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Abstract

The challenging explored subject under non-Bayesian and Bayesian
techniques is estimating parameters of Gompertz distribution based on
scheme of progressive Type-I censoring. Therefore, Maximum likelihood
estimators for the unknown parameters, as well as asymptotic confidence
intervals, are determined. Bayes estimates with the estimates of the
associated greatest posterior density credible interval are derived using
squared error loss function. Using the Metropolis-Hasting algorithm and
the method of Markov Chain Monte Carlo (MCMC), estimates of Bayes
are summarized. To assess the proposed estimator’s performance, a Monte
Carlo simulation study is accomplished. Furthermore, the theoretical
conclusions of Bayes estimates and maximum likelihood estimates at
progressively Type-I censored samples specified schemes are illustrated
using an examined analysis on real given data.

Key Words: Gompertz distribution; Progressive Type-I censoring
scheme; Bayesian estimation; Maximum likelihood estimation; Markov
Chain Monte Carlo.
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1. Introduction

The Gompertz distribution was originally introduced by Gompertz
(1825). This distribution is widely used to describe human mortality and
establish actuarial tables. The Gompertz probability density function (pdf)
and cumulative distribution function (cdf) are formulated respectively by

A
f(x; A, @) = Aexp (ax - (E) (exp(ax) — 1)); x>0,4a>0 (D

and
F(x;A,a) =1—exp (— (%) (exp(ax) — 1)); x>04a>0 (2)

where a represents the shape parameter and A represents the scale

parameter. Figure 1 indicated pdf and cdf behavior for the Gompertz
distribution of several values of 4 and a.
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Figure 1: Pdf and cdf for Gompertz distribution at several a and A values
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The survival (reliability) function (S(x)) and hazard rate function (h(x))
of the Gompertz distribution function are provided respectively by

A
S(x) = exp (— (£) explan) - 1)) 3)

and
h(x) = Aexp(ax); x>0 (4)
The behavior of the hazard rate function and RF a are illustrated in Figure

2 with several values of a and A.
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Figure 2: Function of Hazard rate and RF of Gompertz distribution of several
and A values

Various authors studied the properties and characteristics of Gompertz
distribution based on the pivotal quantity to estimate confidence intervals
(CIs) of the parameters of interest more efficiently. Under the Type-II
censoring scheme, Chen (1997) studied the exact Cls. For progressive
Type-II censoring scheme, Wu ef al. (2003) provided exact CIs. Studies of
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various estimation methods for this distribution have also been conducted
by several researchers. Dey et al. (2018a) proposed different methods to
estimate the PDF and CDF and compared the estimation methods based on
the Monte Carlo simulations. Dey et al. (2018b) provided various
mathematical and statistical properties and compared different estimation
methods from both frequentist and Bayesian point of view. Moala and Dey
(2018) provided Bayesian analysis methods under the objective and
subjective priors including Jeffreys prior, maximal data information prior,
Singpurwalla’s prior, and elicited prior. Lee and Seo (2020) studied the
weighted least-squared and pivot-based methods under progressive Type-
IT censoring. Chacko and Mohan (2018) studied the estimation of
parameters for Gompertz distribution based on a progressively type-II
censored sample with binomial removals. Gompertz distribution under
progressive first failure censoring was studied by Soliman ef al. (2012) and
Soliman and Al Sobhi (2015). Abu-Moussa et al. (021) studied the
estimation problem under adaptive progressive Type-II censoring scheme.
Finally, Wang and Gui (2021) studied the estimation of the parameters for
Gompertz distribution and prediction using general progressive Type-II
censoring.

Censored data increases in actual data testing experiments when the
experiment ended before the entire set of data is collected. For reasons,
like cost minimization and time constraints, the censoring technique in
practice is unavoidable and widespread, especially in reliability
engineering. Multiple types of censoring are described in the literature,
with Type-I censoring and Type-II censoring considered more common.
In recent years, a generalization known as progressive censoring schemes
got a lot of attention in the since it makes effective usage of available
resources than the classic censoring schemes. Progressive censoring Type-
I (PCTI) is included in these progressive censoring schemes. When a
predefined number of life testing elements are terminated continuously
from the experiment at the end of every predefined time durations, such
schema is detected. It supplies the experiment with the benefit of practical
realizing the termination time and with much greater flexibility to the
phase of design by permitting the testing units to be terminated at points
of non-terminal time ((Balakrishnan, et al. (2011)).
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Let n represent units’ number in a real testing experiment and
X1, X5,..., X, represent the life-time for such n units selected from a
population with pdf f(x; 8) and cdf F(x;6), where 6 is a vector of the
unknown parameters from the distribution. The associated ordered
lifetimes reported of the life testing are denoted by x (1) < x(2) <...< X(n).
When R; units are deleted of the survived items at the predefined time of
censoring T, corresponding to the g;th quantiles, i = 1,2,...,m, where m
is the stages number in the testing, Ty, > T,,_ andn =1 + X, R;, PCTI
is detected. The values T, must be determined in advance as:
1. The choice of these times depends on expertise and prior
knowledge on test the items of the experimenter (Balasooriya and
Low (2004)), or
2. For lifetimes distribution, the g;th quantiles
P(X < Tqi) =q = Ty = F7(q0)
where i = 1,2,...,m and F~1(.) is the inverse of the cdf.

In such cases R;, Ty, and n are pre-defined, [; is the surviving items number

at time Tg, and r = }Z, [; are random variables. The likelihood function
in this case is discribed by
r m
Lo | [ ramo| [ a-r(rgy o) )
i=1 j=1

where x ;) is the observed lifetime of the i™ order statistic (Cohen (1963)).
Figure 3 visualize this censoring scheme (Balakrishnan and Cramer

(2010)).
withdrawn withdrawn withdrawn withdrawn
R, R, Rs Ry
I j / j
Ty Ta T3 T

Figure 3: PCTI Scheme
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Thus, Type-I censoring and complete samples can be considered as special
cases of PCTI. For more details and implementation of this kind of
censoring, one may mention Balakrishnan and Cramer (2010),
Balakrishnan et al. (2011), and Balasooriya and Low (2004).

Mahmoud et al. (2018; 2021a) computed maximum likelihood estimates
(MLE’s) and Bayesian estimates (BEs) of the unknown parameters for the
generalized inverted exponential (GIE) distribution model under PCTI.
For the PCTI, there exist two publications that are closely associated. The
first involved the unknown parameters estimates of MLEs and ACI, for
the GIE model based on the assumption of two different kinds of failures
(Mahmoud et al. (2020)). The second involved the unknown parameters
estimates of MLEs and BEs, for the GIE (Mahmoud et al. (2021b)). For
the Weibull, distribution, Balasooriya and Low (2004) proposed a
competing risks model under PCTIL.

