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Topology Optimization Of High Speed
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Abstract

There are growing demands in the robot industry for light structures in order to increase the speed of the
robot motion and thus the productivity. Size and shape optimization are carried out previously to achieve
minimum travelling time of the robot arm taking into consideration its flexibility. In this work, topology
optimization is introduced for obtaining optimum robot arm to achieve minimum travelling time from
both structure and control viewpoints. Method of Moving Asymptotes is used as optimization technique,
because it can handle arbitrary number of constraints and considered to be a general and flexible
optimization method. A comparison is accomplished between the optimal resulted design and its initial
design for different dimensions of robot arm neglecting air damping. It is found that the reduction ratio of
the travelling time reaches 62% and the reduction ratio of the weight reaches 70%. A comparison between
this work using topology optimization technique and previous works that used size or shape optimization
is carried out. It is found that the topology optimization of flexible robot arm outperforms the size and
shape optimization when considering the real condition that takes into account the air damping. The
optimum topological design in this case gives reduction ratio of travelling time equals 44.8%, while
previous work gives 23.5%.

Accepted March, 6, 2013
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1. Introduction

Novel robotic applications demand
lighter robots that can be driven using
small amounts of energy, for example
robotic booms in the aerospace industry,
where lightweight manipulators with
high performance requirements such as,
high operational speed, better accuracy
and high payload/weight ratio are
required [18]. Another example is the
need for lightweight manipulators to be
mounted on mobile robots, where power
limitations  imposed by  battery
autonomy have to be taken into account.
Unfortunately, the flexibility of these
lightweight robots leads to oscillatory
behavior at the tip of the link, making
precise pointing or tip positioning a
daunting task that requires complex
closed-loop control.

In the early 70's the necessity of
building lighter manipulators able to
perform mechanical tasks arises as a
part of the space research. The abusive
transportation costs of a gram of
material into orbit and the reduced room
and energy available inside an
spacecraft cause the imperative need for
reducing weight and size as far as
possible in any device aboard.
Unfortunately, as the manipulator
reduces weight, it reduces also accuracy
in its manoeuvres due to the appearance
of structural flexibility and hence,
vibrations of the device [5]. Many
current approaches aimed to decrease
the end-effectors residual vibration deal
with improving the structural design of
robot arm or adopting advanced control
techniques. The approach which is
presented here improves both the
controller and the structural design
simultaneously. The available methods
for structural design modification can
be classified as follows: (1) Optimizing

Fanni, M., Shabara, M.N. and Alkalla, M. G.

the weight to stiffness ratio by varying
the length and cross-section of each
metallic robot arm of the system [17],
(2) Implementing advanced composite
material for the robot's structural
designs [8], (3) Applying size/shape
optimization for robot arm structural
design integrated with time optimal
control theory as presented in [2].
Topological optimization approach is
introduced in this work for structural
design of robot arms integrated with
time optimal control theory. This
approach leads to optimum robotic arm
from both structural design and control
viewpoints.

2. Time Optimal Control Of
Flexible Robot Arm

2. 1. Mathematical Model
Without Air Damping

The application of time optimal control
theory, to get the minimum traveling
time of a flexible robot arm, results in a
multi switch bang-bang control. The
problem can be formulated as follows:
given a single flexible robot arm which
moves in a horizontal plane and an
actuator with a maximum torque T,.
How should the actuating torque vary
with time to make the arm rotates a
given angle 0,, from initial rest to a
final rest state in a minimum time (see
Fig. 1). The arm is represented in this
model by one rigid mode and one
flexible mode without damping, see [2].
The state equations are:

x(t) = Ax(t) + bT(1), €))
Where
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x(t) is the modal coordinate vector,
T(t) is the actuating torque, ® is the
natural frequency of the flexible mode,
by is the component of weighted rigid
mode shape at a coordinate where the
torque is applied, ((1/bo)* = T is the
moment of inertia the arm about the
rotating axis) and b, is the same as by
but for flexible mode, (b;> = q is the
flexible mode participation coefficient
[15]). Both by and b; can be obtained
using finite element method (FEM). See
also [8, 12, 15, 16].

