | 0.005 | 0.120 | 83.33   |                                                      |
|                                                                                               | kidney              | 0.000 | 0.043 | 0.023 | 0.014 | 0.003 | 60.86   |                                                      |
| Chromium                                                                                      | Liver               | 0.023 | 0.035 | 0.030 | 0.004 | 0.000 | 13.33   | <b>A </b>                                            |
| (Cr)                                                                                          | heart               | 0.020 | 0.07  | 0,04  | 0.02  | 0.003 | 50.00   | 4 p.p.m                                              |
|                                                                                               | spleen              | 0.001 | 0.005 | 0.002 | 0.001 | 0.000 | 50.00   |                                                      |
|                                                                                               | lung                | 0.008 | 0.081 | 0.032 | 0.029 | 0.007 | 90.62   |                                                      |
|                                                                                               | meat                | 0.700 | 0.169 | 0.116 | 0.030 | 0.006 | 25.86   |                                                      |
|                                                                                               | kidney              | 0.060 | 0.350 | 0.230 | 0.110 | 0.020 | 47.82   |                                                      |
| Mercury                                                                                       | Liver               | 0.059 | 0.034 | 0.233 | 0.108 | 0.024 | 46.35   | 0.5 p.p.m                                            |
| (Hg)                                                                                          | heart               | 0.130 | 0.49  | 0.34  | 0.13  | 0.029 | 38.23   | 0.2 h.h.m                                            |
|                                                                                               | spleen              | 0.048 | 0.206 | 0.161 | 0.054 | 0.012 | 33.54   |                                                      |
|                                                                                               | Jung                | 0.030 | 0.186 | 0.081 | 0.050 | 0.011 | 61.72   |                                                      |

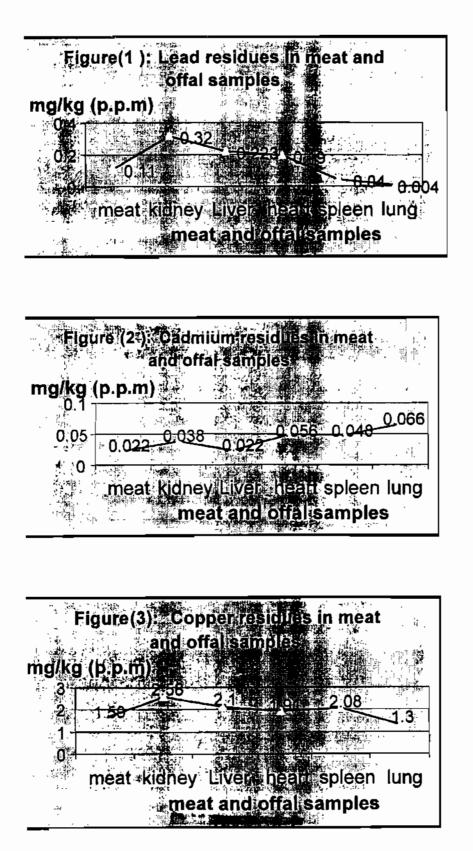
FAO : Food and Agriculture Organization

WHO: World Health Organization

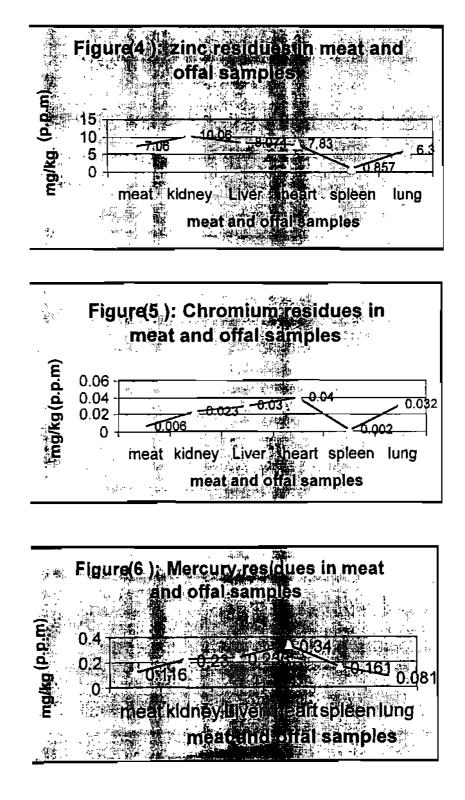
EOS : Egyptian Organization for Standrization

p.p.m : mg / kg

(ug/g)


Mansoura, Vet. Med. J.