This paper aims to study the estimation of Gompertz distribution
parameters using maximum likelihood estimators (MLE) and Bayes
estimators, concerning a life testing with only PCTI data have been
available. The paper organized respectively as follow: assuming the
lifetime of the units of test are Gompertz distributed independently and
using PCTI, MLEs for the parameters of Gompertz(4,a) distribution are
obtained in Section 2. we assume prior distribution as gamma distribution
for the two unknown parameters of the Gompertz distribution and suppose
two separated loss functions; namely squared error and LINEX loss
functions.

In Section 3, we got Bayesian estimates as well as the estimates of highest
posterior density interval by applying Metropolis-Hasting algorithm and
Markov Chain Monte Carlo (MCMC). Furthermore, in Section 4, for
applicability purposes, a real data set is investigated, as well as simulations
Monte Carlo to test the efficiency of the considered estimators, with
providing comments derived based on the study.

2. Maximum Likelihood Estimation

For PCTI censored data, we generate MLEs of the unknown parameters of
the Gompertz distribution in this section. The following steps can be
adopted to implement a progressive Type-I censoring scheme:
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e Assume a life-testing experiment is conducted on a random sample
of units n with life time’s follow the Gompertz (A,a) distribution.

e Pre-fix m censoring time points Ty, , ..., T, , where a fixed number

of survived items Ry,...,..,R,,—; are ecliminated of the test
randomly. The censoring times Ty, are specified to match P(X <

Ty,) = qi, where X is Gompertz (4,a) distributed.
e The life test is terminating in a pre-determined time Ty,

Under such a censoring scheme, we may collect the PCTI samples x =
(x(l),x(z), ...,x(r)), which reflect the observations for lifetime of the n

units. Given the observations x and from equation 5, the related likelihood
function of a and A may be expressed as

. 2
L(A, &) < A" exp (Z axegy — (—) (exp(axqy) — 1))

z [exp < (exp (aT,,) - 1)>rj 6)

Computing logarithm of L(4, a) to get log-likelihood InL as

InL o< rlog(1) + z [ax(r) — (/1> (exp(ax(r)) — 1)]

Z[R ( ) exp aqu)—l)] (7)

With respect to A and « , the first partial derivatives of the Log-likelihood
function InL are:

ok 1, z ROICICHED

Z[R ( ) exp aqu)—l)]
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alnL Z [X(r) _ (g) (X(r) exp(ax(r))) + ( ) (exp(ax(r)) - 1)]

i 1) (o0 (e, )
(%) (exp (a,)) - 1)]

. dlnL dlnL
Equating Y | 1= and |a a to zero as follows:

% Zr:[ ( )(exp(“x(r))—l)] Z[R ( ) €xp “qu')_l)]

i=1
= 0,

X(r) = (g) (xery exp(axen))) + (g) (exp(axe) - 1)]
_i&Kg@ﬁm@%»
- (%) (exp (ar1,,) - 1)] =0,

The MLEs of A and a parameters, respectively, are the numerical solution

r

2.

i=1

of two equations above of A and @ .

Now, by inverting the observed information matrix of the elements that are
minus the expected values for the second order derivatives of logarithms
of the likelihood functions, the asymptotic variance-covariance matrix of
the MLEs of 4 and « can also be produced. This is

o(20) (20

FYE FYEr:
92Iné 92Ine

-k <aaa/1) _E< da? )
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where
Ot T
FYERRPE
a;(l;{) - Z [(%) (xGy exp(ax()) - (%) (xer exp(axc)))
- (i) (xer) expaxen)) = (%) (exp(axe) - 1)]
Z G ) (12 exp (aTy,)) - ((jz) (1, exp (aTy,))
() oo o) () oler) )
o= [ (3) Gy exnaxin)) + (1) explan) - 1)

)
i R [(2) (1, e (er,)
= (%) (exp (ar,,) - 1)]

Cohen (1965) confirmed that substituting expected values with their MLEs
generated the approximate variance covariance matrix. The approximated
sample information matrix will now be

92In¢ 92Ine
5 A da?2 JdadAl
I(Aa)=—
(4, &) 92Iné 9%Iné

0A0a dA? a=a,1=1

As a consequence, the approximated variance covariance matrix of & and

A will be
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0%In¢ 9%In¢

011 012]=_ da? Odadl ©
021 Oz 0%Inf 0°%In¢

020a 022 ly_aaz

Asymptotic Confidence Interval

The unknown parameters A and a confidence intervals are derived under
the asymptotic distribution of the estimates MLEs. For the MLE
asymptotic distribution, it is proven that

(@A) — (a, 1) = N,(0,1"(&, 1))

where N,(-) is bivariate normal distribution and I(-) is the the Fisher
information matrix expressed in equation 8. on specific regularity
conditions, the two-sided 100(1—y)%,0<y <1, asymptotic
confidence intervals of the vector of unknown parameters @ and A may be

formulated as:
a+ ZZ\/ 011
2

2 i ZVw/O'ZZ

where the MLEs asymptotic variances of A and «, are g4, and g, , Zy is
the upper —th percentile for the standard normal distribution.

3. Bayesian Estimation

The Bayesian estimates for the Gompertz distribution’s unknown
parameters is explored using a scheme of PCTI. The squared error loss
function is considered for Bayesian parameter estimation. It can be noted
that the shape parameter a seems to have a conjugate prior, that is an alpha
prior, if the scale parameter A is defined. for the parameters, there is no
joint conjugate prior when both of the model’s parameters are unknown.
For both a and A with pdfs, we suggest using independent alpha priors.

a2-lexp(—b,a) a>0,a,>0,b, >0
7,(1) % A% texp(=b;1)  A>0,a; > 0,b; > 0

mi(a) X a
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where a4, by, a,, by, the hyper-parameters, are chosen to represent the prior
knowledge of the unknown parameters. The joint prior for ¢ and A is
formulated by

n(a, A1) = my ()1, ()
m(a, 1) x a®1~ 1% texp(—b,a — byA) (9)
Hyper-parameter elicitation

The informative priors are employed to select the hyper-parameters. Such
informative priors are derived from the MLEs for (a, 4) via equating the
mean and variance of (&/,1/) along with the mean and variance of the
considered priors (gamma priors), where j = 1,2, ..., k, k is the available
samples number from the GIE distribution. On equating the mean and
variance of (&/,17) and the mean and variance of alpha priors (Dey et al.
(2016)), we get

k k k
lz &j=ﬂ & _1 Z (&j_lz: aj)2=ﬂ
k 4 b, k—14 k £ b2
j=1 j=1 j=1
k k k
lz =2 ¢ LZ (,ij_lz 1y =2
j=1 j=1 j=1

The estimated hyper-parameters can therefore be written and illustrated by
solving the two equations.