Through applying the Pontryagin
maximum  principle, the optimal
solution is found to be a multi-switch
bang-bang control, (see [16]). The
switches are symmetrical about the
middle switch so one needs to calculate
only two time intervals (t¢2-ts), t¢2, and
(to2+ty).
boJ

2
(tr/2)" = 2t2 = T (2)

cos(wty/2) —2cos(wty) +1=0 (3)

Figure 2, shows the three switches,
where f; is the optimal travelling time.
It is seen from equations (2, 3) that, the
optimal traveling time, fr, depends on
the inertia / as well as the natural
frequency w of the arm. Both quantities
depend on the construction of the robot
arm. So, through optimizing the arm
topology, one can further decrease the
traveling time. So, a minimum
traveling time is obtained from control
as well as structure view points.

Final position at rest

% 8 v i
° Initial position at rest

it |

T
Fig. 1. Flexible robot arm.

Actuating Lt
Torque [
To B
Time
-To o ]
tr

Fig. 2. Bang-bang control of flexible robot arm.

2. 2. Mathematical Model With
Air Damping

The air damping is modeled by an
equivalent viscous damper. The angular
velocity of the arm is measured at
different voltages and the relation
between the arm angular velocity and
the damping torque is linearized about
an average operating arm velocity.
Another way is averaging directly the
viscous damping coefficients measured
at different operating velocities. Both
methods give close results. The second
method is considered further because of
its simplicity.

It is clear that, the air damping is
negligible for the flexible mode,
because the deflection of the flexible
mode is small. The state equations of
the flexible arm is the same as equation
(1) except matrix A which becomes:
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where o equals the damping coefficient,
C, divided by moment of inertia of the
arm, J. The solution of the Pontryagin
maximum principle is a multi-switch
bang-bang control but not symmetrical

about the middle switch as in the
previous case without damping.
Through applying the final state

conditions, which dictate that the
angular velocity must be zero and the
angular displacement must equal 0,, the
following equations (in dimensionless
form) are derived:

1 —=2e Ye/x £ 2o=(r3t+ya)/x _
20~ 02+Y3+Ya)/xX 4 2o=(1+Y2+Y3+Ya)/X =
0 )

Vi—Y2+tY3—Ya—2z=0 (6)

1—-2cosy,+2cos(yz +y,) —
2¢0s(y; +y3 +ys) +cos(yy +y, +
Y3+ Y4)=0 @)

2siny, — 2sin(y; + y,) + 2sin(y; +
Y3+Ys) —sin(yy +y, +y3+y,) =0 (8)

where the dimensionless quantities are
defined as:

w BowC
] z="2
c To

i=1,.4
®

» Vi = wt,

where t;, t;, t3 and t4 are the time
intervals between each two consecutive
switchings. Note that:

Vity:tystys=y=wl (10)

The solution of these equations for
minimum t¢ iS now obtained and is
found to have the following
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characteristics, see Fig. 3. The first and
last intervals (t;, t4) are much larger than
the inner intervals, which is similar to
the previous case without damping. The
time of positive torque is larger than
that of negative torque (unlike the
previous case, where they are equal).
Then y as function of x and z are
obtained by means of multi-regression
technique [2]:

y = V0.4z223264 4 3 93xz (11)

0.80
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-0.80 —
Fig. 3 Torque-Time diagram for the damped
model.

3. Topology Optimization

3. 1. Problem Definition

Topology optimization is a relatively
new but extremely rapidly expanding
research field, which has interesting
theoretical implications in mathematics,
mechanics, multi-physics and computer
science, but also important practical
applications by the manufacturing
industries such as car and aerospace
industries, and is likely to have a
significant role in micro- and nano-
technologies [13]. Topology
optimization strives to achieve the
optimal distribution of material within
finite volume design domain, which
maximizes a certain mechanical



Mansoura Engineering Journal, (MEJ), Vol. 38, No 1, March 2013~ M. 107

performance under specified
constraints. Its algorithms selectively
removes and relocates the elements to
achieve the optimum performance [14].
It can provide a good configuration
concept for the structure as a minimum
compliance or maximum stiffness
design ...etc.