|                    |        | meat | kidney      | Liver | heart  | spleen | lung          |
|--------------------|--------|------|-------------|-------|--------|--------|---------------|
| Lead<br>(Pb)       | meat   |      | 0.2         | -0.3  | -0.1   | -0.3   | -0,13         |
|                    | kidney |      |             | -0.3  | -0.4   | -0.2   | 0.08          |
|                    | Liver  |      |             |       | -0.03  | -0.05  | -0.12         |
|                    | heart  |      |             |       |        | 0.02   | 0.04          |
|                    | spleen |      |             |       |        |        | 0.50          |
|                    | lung   |      |             | - 0.1 | - 0.3  |        |               |
|                    | meat   |      | 0.6         | 0.1   | 0.3    | 0.05   | -0.30         |
|                    | kidney |      |             | 0.1   | 0.2    | 0.1    | <b>-0</b> .20 |
| Свонціяни          | Liver  | _    |             |       | -0.2   | -0.2   | 0.02          |
| (cd)               | heart  |      |             |       |        | -0.3   | -0.10         |
|                    | spleen |      |             |       |        |        | -0.20         |
|                    | lung   |      | 0,2         | 0.1   |        | - 0.3  |               |
|                    | meat   |      | 0.3         | 0.4   | 0.04   | -0.2   | 0.50          |
|                    | kidney |      |             | 0.2   | D, 1   | -0.1   | 0.20          |
| Сиррег             | Liver  |      |             |       | -0.001 | 0,1    | 0.70          |
| (Cu)               | heart  |      |             |       |        | -0.5   | -0.00         |
|                    | spleen |      |             |       |        |        | 0.6D          |
|                    | lung   |      | - 0,1       | 0.2   |        | - 0.3  |               |
|                    | meat   |      | -0.4        | 0.1   | -0.2   | -0.4   | -0.10         |
|                    | kidney |      |             | 0.6   | 0.02   | 0.4    | 0 20          |
| Zinc               | Liver  |      |             |       | 0.1    | 0.1    | -0.DD         |
| (Zn)               | heart  |      |             |       |        | 0.15   | 0.08          |
|                    | spleen |      |             |       |        |        | -0.30         |
|                    | lung   |      |             | 0.1   |        | 0.2    |               |
|                    | meat   |      | 0,1         | -0.03 | 0,2    | 0.5    | 0.30          |
|                    | kidney |      |             | 0.2   | -0.4   | -0.2   | -0.10         |
| Chroniiuni<br>(Cr) | Liver  |      |             |       | 0,1    | -0.05  | 0.30          |
|                    | heart  |      |             |       |        | 0.3    | 0.20          |
|                    | spleen |      |             |       |        |        | 0.30          |
|                    | lung   |      | 0.2         |       | 0.1    |        |               |
| Mercury<br>(Hg)    | meat   |      | D. <b>4</b> | 0.4   | 0.4    | 0.5    | 0.60          |
|                    | kidney |      |             | 0,4   | 0,7    | 0.5    | 0.10          |
|                    | Liver  |      |             |       | 0.3    | 0.5    | 0.20          |
|                    | heart  |      |             |       |        | 0.7    | 0.30          |
|                    | spleen |      |             |       |        |        | 0.20          |
|                    | lung   |      |             | D.2   | D.1    |        |               |


Table (2): Correlation coefficients between (r) different organs according to the levels of the cxamined heavy metals

Mansoura, Vet. Med. J.

#### **r** : Correlation coefficients (strong positive or weak negative)



Mansoura, Vet. Med. J.



Mansoura, Vet. Med. J.

#### REFERENCES

- Abdel-Rahman Ahmed Ali (2004) : Estimation of some heavy metals in meat, liver and kidney of sheep drinking water polluted with sewage in some villages of Assiut Governorate. Assiut, Vet.Med.J.Vol, 50 No 102.
- Alaa M. Morshdy; Kamel Ebrahim El-Dosky and F.S.E.L - Sebey (2006) : Some heavy metal residues in camel carcass. 8th Sci. vet. Med. Zag; conference (Aug. 31-sept.3).
- Afberti, Fidanz. A. A. (2002) : Trace elements in food and meals consumed by students attending the faculty of California Science of total Environment, 15 (1-2) : 133 - 40.
- Anderson, R.A. (1997): Chromium as an essential nutrient for humen. Regul Toxicol pharmacol, 26 (1 pt 2): S35 41.
- Antoniou, U., Zantopoulos, N. and Tsoukali - papadopoulou H. (1995) : selected heavy metal concentrations in goat liver and kidney vet . Human - toxicol. 37 (1) : 20-23.
- Avram. N.; serdaru, M.; Medrea, N.; Tana sescu. V. and Me hedintu, C. (2000) : Heavy metals accumulation and bio - concentration in the tissues and organs of catile in areas with heavy metals pollution . studies and researches in veterinary medicine 8:83 - 88.
- Bratokos, M. S.; Lazos, E. S. and Bratakos, S. M. (2002) : chromium content of selected Greek foods . sci Tokal Environ. 6, 290 (1-3) : 44 - 58.
- Buchet, J. P.; Pauwels, J. and Lauwerys, R (1994) : Assessment of exposure to Inorganic arsenic following ingestion of marine organisms by volunteers. Environ Research 66:44-51.