1 . 1 N
3k, @)y Tyk, @
R N A_Z&b1= 1 sk (pi_lgk ~jv2
F=12j=1 (@ —pXj, @) =1 2=1 (@ = Xj, @)
1 A 1 A
(P, V2 Tyk
az - &bz =

1 a1 A 1 ~ 1 Aivg
mZ?ﬂ v —EZ?":l A)? m27=1 W _EZ?=1 A)?
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The associating posterior density with the observations

x = (X(1), X(2), - » X)) can therefore be formulated as
n(a, )L(a, A)

I, S m(a, HL(a, DdAda

n(A, alx) =

The posterior density function is formulated as

m(a,Alx) = K™ |a® 179271 exp (—bla — b,

Z axeqy — ( ) (exp(ax(y)) — 1))
) SECISEREN

where k is a normalize constant. Thus, the posterior density may be
reformulated as

m(a, A|x) o< @11 Tt exp <—b1a — byA
3= () (o) - )
Z [exp( exp (aqu) - 1))] j (10)

The Bayes Estimator of any function, say g(4, @) with the squared error
loss function, is as shown

J4a) = jooo Jooog(l, a)m(A, alx)dAda

- 685 -



Scientific Journal for Financial and Commercial Studies and Researches3(2)1 July 2022

Dr. Berihan Elemary

Unfortunately, equation 10 can hardly be evaluated for general
g4, @).The Markov Chain Monte Carlo (MCMC) and the most well-
known approximated Bayes estimates of a and A are recommended.

3.1 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is considered to be a technique of
computer-driven sampling. It enables summarizing a distribution without
recognizing all of its mathematical properties by randomly sampling data
from it (Ravenzwaaij et al. (2018)). Since it focuses on posterior
distributions, which are typically challenging to handle through analytic
analysis, MCMC is very useful in Bayesian inference. In such cases or
conditions, MCMC enables the user to define approximated characteristics
of posterior distributions that are not be computed directly (e.g., random
samples from the posterior, posterior means, etc.). To use MCMC to
generated samples based on a distribution:

1. Start with an initial guess: a single value that could be selected
reasonably from the distribution.

2. Using the initial guess, generate a series of new samples. Two
phases are involved in generating each new sample:

a. Proposal: Providing a small random perturbation to the
recent sample generates a proposal of the new sample.

b. Acceptance: The new proposal is either approved as a new
sample or rejected (retain the old sample).

There are various methodologies for providing random noise to produce
proposals, as well as various techniques to accept and reject proposals,
like: Metropolis-Hastings and Gibbs-sampling algorithm.

3.1.1 Metropolis-Hasting algorithm

To implement the MH algorithm for the GIE distribution, an initial value
and a proposal distribution for a and A, the unknown parameters, need to
be defined. For the proposed distribution, a bivariate normal distribution,
q((a',2)|(a, 1)) = N,((a, 1), Sz 1), Where S, ; is the matrix of the
variance-covariance, is considered. we might get negative observations
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which cannot be accepted. The MLE for A and a, (a(®, 1) = (&, 1), is
considered for the initial values. S, ; is the asymptotic variance-covariance

matrix I7'(&,A), where I(.) is the Fisher information matrix.the
acceptance rate relies on selecting S, 5, this is why it is an major matter in
the MH algorithm. In this regard, the MH algorithm main steps for drawing
samples from the posterior density given equation 10 are implemented as
shown:

Step 1. Set an initial value of 8 as 8(® = (&, 1).
Step 2. For i = 1,2, ..., M repeat the following: [label=2.:]
a. Setf =00,

b. Generate a new potential parameter value § from
N,(In8, Sp).
c. Setf' =exp(9).

(8’ |x)

d. Calculate f = I

where 7 () is the posterior density in
equation 9
e. Generate a sample u from the uniform, U(0,1), distribution
f.  Accept or reject the new candidate 6’
{If usp set 60 =¢
otherwise set 6W =49,

Finally, some of the initial samples can be rejected (burn-in) for the
random samples of size M selected from the posterior density, and the
surviving samples may be used to construct Bayes estimates. The equation
(10) could get estimated precisely as

M
1
Gun(@,2) = 3= > 9@ A) (11)

i=lp

where [ is the number of (burn-in) discarded samples.
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3.1.2 Highest Posterior Density

In this sub-section, using samples chosen through the proposed MH
algorithm, we generate HPD intervals for the unknown GIE distribution
parameters a and A using a PCTI censoring scheme. Consider that the yth
quantiles of a and 2 are ) and A,

(a@W), 107) = inf{(a, 1): TI((a, 1) |x) = y}

where 0 < y < 1 and II(+) is the posterior distribution function of a and
A. For a given a* and A", a simulated consistent estimator of ((a, 1)|x)
can be precisely estimated as

M
1
(', 1)) = 3777 ), hamsaa)

i=lp
Here I3 a)<(a,a*) 18 the indicator function. Therefore, the corresponding
estimate is obtained as

M((a", )|x) =

0 lf ((l*,/l*) < (a(lB),/l(lB))
=1y @5 f (@A) < (@ A7) < (@) Adsn)
1 lf ((l*,(l*) > (CZ(M),A(M))

where w; = M+13 and (a(jy, A(;)) are the ordered values of (a;, 4;). Now,

fori = lg,...,M, (a™, 1) can be approximatly estimated using
(@ugyAa-p) if v=0
- i-1 i
(@M, 1) = .
(Gf(l'),/l(i)) lf Z (x)] < Y < Z (x)]

Jj=lp Jj=lp

To have a 100(1 — y)% HPD credible interval for a and 4, assume
j j+(-y)M ' j+a-y)M
HPDf* = <d(ﬁ),&( M )) & HpD]ﬂ = <Z(ﬁ)i( M ))

forj = lg, ..., [yM], here [a] denotes the largest integer that is less than or
equal to a. Then choose HPD;- among all the HPD]-' s with the smallest

width.
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4. Simulation Study and Real Data Analysis

In this section, the purpose is to analyze the performance of the various
estimation methods presented in sections above. For illustrative purposes,
areal given dataset is used; additionally, a simulation study to examine the
behavior of the suggested methods and to test the statistical performances
of the estimators is utilized given a progressive Type-I censoring scheme.
Calculations have been performed using the R-statistical programming
language. Calculating MLEs and HPD intervals in R-language is done
through utilizing the bbmle and HDInterval packages.

4.1 Simulation Study

In this sub-section, to analyze the performance of estimation methods,
including MLE and Bayesian estimation, a Monte Carlo simulation study
is employed, under PCTI scheme for Gompertz distribution. For the
MLE:s, 1000 observations are generated from NH distribution based on the
assumptions:

1. a=15and A =25, 1i.e., Gompertz(0.5,1.5).

2. Sample sizes of n = 25, n = 50 and n = 100.

3. Number of progressive Type-I censoring stages are m = 3,5.
4. Time of censoringT; (TC) are proposed as follows:

e TC—-1=(0.25,0.55,2)

e TC—1II = (0.45,1.25,3.5)

e TC-—1III =(0.15,0.45,0.85,1.5,2.6)

e TC-—1V =(0.30,0.70,1.25,2.13,4)

where j = 1, ..., m. The patterns of TC can be classified according to m.
In our study, TC — I and TC — II are used when m = 3 and TC — III and
TC — IV are used when m = 5.