The presently most popular
numerical FE-based topology
optimization method is the Solid
Isotropic Material with Penalization
method (SIMP), which was developed
in the late eighties. The basic idea of
this approach was proposed by Bendsee
in [19], the material properties are
assumed constant within each element
that is used to discrete the design
domain, normally, a continuous relative
density is used as a design variable [1].
The elastic modulus of each element,
E;, is modeled as a function of the
relative density, x;, using a power law.
That is used for updating the elastic
modulus which is entering to the
structural model at each iteration as in
the following equation.

pi(xi) = po xi
Ei(x) =Eox! ,(0<x<1) (12

Where p; is element density, p, is the
initial density, E, is the elastic modulus
of the base material and p is a
penalization —power. This  power
penalizes intermediate densities and
drives the design to a black (material)
and white (holes) structure. The proper
value of p, depends on Poisson's ratio v,
and can be calculated from equations
(13, 14) for 2D and 3D model
respectively, see [3].

4

P > max {1—f; 1_v} (2D) (13)

P2max{(15) =, ()75} GD)Y(4)

3. 2. Numerical Instability In
Topology Optimization

There are some problems in the
convergence of topology optimization
process. Some of these problems are
checkerboard and mesh-dependency.
Using mesh dependent filtering that
proposed by Sigmund and Peterson in
[9] which is also an extension of the
checkerboard filter will enhance the
convergence. This filter modifies the
design sensitivity of a specific element
based on a weighted average of the
element sensitivities in a fixed
neighborhood.

The mesh dependence scheme works by
modifying the element sensitivities as

follows:
N
of , 1 z . of
— = (x3)" = H; x;— (15
axk ( k) £V=1Hi - L laxi ( )

The convolution operator (weight
factor) A; is written as

1:1,'_ = Thmin — diSt(k, I.),
{i e N\ dist(k,i) <rmm L k=1,...,N
af

where f'is the objective function, == is
k

the sensitivity of objective function, the
operator dist(k,i) is defined as the
distance between the center of element &
and the center of element i. The

convolution operator H; is zero outside
the filter area. The convolution operator
for element i is seen to decay linearly
with the distance from element k.
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4. Method of Moving
Asymptotes

Method of Moving Asymptotes is a
method that turned out to be very
efficient for topology optimization
problems in an academicals and
industrial environments, as its mother
method CONLIN see (Fleury and
Braibant, 1986). The MMA works with
a sequence of simpler approximating
subproblems (similar to Sequential
Linear Programming SLP, and SQP),
but their approximation is based on
terms of direct and reciprocal design
variables. A major advantage of the
MMA is that these local models are
convex and separable and only require
one function and gradient evaluation at
the iteration point. Separability here
means that the necessary optimality
conditions of the subproblem do not
couple the design variables. This yields
that instead of one n-dimensional
problem we have to solve n one-
dimensional ~ problems.  Convexity
means that dual or primal-dual methods
can be used to attack the subproblems.
These valuable properties allow
reducing computational costs for
solving the subproblems significantly
[7]. A solution of a subproblem is then
used as the next iteration point.
Consider a structural optimization
problem of the following form:

Min: fy(x) (x €RM) (16)

t: fi(x) £ f, for i=1,..,m(17)
Xj < Xj < fj, for ] = 1,...,11(18)

Where x = (X3, ... ..., X,) T is the vector
of design variables, fy(x) is the
objective function, f;(x) < f, is the
behavior constraints, X; and x; are
given upper and lower bounds.

The method is interpreted in brief

that each fi(k) where k is the current
iteration, is obtained by a linearization
of fj in variables of the type 1/(x; — L;)
or 1/(Uj — x;) dependent on the signs
of derivatives of f; at x(!9. The values
of the parameters L; and U; are normally
changed between the iterations, and we
will always refer to L; and U; as
"Lower and Upper Moving
Asymptotes".