- Daoud, J. R. and Rashed, A. Y. (2002) : Determination of some heavy metals cone. in Ostrich, turkey and rabbits tissues in relation to polluted Water. J. Egypt. vet. Med. Assoc. 62 [ 6A ] 205-216.
- Daoud, J. R.: Kamel A. A. and Moustafa, A. R. (1998) : Determination of lead, cadmium and copper residues in muscles, liver and kidneys of slaughtered cattles and sheep in EL-Sharkia Governorate. vet. Med. J. Giza 46 (4A) : 339 - 348 5th scientific congress. fac. vet. Med; Cairo universily.
- Davis, G. K. and Mertz, W. (1996) : trace elements in Human and animal nutrition, 5<sup>th</sup> ed, vol.1, pp 301- 364 new York : Academie press.
- Doganoc, D. Z. (1996) : Lead and eadmium concentration in meat. liver and Kidney of slovenian cattle and pigs from 1989 to 1993. Food Addit contam fcb . Mar; 13 (2):237-241.
- Egyptian Organization for Standrization and Quality control (1993) : Maximum level for heavy metal contamination in food. ESN 2360.
- EL-Atabany, I. A. (1995) : cadmium and lead residues in some food animals and fish tissues at Marizala, Dakalia, Zaggazig vet. J., 23 (5) : 90.
- EL-Nabawi, A. G.; Heinzow, B. and Kruse,
  H. (1987) : AS, Cd, Cu, Pb, Hg and Zn in
  fish from the Alexandria region, Egypt.
  Buil, Environ. contam. Toxicd. 39: 889.
- EL Sherif, A.A.S. (1991) : Lead levels in macro and micro environment of cattle at Assiut Governorate. M.V.SC. Thesis faculty of vet. Med., Assuit University. Egypt.

Falandys Z. J. (1993) : Some toxic and es-

Mansoura, Vet. Med. J.

sential trace metals in eattle from the northern part of Poland . Sei total Environ -15:136 (1-2): 177 - 91.

- **FAO/WHO (1989) :** Joint expert Committee on food additives (WHO) . Teehnical Report Series No . 778 (1989) . Evaluation of eertain food additives and contaminants, Genera .
- **FAO/WHO (2008) :** Evaluation of mercury, lead, eadmium and the food additives amoronth, direcarbonate and acetyl gallate, WHO food Additives series NO 4, pp.11-56 world Health organization, Geneva.
- Gary P. K. oppenaal (1992) : Bull. cow (meat kidney), liver (Trace metals ed. cu. pb, iron and zine in Edible tissues of livestock and poultry . Journal of AOAC International vol. 75, No 4.
- **Gordon, D. T. (1988) :** Minerals in sea food quality determination proceeding of the international symposiumon seafood quality dctermination. Alaska. pp. 517-542.
- Hala, S. T. (2004) : Heavy metals in bccf and buffaloes car cases ph. D. Thesis. Meat Hygiene Faculty of veterinary Medicine. Cairo University.
- Hassouba, M.M. and OMAIMA, M.EL. TAH-ER Labib Maghraby (2007) : Detection of some heavy metals residues in chilled local and imported (Sudanese) beef. J. Egypt. vet. med. Asso.64, no.2 : 325 - 333
- Honway Loive, Danny Co. (1985) : Digestion of food samples for total mercury determination. Journal of association of official analytical chemistry (68) (5): 891-892.
- JECFA (2005) : Joint Expert committee on Food Additives www.feh.gov.bk.safefood/ report/heavymetal / heavymetalsum.html (1-3).

Jehan, R. Daoud and A. H. Br ABD - EL -

**Aziz (2002) :** Determination of Some heavy metal residuesin salted and smoked fishes vet . Med. J., Giza vol. 50. No . 4, 547-557.