5. Removed items R; are assumed at different sample size n as shown
in Table 1

where R, = n — (Z;-n:_ll R; + r) and r is the number of failure items.
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Table 1: Numerous patterns for removing items from life test at different

number of stages
Patterns
m Scheme
n=25 n=>50 n =100
PCTI-1  |R = (0®,R,)|R = (0®,R,)|R = (0®,R,,)
PCTI2 R = (3@,R,)|R = 5D,R,) R = (9®,R,)
PCTI-3 |R = (5@, R,)|R = (9, R,,) R
om m = (18(2)1Rm)
3 PCTI-4 |R = (6,0,Ry)||R = (10,0,R,,)|R = (18,0,R,,)
R
PCTI5 | (10,0,R,,) R = (18,0,R)|R = (36,0, R,)
PCTI-6 |R = (0,6,Ry)||R = (0,10,R,,)|R = (0,18,R,,)
R
PCTI7 | = (0.10,R,) R = (0,18,R,)|R = (0,36,R,,)
PCTI-8 R = (0®,R,,)|R = (0®,R,,)[|R = (0¥,R,,)
PCTI9 R =(2®W,R,)|R=B®,R,)|R=(GH,R,,)
PCTI-10 |R = (3™),R,,)|R = (5™, R,) R
r fm mll = (10, R,,)
R R R
s PCTI-11 _ (8,0(3),Rm) — (12'0(3)’Rm) — (20;0(3)’Rm)
R R R
PETI2 L 12 00, R 1= (20,09, R, )= (40,0®),R, )
R R R
PCTES 1 0@ 8, R, )= (09,12, R,)= (0®),20,R,)
R R R
PCTI-14 (03,12, R, = (0, 20,R,,)|= (0,40, R,,)
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Here, (3, 0), for example, means that the censoring scheme employed
is (3,3,0). It is indicated that scheme PCTI — 1 and PCTI — 8 are represent
a special case of Type-I censoring scheme with number of failure items
R,, = n —rand CT is T),. MLEs and related 95% asymptotic confidence
intervals are produced based on the generated data. On deriving MLEs, be
aware that the initial assume values are regarded as true parameter values.

We compute Bayesian estimates employing the Gompertz algorithm using
informative priors for the Bayesian estimation method. As historical
samples, we construct 1000 completed samples of size 60 each from the
Gompertz(0.5,1.5) distribution, then determine the values of the hyper
parameter as a; = 7.18,b; = 12.77,a, = 1.62,b, = 0.96.

Such values of informative priors are plugged-in to evaluate the required
estimates. Trough implementing the MH algorithm, the MLEs are used as
initial guess values, as well as the corresponding variance-covariance
matrix Sg of (In(&), In(1)). In the end, 1600 burn-in samples were deleted
from the total of 8,000 generated samples by the posterior density, and
progressively produced Bayes estimates and HPD interval estimates
adopting the technique of Chen and Shao (1999). All the average estimates
for methods are reported in Table 2, Table 3, and Table 4 for samples size
n = 25,n = 50, and n = 100, respectively. Further, the first row donates
the average estimates (Avg.) and in the second row, related means square
errors (MSEs). For confidence intervals, we have asymptotic confidence
interval for MLEs and HPD for Bayesian estimates based on MCMC
which reported in Table 5, Table 6, and Table 7 for samples size n = 25,
n =50, and n = 100, respectively. Further, the first row represents
average interval lengths (AILs) and in the second row, related coverage
probabilities (CPs).

According to the tabulated values, greater values of n inevitably lead to
better estimates based on MSEs. It is also noted that MLEs compete
directly well with informative Bayes estimates. Moreover, when the units
are eliminated, the MSEs and AlLs of related interval estimates are often
smaller, when the units are terminated at early stages. The convergence of
MCMC estimation of a and A is illustrated in two figures. First; Figure 4
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for m = 3 and pattern of censoring PTIC-3 and TC — I for choosing
sample size n = 50. Second; Figure 5 for m = 5 and pattern of censoring
PTIC-10 and TC — IV for choosing sample size n = 50.

Figure 4: Distribution and convergence of MCMC estimates for @ and A using
MH algorithm under PCTI-3 and TC — I where m = 3 and n = 50
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Figure 5: Distribution and convergence of MCMC estimates for @ and A using
MH algorithm under PCTI-10 and TC — IV where m = 5 and n = 50
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Table 2: Avg. estimated values and MSEs of the ML and BE using MCMC for
different schemes of PCTI Gompertz data at sample size n = 25 with ¢ = 0.5
and 1 = 1.5

m |[Scheme

a

~

A

a

i

a

~

A

a

A

TC-1=(0.2

5,0.55,2)

TC-1

1=(0.45, 1.25,

3.5)

PCTI-1

Avg.

0.9677

2.5711

0.6088

1.3500:

0.7589

2.8130

0.6045

1.3619

MSE

0.7333

34.182

0.0234

0.8195

0.3200

35.632

0.0207

0.2352

PCTI-2

Avg.

1.0269

2.3403

0.6014

1.3613

0.8306

2.4159

0.6091

1.3651

MSE

0.8742

27.954

0.0172

0.2011

0.4246

27.475

0.0188

0.2094

PCTI-3

Avg.

1.1328

2.5455

0.6067

1.3573

1.0323

2.3708

0.6105

1.3454

MSE

1.0506

41.860

0.0476

0.9902

0.8440

34.427

0.0194

0.2514

3 |PCTI-4

Avg.

1.2426

2.5942

0.6021

1.3623

1.1909

1.9504

0.6125

1.3683

MSE

1.4362

45.419

0.0146

0.2836

1.1793

22.839

0.0179

0.4712

PCTI-5

Avg.

3.0034

1.7821

0.6009

1.2955

1.4002

2.4439

0.5928

1.3486

MSE

13.235

30.722

0.1022

0.9647

1.8887

41.121

0.0150

0.4154

PCTI-6

Avg.

0.9205

2.8128

0.6065

1.3878

0.7310

2.7088

0.6160

1.3833

MSE

0.6404

38.119

0.0169

0.7542

0.3036

29.061

0.2117

0.2879

PCTI-7

Avg.

1.0338

2.3847

0.6044

1.3880

0.7669

2.7028

0.6111

1.3665

MSE

0.8263

31.541

0.0189

1.4207

0.3303

30.615

0.0459

0.2973

TC-III = (0.15, 0.45, 0.85,
1.5,2.6)

TC-IV = (0.30, 0.70, 1.25,
2.13, 4)

PCTI-8

Avg.

0.7817

2.7769

0.5648

1.4344

0.7000

2.5971

0.5861

1.4083

MSE

0.3706

11.788

0.0135

0.2107

0.2376

11.818

0.0155

0.2260

PCTI-9

Avg.