At each iteration, the current iteration
point  x® is given. Then an
approximating explicit subproblem is
generated. In this subproblem, the
functions fj(x) are replaced by
approximating convex functions £ (x)
which are chosen as:

(k) (k)

k Pij q k) .
f( )(X) —ZJ 1( _, +x,”L,>+ri( ), i =
0,1,..,m (19)
Lgk) < xi(k) < Uj(k) (20)

Where,

o0 = {(U,(“) - x{)? of, /ax,,if 0f, /%, > 0

o, if 9f,/0x; <
<7l>

q(k) {0 if of; /0x, 2
i (= 1§92 af,/ax,, if 8f,/ax, < 0

22)
(k) (k)
® = {(x®) - zn, (p” o >(23)

Further, the second derivatives of fi(k),
at any point X are given by

Y I
1
= +
dx? 3 3
(P n) (g-t®)

921
9% 0%

=0 ifj#i (24)
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Thus the closer Lgk) and Uj(k) are chosen

to xj(k)

derivatives, the more curvature is given

to the approximating function f* and
more  conservative

, the larger become the second

becomes the
approximation of the original problem.
Lgk) and Uj(k) are
(k)

Correspondingly, if

chosen far away from x(®, then f;
becomes close to linear. In the extreme

case that Lgk) = —o0 and Uj(k) = + for

all j, then the £ become identical to
linear functions below,

£% ) = £(x®) + %;(06/9%) (x; — x)
(25)

For more details see [4, 11].

4. 1. Effect Of Asymptotes
L;, U i On Optimization Process
Convergence.

Since the method of moving
asymptotes is a general method, so the
asymptotes can be adopted to be
suitable for seeking the demanded
convergence of specific problems.

A general (although heuristic) rule for
how to change the values of Lgk) and

Uj(k) is the following:

a) If the process tends to oscillate, then
it needs to be stabilized. This
stabilization may be accomplished by
moving the asymptotes closer to the
current iteration point.

b) If, instead, the process is monotone
and slow, it needs to be relaxed. This
may be accomplished by moving the
asymptotes away from the current
iteration point. See [4].

Y

The default rules for updating the lower

asymptotes Lgk) and the upper

asymptotes Uj(k) are as follows.

The first two iterations, when k =1 and k
=2.

max _ xjmin)

Lf.k) =x% - asyint (x;

J

+ asyint (x"%* - xjm"”)

) _ (k)
U =x j

In later iterations, when k > 3

(k) _ (k&) (k) (k=1 _ ,(k-1)
Li™ =x7 -y, ("f L )

k) _ (k) ) [ ,(k-1) (k-1)
Uj = X; -+ ¥ (U/- - X; )

Where,

® = {asyiner, i (x* - Yz — V) >0

{asydecr, (5 =5 = P) <0
1, if(xl-(k) _ xj(k-l))(xi(k-l) _ X/-(k_Z)) =0

Where the default value of asyint
equals 0.5, asydecr equals 0.7 and
asyincr equals 1.2, see [11].

It is also found that there are some rules
that can be used in the sub-problem file
in MMA code. That can be added to the
default one, see [6]. These rules are:

k) (k) max mi
L]( )[n — xj -8 - (xj - xj m)
K= max mi
L§ m) ax ~ j( = Smin (xj =X ™)

v® = xj(k) + Smin (X" — xm)

jmin
Uj(’:,zax e xj(k) + 1S (HA* =X )
B = max (L2550
L = min (L{, L0 .)

v = min (U*,U%,)

J Jj max

Uj(k) = max (Uj(k), § ity

jmin
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Where the default values of S,,4, and
Smin is 10 and 0.01. These values can
be changed to suit any optimization
problem.