- J. Lee; J. R. Rounce; A. D. Mackay and N. D. G. Race (2007) : Accumulation of eadmlum with time in Romney sheep grazing ryegrass - white Clover pasture and soil intake. Australian Journal of Agricultural Research. 12 : 15 AM.
- Khan, A. T.; Diffay, B. C.; Datiri, B. C.; Forester, D. M.; Thompson S. J. and Mielke, H. W. (1995) : Heavy meats Inlivers and kidneys of goad in Alabama Bull. Environ contam. toxled. 55: 568-573.
- Koh, T. S.; Bansemer, P. C. and Frensham,
  A. B. (1998) : Asurvey of the cadmium concentration in kidney, liver and muscle of south Australian eattle. Australian J. Experimental Agriculture 38 (6) : 535-540
- Korenkova, B.; Skalicka, M; and Nad, P. (2002) : concentration of some heavy metals in cattle reared in the vicinity of a mctallurgic industry. Veterinarski Arhir 7295 : 259 - 267.
- Lars. Jorhem (1992) : Determination of Metals in food stuffs by atomic Absorption spectrometry after dry Ashing (cd, zn, cu, iron, cr) Swedish National food administration po Box 622,S-M51 - 26.
- Lucisano, A. (1989) : Inquinamento da imprenditoria industrial Imetalli posanti. Atti della Societa Italiana delle scienze Veterinary, XL III, 85 - 98.
- Magouz, F. I., AAEL Gamal : M. M. EL Telbany., M. E. Hammed and M. F. Salem (1996) : Effect of some heavy metals on growth performance and chromo somal behaviour of blue tilapia (Oerochromis aureus). Food borne contamination and Egyp-

Mansoura, Vet. Med. J.

tians health. university of Mansoura. Nov. 26 - 27.

- Mansour, N. K.; Yaslen, N. A.; Darwish, A. M. and Hamdy, M. M. (1988) : Freezing and microbiological quatity of imported frozen bovine livers.
- Miranda, M.; Alonsao, M. L.; Castillo, C.; Hernandez, J. and Benedi To, J. L. (2004) : Cadmium levelsin liver, kidney and meat in calves from Asturias (North spain). European food Rescarch and Technology 212 (4) : 126-430.
- Mousa, M. M. and Samaha, I. A. (1993) : Cadmium. Copper. lead and zinc in carcasses of food animals . Alex . J. vet . sci., 9 (3) : 127-131.
- Nasri, A. (2006) : Heavy metals, sources, symptoms, testing and treatment. www.nasrichelation.com/pagcs/treatment /heavy metals.html/(1-5)
- Omer, A. A. M.; Ibrahim, M. S; EL-Haddad, A. A. and Ali, M. H. M. (2004) : Environmental consequences of the improper land application of sewage waste water disposal. Sohag, Egypt; Soil and Ground water pollution. the Sec. Int. conf. for develop and the envir. In the Arab world, March 23-25 Assiut, Egypt.
- **Omima, D. (1995)** : chemical constituents of beef, buffaloed and camel's meat ph. D vet thesis, Faculty of vet. med., Cairo university. Egypt.
- Omima, M.; Diab, Abd-El-Aziz, Hashim, M.
  F. and Insberah Kh. Mira (2000) : Monitoring of heavy metals Residues in livers of cattle, camel and sheep.
- **Osumex (2006) :** Lead. Number 82 on the periodic tablet of elements www.heavymetals, test.com/lcad.php(1-4).
- Petri, A. A. and Watson, P. (1999) : Statis-

tics for veterinary and Animal science  $1^{st}$  - Ed . 90-99 the Black well Science Ltd ., United Kingdom .

- Pouls, M. (2008) : Extended health. A web site for doctors and health profosional. A1 / Meat - 10 htm (1-25)
- Rabice A. E. (2001) : Chemical residues in food animals ph.D. Alex. University.
- Radwan, M. E. and Ali, A. A. (2003) : Effect of Sewage Water pollution on some blochemical parameters in sheep in Assiut Governorate Beni Suef vet. Med. J; XIII (1) : 339-347.
- Regius Moesenyi, A.; Anke, M. and EL-Gandy, H. (1990) : The mineral status of ruminants II. cu, zn, and Mn contents of feed stuffs and animal organs Acta Agronomica Hungari ca 39 : 155 - 166.
- Richard, F. and Rubin Shapiro, M. (1986) : Determination of trace element in foods by hydrochloric, nitric acid leaching and flame atomic absorption spectroscopy. Journal of AOAC. Int; 19 (5) : 868-870.
- Salisbury, D. C.; chan, W. and Sachenbrecker, P. W. (1991) : Multielement concentrations in liver and kidney tissues from five species of Canadian slaughter animals. J. A.O.A.C.74(4) : 587-591.
- Schoof, R. A.; Yost, L. J.; Eickhoff, E. A. Crecellus, E. A., Cragin, D, W., Meacher, D. M. and Menzel, D. B. (1999) : Amarket basket survey of inorganic arsenic food. Food and chemical Ttoxicology . 37 : 839 - 846.
- Sinigo, J. G. K. and Doganoc, D. Z. (2000) : Contamination of farm animals and fishes from Slovenia with heavy metals and sulfonamides. Bulletin of Environ. Contamin. And Toxic 64(2) : 235-241.