0.9055

2.4300

0.5653

1.4502

0.8689

2.3697

0.5830

1.4113
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MSE |0.5834]9.2526(0.0119/0.1968||0.5121{9.32130.0163|0.2135

PCTI- | Avg. [1.0701/1.9935/0.5680/1.4721]10.9858|2.43460.5854/1.3696

10 ["VISE [0.8933[9.4475(0.0083[0.3912]0.7927[9.5905(0.0447/0.2088

PCTL- | Avg. |0.9396|2.219210.5775|1.4362)0.7754|2.8923/0.6000/1.4119

I 'MSE [0.6276(8.5497(0.0115(0.2235[0.3384[8.1076(0.1939/0.2250

PCTL | Avg. [0.9526]2.36610.5665|1.4503(0.8747|2.2995/0.5844/1.4012

12° 'MSE [0.6925[9.0145(0.0105/0.2317]0.5308[9.19260.0142/0.2442

PCTI- | Avg. [0.98612.732010.5671/1.4674]0.9010{2.20490.5867|1.4199

13" 'MSE [0.786411.963(0.0117/0.45330.5538[9.7758(0.0149/0.1977

PCTI- | Avg. |1.1152]2.316210.5659|1.4685|0.8690|2.8618|0.5770/1.4398

14 'MSE[1.0137[11.837(0.0109/0.5452[0.5383]12.009(0.0147/0.2702

Table 3: Avg. estimated values and MSEs of the ML and BE using MCMC for
different schemes of PCTI Gompertz data at sample size n = 50 with @ = 0.5

and A =1.5
@ A @ i a A @ A
m |Scheme
TC-1=(0.25, 0.55, 2) TC-11=(0.45, 1.25,3.5)

Avg. 10.7390]3.0519|0.5915|1.4403][0.6291|2.6418 |0.5921|1.4592
PCTI-1

MSE |0.31899.4902(0.0191/0.3766| 0.1515|6.0803 (0.0211]0.3927

Avg. 10.8011{2.56790.5967(1.4029|0.6910|2.6517]0.5986|1.4192
PCTI-2

3 MSE |0.3819(10.186(0.0179/0.2453(0.2129|9.3341 |0.0229|0.3498

Avg. |0.8748|2.5555|0.5989|1.4188](0.7514|2.43760.5995|1.4221
PCTI-3

MSE |0.51198.252810.0186|0.2351|0.3019|6.9196 [0.0233|0.3843

PCTI-4 | Avg. [0.8847|2.4505|0.6039|1.3750(0.7478|2.4788 |0.6017(1.3817
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MSE

0.5184

6.2125

0.0170

0.2104

0.3016

9.2935

0.0202

0.2124

PCTI-5

Avg.

1.5613

2.0127

0.5969

1.3882

1.0700

2.7945

0.5912

1.4193

MSE

2.6891

10.379

0.0129

0.2520

0.9750

12.411

0.0179

0.2548

PCTI-6

Avg.

0.7677

2.5999

0.5999

1.4383

0.6435

2.9360

0.5927

1.4778

MSE

0.3513

11.256

0.0260

0.3241

0.1720

11.907

0.0236

0.5429

PCTI-7

Avg.

0.7734

2.7190

0.6021

1.4087

0.6199

2.8267

0.5869

1.4717

MSE

0.3526

8.3449

0.0190

0.2738

0.1620

8.9953

0.0239

0.5349

TC-II1 = (0.15, 0.45, 0.85, 1.5,
2.6)

TC-1IV = (0.30, 0.70, 1.25,
2.13, 4)

PCTI-8

Avg.

0.6434

3.2483

0.5725

1.5699

0.5873

2.7209

0.5673

1.5385

MSE

0.1978

7.1641

0.0183

0.5322

0.1198

4.3949

0.0196

0.4664

PCTI-9

Avg.

0.7140

2.7001

0.5710

1.5417

0.6416

2.7907

0.5741

1.4724

MSE

0.2690

6.2278

0.0234

0.4999

0.1686

4.7119

0.0168

0.2712

PCTI-10

Avg.

0.7642

2.4687

0.5773

1.5185

0.7284

2.3271

0.5831

1.4470

MSE

0.3385

4.8471

0.0175

0.4061

0.2763

5.2684

0.0244

0.2292

5 |PCTI-11

Avg.

0.7226

2.5457

0.5800

1.4920

0.6412

2.6695

0.5754

1.4718

MSE

0.2580

7.1739

0.0181

0.4182

0.1580

7.6975

0.0176

0.3041

PCTI-12

Avg.

0.7376

2.7943

0.5815

1.4680

0.6839

2.6584

0.5861

1.4290

MSE

0.3051

6.7629

0.0164

0.3396

0.2051

3.5665

0.0176

0.2436

PCTI-13

Avg.

0.7377

2.7426

0.5719

1.5541

0.6869

2.5124

0.5759

1.4500

MSE

0.2757

4.1830

0.0190

0.6194

0.2110

5.4127

0.0183

0.2452

PCTI-14

Avg.

0.8091

2.6045

0.5708

1.5191

0.6991

3.0343

0.5812

1.4651

MSE

0.4184

2.7520

0.0162

0.2822

0.2509

4.3184

0.0164

0.2932
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Table 4: Avg. estimated values and MSEs of the ML and BE using MCMC for
different schemes of PCTI Gompertz data at sample size n = 100 with @« = 0.5

and 1 = 1.5
a A a A @ A a Vi
m Scheme
TC-I1=(0.25, 0.55, 2) TC-II = (0.45, 1.25, 3.5)
Avg. | 0.6189 | 3.0645 | 0.5672 | 1.5930 | 0.5374 | 2.5959 | 0.5564 | 1.6506
Pt MSE | 0.1620 | 4.0252 | 0.0233 | 0.8349 | 0.0782 | 4.8447 | 0.0215 | 0.9735
Avg. | 0.6574 | 2.5812 | 0.5787 | 1.5273 | 0.5539 | 2.7196 | 0.5712 | 1.5800
petl MSE | 0.1899 | 2.6238 | 0.0220 | 0.5667 | 0.0929 | 4.5614 | 0.0864 | 0.7077
Avg. | 0.6746 | 2.8032 | 0.5831 | 1.4912 | 0.6034 | 2.2969 | 0.5731 | 1.5555
Pt MSE | 0.2122 | 3.6927 | 0.0205 | 0.4459 | 0.1157 | 3.4254 | 0.0215 | 0.6735
Avg. | 0.6966 | 2.5780 | 0.5905 | 1.4483 | 0.5968 | 2.6056 | 0.5745 | 1.5474
’ Pt MSE | 0.2340 | 2.7398 | 0.0208 | 0.3532 | 0.1232 | 5.3136 | 0.0215 | 0.6288
Avg. | 09371 | 2.8187 | 0.5957 | 1.4186 | 0.7725 | 3.1949 | 0.5769 | 1.4964
Pt MSE | 0.6709 | 3.5062 | 0.0165 | 0.1914 | 0.3820 | 2.3891 | 0.0210 | 0.3405
Avg. | 0.6171 | 2.9533 | 0.5710 | 1.5559 | 0.5339 | 2.8224 | 0.5476 | 1.6856
petle MSE | 0.1646 | 2.5731 | 0.0229 | 0.6724 | 0.0835 | 4.2485 | 0.0241 | 1.0595
Avg. | 0.6313 | 2.8073 | 0.5748 | 1.5591 | 0.5488 | 2.5607 | 0.5559 | 1.6815
Pt MSE | 0.1646 | 3.5396 | 0.0216 | 0.5936 | 0.0798 | 3.2904 | 0.0225 | 1.1047
TC-III = (0.15, 0.45, 0.85, 1.5, 2.6) TC-IV = (0.30, 0.70, 1.25, 2.13, 4)