5. Optimal Integrated
Structural/ Control Design

5. 1. Problem Formulation For
Topology  Optimization Of
Flexible Robot Arm Without
Air Damping

Using the design domain as a slender
arm made of Aluminum with
rectangular section which is attached to
the motor hub in such a way that it
rotates only in the horizontal plane, so
that the effect of gravity can be ignored,
and subjected to a force (F) at the tip of
the arm see Fig. 4. The arm has
dimensions of 300x20x3 mm. All
specifications for the model are shown
in Table.1.

Fig. 4. The initial design of high speed flexible
robot arm.

From equations (2) and (3) we can
deduce an expression for the travelling
time tr , to use it as an objective
function in MMA algorithm, where t;
depends on the inertia as well as the
natural frequency of the arm, as shown
in the following implicit equation:
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cos(wty/2) — 2 cos <wJ((5f/z)2 _ eaj/T,,)/2> +
1=0 (27)

Then the general form of topology
optimization problem for flexible robot
arm without air damping is:

min: tf
ok defl— 8,,,. <0

Where the angle @, and torque T, are
constant through the optimization
process while the natural frequency w
and mass moment of inertia J varies
with the relative density of each element
x; that considered as the design
variable. The maximum deflection of
the robot arm, defl, is constrained to be
lower the prespecified value, 6,4y

Table .1 Aluminum arm 300x20x3 mm
Properties Values
Young's modulus, E (Gpa) 70
Density, p (kg/m” 2700
Poisson's ratio, v 0.3
Force, F (N) 1
SIMP factor, P 3

No: of glements along x, y and 40%]2%2
z direction

[nitial design variable x for all 1
elements.

The maximum torque of the DC
motor T, is assumed 0.20 N.m. and.
The angular displacement 6, is 180°.
For the initial design of the arm, the
natural frequency, w, is 2.01230 HZ,
and the mass moment of inertia of the
arm and the hub, J, is 0.00191007
kg.m®. Where the ratio of the inertia of
hub to the arm equal to 0.31. Both @
and J are calculated using Finite
element method.
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The Moving Asymptotes, MMA, code
that presented by K. Svanberg [6]
written with MATLAB program is used.
The default values of Sy,4, and Spp for
the asymptotes is changed to suit this
topology optimization problem to be
400 and 0.01.

The finite element analysis using
ANSYS is implemented. The arm is
modeled using 3D solid elements,
SoLID45. The inertia of the hub is
modeled by concentrated mass element,
MASS21, located at certain distance from
the vertical rotating axis of the arm. The
static analysis is used for determining
the maximum deflection of the arm. The
modal analysis is carried out for
determining the natural frequency of the
flexible robot arm. &g, for the
deflection constraint is chosen equal to
1 mm.

5. 2. Problem Formulation For
Topology Optimization Of
Flexible Robot Arm With Air
Damping

The problem of topology optimization
for a flexible robot arm with air
damping will be formulated using the
same constraints as previous problem.
But the difference here is in the
deduction of the travelling time, tg
equation that will be used in the
objective function. From equations (9)
to (11), travelling time equation can be
obtained as follow:
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C =D [ riw(r)dr then,
SRR

c=szib[—T— _T] 31)

i=1

Where, D equal to 15.16645 in [2]. a
and b are the element size in x and y
direction. 4; is the horizontal distance
between axis of rotation and element i.

Two robot arms are used for
optimization. The first one has initial
dimensions of 300x20x3 mm and the
second one has initial dimensions of
760x20x3 mm. Both arms are made of
Aluminum with properties shown in
Table. 1.

6. Results And Discussions

6. 1. Results Of Topology
Optimization Of Flexible Robot
Arm Without Air Damping

By running the MMA algorithm [6],
with the interface between MATLAB
and ANSYS program, we can see that
the travelling time at the beginning of
optimization process is 0.540 sec. and
finally, after 49 iterations becomes
0.201 sec., see Fig. 5. Consequently, the
reduction ratio of travelling time is
62.7%. The deflection of the initial
design is 0.06412 mm and becomes
0.471 mm at final design. Also the final
volume has become 30.3% of the initial
one. All results are shown in Table.2.

ty Table. 2. The results of topology optimization
8,wC 223264 10,w? of Aluminum robot arm with 300x20x3 mm.