Skibneiwska, N. A. (2002) : Estimation of

Mansoura, Vet. Med. J.

iron. copper, zinc and many elements from dupticated dicts provided by hosp tals in Poland Food Additives and contamination 19 (10) : 969 - 973 .

- S. K. Pathak. and M. K. Bhowmik (2007) : Chronic mereury toxicity in goats by administrating mercuric chloride. Bengal University of Animal and Fishery Sciences. 37 Kshudiram India.
- Smiths. and Tichochine (2002) : Environmental nickel pollution; does it protect nickel allergy Journal of statistics. 2nd edition. Mc Graw -Hill New York . 14
- Sunderman, F. W. (1998) : Teratogenicity and emberyotoxicity of metals in human and Experimental animals. Metal lons in Biology and Medicine. 5:27 - 279 .
- Thanae A. Sekeek (1999) : Hygienie Quality of imported and native eattle edible offals with special reference to some heav metal residues. Alex. J. Vet. sci vol . 15N 0.5 October 1999.

- Under wood, E. J. (1977) : Trace elements in human and animal 4th Ed. Academic press. New York .
- Wheaton, F. W. and Lowson, T. B. (1985): processing of aquatic food products. Awirely interscience Publication p.231 232. Jhon Weily and sens., New York, Toronto .
- **WHO (1994)** : Environmental Health criterin No. 134. WHO Geneva.
- Yeart, G.; Miller, P.; Croasdale. M.; Crews, H.; Robb, P.; Baxter, M.; de L'Argy C. and Harrison, N. (2000) : Total diet study - dietary exposures to aluminum, arsenic. cadmium, ehromium, copper, lead, mercury, nickel, Selenium, tin and Zinc. Food Additives and eontaminants. 17 (9): 775 -786.
- Zakrzewiska, M., Biatonska, D. and Sawicka Kapusta, K. (2002) : cadmium aceumulation in fetus and placenta of bankvoles . Bull Environ. contam. Toxicol 169 : 829-834.

80

## الملخص العربى

## بعض بقايا المعادن الثقيلية في الأحشاء الداخليية المأكولية ولحوم الأبقار المحلية في محافظية الإسكندريية

ســوسن محمــد عرفـــه معمل فحوص الأغذية - إسكندرية

تعتبر بقايا المعادن الثقيلة من أهم الملوثات الكيميائية للغذاء خاصة فى اللحوم والأحشا بالداخلية التى تؤدى إلى مشاكل عديدة على الصحة العامة ولذلك وضعت تلك الدراسة لتحديد مستويات بعض بقايا تلك المعادن الثقيلة مثل الرصاص، الكادميوم والنحاس والزنك والكروميوم والزنبق.

وتم تقدير تلك البقايا في ١٣٠ من العينات من اللحوم والأحشا ، الداخلية يواقع عشرون عينة عشوائية من اللحوم، الكبد، الكلى، القلوب، الطحال والرئتين للأبقار المحلية وتم جمع العينات من الأسواق المحلية ومحلات الجزارة في محافظة الإسكندرية وقد حللت هذه النتائج لتقدير مستويات تلك المعادن وهي الرصاص، الكادميوم والنحاس والزنك والكروميوم والزئيق بواسطة جهاز الامتصاص الذرى.

ومن النتائج السابقة لوحظ إن معظم العينات موضوع الدراسة احتوت على مستويات المعادن الثقيلة في الحدود المسموم بها طبقاً للمواصفات القياسية المصرية فيما عدا عينات الرئتين والقلوب وجد إن نسبة تركيز الكادميوم كانت (٥٦، ٢٠، ٢٦، ر. ) جزء في الملبون وهي أعلى من الحدود المسموح بها وقد تم مناقشة النتائج ومدى خطورتها على الصحة العامة للإنسان مع إعطاء المقترحات والتوصيات التي تقلل من مدى تلوثها.

هذا وقد تم مناقشة النتائج وخطورة تلك المتبقيات على الصحة العامة وكذلك الاشتراطات الصحية مع إعطاء المقترحات الراجب مراعاتها مع تقليل نسبة تلك المتبقيات بها.

Vol. X, No. 2, 2008

Mansoura, Vet. Med. J.