Avg. | 05674 | 2.6574 | 0.5414 | 1.6309 | 0.5353 | 2.6575 | 0.5314 | 1.6675
Pt MSE | 0.1035 | 2.8039 | 0.0180 | 0.6796 | 0.0711 | 2.2160 | 0.0190 | 0.7130
5 Avg. | 0.5905 | 2.6067 | 0.5465 | 1.6010 | 0.5576 | 2.5566 | 0.5340 | 1.6341
Pt MSE | 0.1113 | 2.1867 | 0.0158 | 0.4730 | 0.0834 | 1.5693 | 0.0142 | 0.5404
PCTI-10 | Avg. | 0.6395 | 2.6969 | 0.5580 | 1.5617 | 0.5949 | 2.8591 | 0.5340 | 1.6210
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MSE | 0.1755 | 2.8176 | 0.0156 | 0.4596 | 0.1343 | 2.6221 | 0.0151 | 0.5106
Avg. | 05744 | 2.5835 | 0.5482 | 1.5517 | 0.5435 | 2.6863 | 0.5278 | 1.6843
Pt MSE | 0.1032 | 1.3209 | 0.0146 | 0.3749 | 0.0797 | 2.0733 | 0.0148 | 0.6958
Avg. | 0.6418 | 2.5706 | 0.5616 | 1.5183 | 0.5639 | 2.6105 | 0.5354 | 1.6468
Ptz MSE | 0.1564 | 2.2589 | 0.0169 | 0.3603 | 0.0965 | 1.7152 | 0.0208 | 0.6054
Avg. | 0.6039 | 2.7270 | 0.5480 | 1.6150 | 0.5710 | 2.5270 | 0.5317 | 1.6607
Pt MSE | 0.1354 | 2.9669 | 0.0177 | 0.5920 || 0.0988 | 2.2898 | 0.0153 | 0.6869
Avg. | 0.6651 | 2.8963 | 0.5537 | 1.5810 | 0.5926 | 2.7871 | 0.5326 | 1.6773
Pt MSE | 0.2057 | 2.9896 | 0.0171 | 0.4387 | 0.1293 | 2.3861 | 0.0160 | 0.7674

Table 5: AlLs and CP (%) values of the ML and BE using MCMC for different
schemes of PCTI Gompertz data at sample size n = 25 witha = 0.5 and 1 =

1.5
@ A @ A a A @ y)
m Scheme
TC-1=(0.25, 0.55, 2) TC-11=(0.45, 1.25,3.5)
AIL 2.0769 | 9.7252 | 0.2683 | 1.5319 || 1.5844 | 8.0636 | 0.3498 | 1.6219
PCTI-1
CP 92.0 95.5 97.9 95.7 93.2 94.6 96.4 96.4
AIL 2.2048 | 9.0339 | 0.2458 | 1.6641 || 1.7872 | 8.8720 | 0.2966 | 1.5850
PCTI-2
CP 91.1 95.1 97.6 959 94.8 94.6 97.7 95.6
3 AIL 2.3278 | 7.1622 | 0.2210 | 1.7685 || 2.0699 | 5.7636 | 0.2778 | 1.6563
PCTI-3
CP 91.5 94.8 98.5 95.9 90.3 94.6 98.1 96.2
AIL 2.5119 | 6.7320 | 0.1978 | 1.9051 || 2.3641 | 5.0209 | 0.2394 | 1.6137
PCTI4
CP 90.2 95.7 98.5 96.1 90.7 94.6 97.4 96.7
PCTI-5 AIL 5.6018 | 7.6781 | 0.1798 | 2.5968 | 2.9459 | 8.4617 | 0.1955 | 1.8762

- 697 -




Scientific Journal for Financial and Commercial Studies and Researches3(2)1 July 2022

Dr. Berihan Elemary

CP 91.6 95.4 97.6 95.1 93.1 94.6 97.8 96.5
AIL 2.0501 | 11.5786 | 0.2506 | 1.5753 || 1.5929 | 9.7017 | 0.4006 | 1.5942
PCTI-6
CP 92.5 92.9 97.6 96.6 94.1 94.6 98.9 95.6
AlIL 2.1249 | 10.2432 | 0.2580 | 1.6047 | 1.6087 | 8.4279 | 0.4083 | 1.5983
PCTI-7
CP 91.2 933 99.0 96.4 93.7 94.6 98.9 96.2
TC-III = (0.15, 0.45, 0.85, 1.5, 2.6) TC-IV = (0.30, 0.70, 1.25, 2.13, 4)
AlIL 1.6711 | 10.7931 | 0.3053 | 1.5183 | 1.4899 | 10.7152 | 0.3331 | 1.6238
PCTI-8
CP 93.6 94.8 98.5 96.5 94.8 94.4 98.1 95.4
AIL 1.9388 | 9.7287 | 0.2411 | 1.6045 | 1.8174 | 9.0732 | 0.3284 | 1.6317
PCTI-9
CP 92.7 95.2 97.8 96.8 92.3 95.4 98.6 96.3
AlIL 2.2640 | 9.9578 | 0.2113 | 1.6642 | 2.0989 | 8.9071 | 0.2992 | 1.6897
PCTI-10
CP 93.2 95.5 97.9 96.8 92.2 95.6 98.8 95.7
AIL 1.9215 | 7.5084 | 0.2570 | 1.6446 | 1.6383 | 9.5342 | 0.2775 | 1.7119
5 PCTI-11
CP 91.1 95.2 98.6 97.0 94.1 95.0 97.5 96.8
AIL 1.9851 | 9.8999 | 0.2154 | 1.7204 | 1.8416 | 10.0424 | 0.2351 | 1.8600
PCTI-12
CP 91.5 95.6 97.3 95.6 92.7 96.1 98.2 96.3
AIL 2.0411 | 8.7487 | 0.2706 | 1.6310 || 1.8843 | 6.7860 | 0.2732 | 1.6100
PCTI-13
CP 90.5 95.6 97.8 95.7 92.6 95.4 98.8 95.5
AIL 2.3353 | 6.3256 | 0.2584 | 1.6327 | 1.8334 | 8.6165 | 0.3049 | 1.6779
PCTI-14
CP 91.5 95.2 98.6 95.7 92.6 95.2 98.4 96.1
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Table 6: AlLs and CP (%) values of the ML and BE using MCMC for different
schemes of PCTI Gompertz data at sample size n = 50 witha = 0.5and 1 =