& 0.4( ) +3.93 /w (30)

Ty To Prop t Mass | Defl. Jiow! Freq

| (se0) | (gm) | (mm) | (kg.m’) | (HZ)

Where, C is the damping coefficient and g:t.‘al 0.540 | 48.6 | 0.064 1'9;()&' 49.14
it is a function of the arm dimension, as Firsl;%n §3770-
follows: Hssion 0.201 14.7 0.471 ' 4 34.86
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0.5 b

WM

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
iteration no.

Fig. 5. Travelling time for a robot arm with
dimensions of 300x20x 3 mm versus iteration no.

The final optimum topological design is.

then obtained and we implement finite
element analysis to check if the final
design is safe according to the strength
and rigidity viewpoints or not? Using at
the beginning Solid Edge program, see
Fig. 6, for modeling the final design of the
arm according to the values of the relative
densities for all elements at the last
iteration. The relative density for each
element is interpreted as the thickness of
the element as mentioned in [9]. Then the
solid model file is exported to ANSYS
program, see Fig. 7, for finite element
analysis to determine the maximum stress
and the maximum deflection to make sure
that this final topological optimum design
is safe and the deflection will be within the
predetermined value.

Fig. 6. The final shape of the flexible robot arm
drawn by Solid Edge.
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-

¥

Fig. 7. Meshing the final topological optimum
design using ANSYS.

The maximum equivalent stress of the
arm is found to be 26.44 Mpa .
Aluminum has a tensile strength of
about 90 MPa, so the final topological
design is safe, see Fig. 8.

NODAL SOLUTION AN

el mov 32012
206 o1 02:17:47
THESL

SEQY  (AVG)
ORX =.001539
SN <1915

SIX =, 264£+08

1915

+ S8BE+07 . 118E+08 +176E+08 .235E+08
«294E+07 . 882E+07 1472400 - 206L+08 - 264T+08

Pile: final with meter vertical

Fig. 8. Stress analysis for the optimum
topological design using ANSYS.

Another model that has an initial design
consist of an Aluminum beam with a
dimensions of 710x38x20 mm and a
hub of rectangular block of 25x25x100
mm. This Aluminum arm has a density
and a modulus of elasticity as shown in
Table.1. Using a torque equal to 20 N.m,
angular displacement of 20° and a
payload of 0.125 kg. and using §pna= 0.2
mm. The topology optimization is
performed and the optimal topological
design is obtained and modeled with
Solid Edge pro. for 3D modeling as
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shown in Fig. 11. The results are shown
in Table. 3.
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Table. 4. The results of topology optimization
of Aluminum robot arm with dimensions
300x20x3 mm with air damping model.

Pro ty Mass Defl. Jann Freq
< px¢ A P l(se) |(gm) |(mm) |(kg.m®) | (HZ)
nitial "\ 343 1486 |0.064 |1.910e-3 [49.867
design
Fig. 11. Optimal topological design of robot arm Final < <
(710x38x20 mm ) modeled with Solid Edge Pro. design 192 [11.86 | 0.846 | 5.98e4 24.588

Table. 3. Results of topology optimization of
Aluminum robot arm 710x38x20 mm

te Mass Defl. [0  [Freq.

EreD: (sec) (kg) (mm) kg.mz) (HZ)

Int.

. [0.1468 | 1.456 0.1222 0.3079 51.510
Design

Opt. 0.0836

0.439 0.1985 0.0952 B1.578
Topol.

(43.05%

6. 2. Results Of Topology
Optimization Of Flexible Robot
Arm With Air Damping

For the first short robot arm, with
Omax =1 mm. It is found that the
travelling time t¢ of the initial design at
the beginning of the optimization
process is 0.3435 sec., while at final
optimal topological design becomes
0.1923 sec., see Fig. 11 with reduction
ratio of 44.01%. The final total mass of
arm is found to be 24.4% of the initial
arm. The results of the topology
optimization process is shown in
Table.4

Fig. 11 Optimal topological design of
Aluminum robot arm 300x20x3 mm with
consideration of the air damping.