1.5
Q yl a 1 a i a 1
m Scheme
TC-1=(0.25, 0.55, 2) TC-II = (045, 1.25, 3.5)
AIL 1.5660 | 6.0747 | 0.3839 | 1.5053 | 1.2894 | 14.9474 | 0.4782 | 1.8238
Pt CP 92.8 79.5 99.4 95.4 95.8 99.0 98.3 95.6
AIL 1.7122 | 6.3099 | 0.3309 | 1.4569 | 1.3977 | 15.8915 | 0.4867 | 1.6225
petl2 CP 93.9 69.5 99.2 96.1 93.4 99.1 98.6 95.6
AIL 1.8509 | 7.7779 | 0.3108 | 1.5310 | 1.5138 | 14.1922 | 0.4903 | 1.7146
perss CP 92.6 96.1 98.7 96.3 93.0 99.1 98.4 95.9
AIL 1.8740 | 6.4181 | 0.2802 | 1.3324 | 1.5593 | 16.3550 | 0.3766 | 1.3803
3 PCTI-4
CP 933 95.9 98.9 953 92.8 99.6 98.6 95.2
AIL 3.1771 | 6.2094 | 0.1822 | 1.6200 | 2.1454 | 19.4794 | 0.3239 | 1.5017
et CP 88.0 96.1 97.3 97.6 89.8 100.0 99.4 96.4
AIL 1.6175 | 7.7169 | 0.4106 | 1.5621 | 1.3141 | 16.2431 | 0.5098 | 2.0338
peto CP 92.8 95.2 98.8 95.6 95.1 98.4 98.4 95.1
AIL 1.6038 | 5.2287 | 0.3825 | 1.5110 | 1.2694 | 14.6012 | 0.5457 | 1.9924
et CP 92.5 93.4 98.7 96.7 93.8 98.6 99.1 95.6
TC-III = (0.15, 0.45, 0.85, 1.5, 2.6) TC-1V =(0.30, 0.70, 1.25, 2.13, 4)
AIL 1.3427 | 4.9492 | 0.4895 | 2.1345 | 1.1925 | 3.4769 | 0.5105 | 2.0054
Pt CP 93.5 94.5 98.8 96.1 95.6 98.7 98.3 96.0
. AIL 1.4730 | 3.4065 | 0.4888 | 2.0162 | 1.3375 | 4.5505 | 0.4254 | 1.6078
Per CP 92.8 96.6 99.6 96.2 96.2 98.5 98.7 96.2
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AIL 1.5993 | 2.5140 | 0.4291 | 1.7461 | 1.5100 | 5.1118 | 0.3566 | 1.4566
PCTI-10

CP 93.8 95.5 98.8 96.1 93.8 95.3 98.8 95.6

AIL 1.4967 | 5.5498 | 0.4063 | 1.7180 | 1.2920 | 5.1912 | 0.4724 | 1.6427
PCTI-11

CP 933 96.5 99.1 95.5 94.0 95.9 98.2 95.5

AlIL 1.5751 | 6.1973 | 0.3490 | 1.6305 || 1.3799 | 5.4425 | 0.3504 | 1.3788
PCTI-12

CP 94.2 96.8 98.9 95.8 95.0 953 98.6 96.2

AIL 1.5239 | 5.3348 | 0.4837 | 1.7761 | 1.4305 | 7.1870 | 0.4193 | 1.4846
PCTI-13

CP 94.4 96.9 99.5 95.5 94.8 95.4 99.6 95.5

AIL 1.7237 | 59576 | 0.4213 | 1.7118 | 1.4474 | 5.8059 | 0.3501 | 1.4859
PCTI-14

CP 92.1 95.4 99.1 95.5 93.4 97.4 98.8 95.7

Table 7: AlLs and CP (%) values of the ML and BE using MCMC for different
schemes of PCTI Gompertz data at sample size n = 100 witha = 0.5 and 4 =
1.5
a 1 a i a A a A
m Scheme
TC-1=(0.25, 0.55, 2) TC-1I=(0.45, 1.25, 3.5)

AIL 1.3093 | 4.9428 | 0.5654 | 2.3447 | 1.0808 | 2.2393 | 0.5725 | 2.9260
PCTI-1

CP 95.1 97.7 99.4 95.2 97.6 97.8 98.7 95.0

AIL 1.3734 | 49199 | 0.5447 | 1.8886 | 1.1073 | 2.5922 | 0.5732 | 2.2361
PCTI-2

CP 94.9 98.6 98.3 953 95.6 98.0 97.0 95.3

3

AIL 1.4720 | 6.4409 | 0.4520 | 1.7238 | 1.2411 | 3.3637 | 0.5481 | 2.2377
PCTI-3

CP 95.1 98.5 99.8 95.7 97.2 98.8 98.1 95.3

AIL 1.4552 | 5.2888 | 0.4266 | 1.3794 | 1.2236 | 2.3496 | 0.5628 | 2.1016
PCTI-4

CP 95.0 99.3 98.6 95.6 95.9 97.8 98.2 95.1
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AlIL 1.9096 | 4.8576 | 0.2787 | 1.2333 || 1.6731 | 4.4877 | 0.5336 | 1.8188
PCTI-5
CP 90.5 99.4 98.8 95.5 93.4 98.6 99.2 95.3
AlIL 1.3285 | 3.6700 | 0.5487 | 2.2829 | 1.0673 | 3.0921 | 0.6196 | 3.1686
PCTI-6
CP 94.5 98.3 98.7 95.6 96.0 97.4 96.6 95.1
AIL 1.3241 | 4.5526 | 0.5491 | 2.2755 || 1.0802 | 4.9253 | 0.6103 | 3.2220
PCTI-7
CP 95.6 98.0 98.2 95.2 96.2 97.3 96.2 95.2
TC-III=(0.15, 0.45, 0.85, 1.5, 2.6) TC-1V =(0.30, 0.70, 1.25,2.13, 4)
AIL 1.1567 | 3.7013 | 0.5482 | 2.4948 | 1.0225 | 1.2223 | 0.5041 | 2.0363
PCTI-8
CP 96.4 98.0 96.6 95.4 95.9 96.3 98.8 95.7
AlIL 1.2138 | 2.9957 | 0.4792 | 2.0098 || 1.0960 | 2.5120 | 0.4845 | 2.2491
PCTI-9
CP 96.2 98.0 98.5 95.7 96.7 97.0 97.7 95.0
AIL 1.3380 | 4.3689 | 0.4783 | 2.0010 | 1.2260 | 1.7541 | 0.4928 | 2.2318
PCTI-10
CP 94.6 97.9 98.8 95.2 95.3 97.5 97.9 95.1
AIL 1.2029 | 3.6790 | 0.4619 | 1.6351 | 1.0678 | 2.5227 | 0.5067 | 2.5152
5 PCTI-11
CP 97.0 98.2 98.5 95.1 97.5 97.3 97.4 95.1
AIL 1.3219 | 49162 | 0.4628 | 1.5810 | 1.1067 | 1.3594 | 0.4830 | 2.0814
PCTI-12
CP 96.5 98.2 98.3 95.6 95.4 98.6 99.2 95.3
AIL 1.2435 | 3.4322 | 0.5128 | 2.4050 | 1.1157 | 1.5757 | 0.5260 | 2.2962
PCTI-13
CP 95.5 97.7 98.8 95.1 95.8 97.7 98.3 95.6
AIL 1.4013 | 5.1401 | 0.4882 | 1.8429 | 1.2098 | 1.1004 | 0.4999 | 2.6056
PCTI-14
CP 95.3 97.8 98.5 95.2 94.8 98.2 98.0 95.2
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4.2 Real data analysis