6. 3. Comparison Between
Topology And Size Optimization
For Air Damped Model

The second long robot arm is the same
as that of [2]. The model has 50, 12, 2
elements along x, y, z directions. The
torque T, is 0.52125 N.m and the
angular displacement 0, is 180° It is
found that the travelling time for the
initial design is 0.772 sec. The size
optimization result in [2] shows that the
optimal travelling time is 0.593 sec.
with reduction ratio of 23% see Fig. 12.
Whereas, using the proposed topology
optimization process and after 64
iterations, the travelling time became
0.426 sec. with a travelling time
reduction ratio of 44.8%. The final mass
is 55.1% of the initial one, see Fig. 13.
All results of topology and size
optimization for this robot arm are
shown in Table. 5.

The bang- bang control is not very
robust and accurate. So, a PD control is
made to follow the bang-bang control.
In order to keep the settling time of the
flexible robot arm small, the first open
loop zero and first open loop pole must
be kept high. Additional to these
requirements, another practical
requirement is found in [2]. That is: the
open loop gain (K) must be kept high
also.

The high value of the open loop gain
increases the upper limit of the possible
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obtained optimal gain. The transfer
function from the actuating torque to the
robot arm angle, see [2], is given by:

6(s)  K(s?+12?)
T(s) s%(s?+P?)

where the open loop gain (K), first zero
(Z) and first pool (P) are given by:

K= 1J;q],z=w‘/1/(1+q/),1> =w

The value of the open loop gain, first
zero, first pool and damping coefficient
at the initial design and optimal
topological design is shown in Table. 6.

Fig. 12. Optimal size design of robot arm considering

the air
760x20x3 mm.

Fig. 13. Optimal topology design of robot arm
considering the air damping with dimensions
of 760x20x3 mm.

Fanni, M., Shabara, M.N. and Alkalla, M. G.

Table. 5. The results of size and topology
optimization of Aluminum robot arm with air
damping 760x20x3 mm

Pro te Mass Defl. | Jiotal Freq.
Pl Gee) | (gm) | (mm) | (kgmd)| (HZ)
Int. 10772 | 12302 | 3.073 | 0.02441] 16.046
Design
5 0.593
Si‘;‘i'n 8236 | 3.200 | 0.01400| 16.300
¢ | (235%
0.4261
Opt.
<l 67.83 | 3.1995| 0.00758 17.272
POL | (44.8%)

Table. 6. The damping coefficient, gain, zero and pole
for the Aluminum robot arm with air damping
760x20x3 mm.

Pro amp. (C) | Gain (K) | Pool (P) [Zero (Z)
P- N.m.s/rad | (Kg. m¥)"'| HZ HZ
Int. | 002529 | 448914 | 16.046 | 4.846
Design

Opt. | 40150 565 1630 | 5.70
Sizing

OPL | 000004 | 505308 | 17272 | 8.820

Topol.

damping with dimensions of

The optimal topology robot arm is also
safe where the maximum stress is 49.9
Mpa.

7. Conclusion

In this paper, a methodology for the
optimum topology design of high-speed
robotic manipulator arm is proposed.
The purpose of this work is utilizing the
advantage of modern structural design
and control techniques simultaneously
to obtain robot design of minimum
travelling time from both structure and
control viewpoints.

By applying the topology optimization
for different robot arms, one can see
obviously, that at all the optimized
models, the mass decrease from the
fixed end to the free end (tip) of the
arm.

The results of robot arms optimization
without air damping show reduction
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ratio of the travelling time (25.7% to
44.23%) with respect to initial design.

The proposed optimal topology of the
robot arm outperforms the previously
published size optimization of the same
robot arm with consideration of air
damping. The reduction ratio of the
topology design optimization is nearly
twice that of the corresponding size
design optimization.
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