In this section, a real given data set is analyzed. The original dataset
contains 34 observations of the vinyl chloride data obtained from Bhaumik
et. al (2009) which represents clean up gradient ground—water monitoring
wells in mg/L. The data are as follows:

5.1,1.2,13,0.6,0.5,24,0.5,1.1,8.0,0.8,0.4, 0.6,0.9, 0.4, 2.0, 0.5, 5.3,
32,2.7,29,25,23,1.0,0.2,0.1,0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2

We first check whether the Gompertz distribution is suitable for analyzing
this data set. The calculated Kolmogorov-Smirnov (K-S) distance between
the empirical and the fitted extended for the Gompertz distribution was
0.0904 and its p-value is 0.9438 where @ = 0.0028 and 1 = 205.8005
which indicate that this distribution can be considered as an adequate
model for the given dataset. From the original data, seven PCTI schemes
are generated with different m stages and terminated items R; at CT Tj,
where j = 1,2, ..., m. Such several schemes is explained in Table 8. Note
that: R,, = n — (2;_11:—11 R; + r) and r is the number of failure units. Also,
it can be summarized that Type-I censoring scheme, Scheme PCTI-6, is
considered as a special case of PCTI and complete sampling is considered
as a special case of PCTI when T,, = max(x) =8 and Ry =R, = - =
R, =0.

Table 8: Different schemes for progressively Type-I censored samples

Scheme m CT (Ty) Removed items (R;)
PCTI-1 3 (0.5, 3,6) (10,0 ,R,n)
PCTI-2 3 (0.5,3,6) (5,5, Rp)
PCTI-3 3 (0.5, 3,6) (0,10, R,p)
PCTI-4 5 (0.5,1.5,3,4.5,6) (10,0, 0,0, Ry,)
PCTI-5 5 (0.5, 1.5,3,4.5,6) (0,0,0, 10, Ry,)
PCTI-6 5 (0.5,1.5,3,4.5,6) (0,0,0,0,n—r)
PCTI-7 5 (0.5,1.5,3,4.5,8) (0,0,0,0,0)
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We compute the parameters of MLEs of a and A and the associated 95
% asymptotic confidence interval estimates. Bayes estimates is computed
utilizing the MH algorithm with the informative prior. Note that the non-
informative prior is assumed where a; = b; =a, = b, = 0. While
generating samples from the posterior distribution utilizing the MH
algorithm, initial values of (@, 1) are considered as (a(®, 1) = (&, 1),
where & and 1 are the MLEs of the parameters « and A respectively. Thus,
we considered the varianced€“covariance matrix Sy of (In(&@),In(1)),
Using the delta approach, this can be easily accomplished. Eventually,
1600 burn-in samples are terminated from the entire 8000 samples
generated by the posterior density, and adopted technique to produce
Bayes estimates and HPD interval estimates of Chen and Shao (1999).

All of the estimated MLE values, as well as the related interval estimates
(Asymptotic CI) and standard errors (St.Er), are illustrated in Table 9.
Bayesian estimates utilising MCMC employing the MH algorithm, as well
as associated HPD intervals and St.Er, are also calculated.

Table 9: MLE’s and BEs with associated St.Er (in practices) and Cls based on
different PCTI schemes for the given real data set

MLE Bayesian: MCMC
Scheme| Parm. :
. Estimate
Estimate (St.Er) Asy CI (StEr) HPD
0.00270 (°.Yox 0.0039
a 10-3) (0.0026, 0.0028) (0.0004) (0.0032, 0.0041)
PCTI-1
1 YY+.007 (6.50% (220.006, 225.045 (218.891,
1073) 220.008) (0.0129) 232.194)
0.00211 (4.23% 0.0024
a 10-3) (0.0020, 0.0023) (0.0002) (0.0032, 0.0041)
PCTI-2
1 220.132 (5.59% (220.006, 222.155 (217.312,
1073) 220.008) (0.0082) 227.304)
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0'0071202_(21)'89x (0.0051, 0.0093) (gzgggg) (0.0032, 0.0049)
PCTI-3
220.137 (2.53% (218.012, 218.320 (215.125,
1072) 222.326) (0.0015) 230.897)
0.002369 (4.54% (0.00236, 0.0024
107%) 0.00237) (0.0044) (0.0021,0.0027)
PCTI-4
220.0069 (4.87x (220.0068, 220.632 (218.311,
1073) 220.0071) (0.0031) 222.021)
0.00321 (1.07x (0.00291, 0.0026
1073) 0.00331) (0.0051) (0.0024, 0.0028)
PCTI-5
220.0757 (4.87x (219.1133, 220.632 (218.311,
1072) 221.2350) (0.0031) 222.021)
0.00252 (2.10x (0.00221, 0.00275 (0.00256,
1073) 0.00253) (0.0021) 0.00294)
PCTI-6
220.132 (0.51% (219.1133, 220.12037 (220.1083,
1072) 221.2350) (0.0067) 220.1285)
0.00281 (6.01x (0.00280, 0.00280 (0.00269,
107%) 0.00281) (0.0001) 0.00291)
PCTI-7
205.8005 (3.49% (204.1352, 205.1522 (205.1343,
1073) 208.0211) (0.0053) 205.1553)
Conclusion

In this paper, we investigated estimation problem of the parameters for
the Gompertz distribution under PCTI from both a classical perspective
and a Bayesian perspective We calculated MLEs and related asymptotic
confidence intervals for the Gompertz distribution’s unknown parameters.
Then, with informative priors, Bayes estimates is generated with MCMC
and the corresponding HPD interval estimates squared error loss function.
Furthermore, if an informative prior is used, how to select hyper-parameter
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values in Bayesian estimates is investigated using historical samples. The
results of the simulation show that MLEs informative Bayes estimates
using MCMC better than both MLEs. For future, work, we used Bayesian
estimation by utilizing MCMC, other methods such as Lindely’s
approximation or importance sampling can be employed under PCTIL
Also, maximum product spacing can be used as alternative to classical
estimation (MLEs). Thus, the current approach can be applied to
establishing an optimal progressive censoring system, in addition to other
censoring techniques.
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