232

*Dr. Abdelhady Ibrahim Younis Abdelaal Introduction and Research Problem:

Improving the scientific and educational aspects of the training process cannot be without achieved an understanding of the different sciences related to the training process including physiology and chemistry. These sciences show the of us extent adaptations. responses. and changes that result from the different types of training skills. tactical. (physical, psychological) to the physical systems of the athlete and the extent of the athlete's response to these exercises. A successful trainer is someone who obtains information that enable him to understand what happens to the athletes' physical systems when the athletes perform aerobic anaerobic and exercises.

Soccer is the most popular sport in the world, therefore it has acquired a growing international interest, and specialists have always worked on developing it by elevating the players' level with respect to the different preparation aspects especially physical and physiological qualities, which are considered the link between the skill performance and motor qualities of a soccer player (23: 56).

Reilly (2000) and Ryder (2004) agree that soccer has a positive effect all on physiological, physical, skills, psychological tactical, and variables. It improves blood circulation and biochemical variables, activates the player's internal systems, and is closely connected with the individual's characteristics and capacities (33: 101)(35:44).

Salama (2000), Abdel Fattah and Shaalan (2002), and Arnason (2004) point out that the nature of soccer players' performance during the game characterized is by the difference in performance methods, in terms of frequency and diversity of moves

^{*} Lecturer. Department of Team Sports Training, Faculty of Physical Education for men , Helwan University.

including fast running with and without the ball, high jumps, directions while changing running. kicking the ball. getting the ball, and other performance that moves change according the to changing playing conditions (8: 270-271) (1: 129) (24: 278).

Arturas et al. (2001) also note that the soccer player's performance level depends mostly on his physical and capacities. physiological as performance in soccer is not Therefore, constant. special endurance is one of the most elements of the important physical soccer player's preparation, as it is a basis for improving skills. technical. tactical. and psychological performance of the player (25: 29).

Soccer is one of the activities characterized by both aerobic and anaerobic work, as player needs aerobic the capacity because of the long duration of the game as well as capacity anaerobic in the performance of some attack skills such as counter attacks. Physiological capacities play a role in accomplishing attacks and in the performance at the end of when the game

muscular fatigue occurs (12: 87).

Saad Eddin (2000) and Bastawissy (2000) point out that blood is highly affected by the different types of sports activities as it plays a vital role in oxygen transfer from the respiratory system to other cells, as well as transferring food from the digestive system and removing wastes resulting from the processes of burning oxidation from body and tissues. These functions become more important during strenuous physical effort, as certain changes in its take place components in response to the type of exerted physical effort, so that the body can effectively perform its functions (19: 115) (7: 111).

Anne (2006) adds that the endocrine system works on integrating the effects of food and exercising on reshaping the body, and the outcome of physical performance. Moreover, exercising imposes demands physical in two directions: first, a mechanical load (pressure, tension, revolving) working on muscles, and secondly, the working muscle needs metabolic energy to obtain the

required energy to overcome the mechanical load (22: 453).

Astrand and Rod Hal (2003) add that cortisol and levels. testosterone blood volume, and red blood cells increase in trained persons compared to non-trained persons. It is also noted that height training leads to and increase in blood volume and volume hemoglobin as an outcome of the increase in plasma volume and blood cells. Additionally. hemoglobin concentration and red blood cell count increase (23: 443).

The corisol level can increase or decrease compared to the pre-exercising level by more or less than 60% of the maximum vital capacity of oxygen consumption (VO2max). Testosterone muscular increases protein without affecting the protein degradation process, or any effect on the transfer of amino acids inside the muscle (26: 864-871).

The researcher has reviewed a number of previous studies including Abdel Hamid, A. A. (2013): "The effect of using anaerobic (glycogenic) physical effort on some physiological variables and the level of accuracy in aiming in basketball players"; Abbas. L.M. (2013): "The effect of competition effort on the level of cortisol and insulin lactic acid and in vouth basketball players"; Ahmad, W.Y (2013): "Testosterone levels and their effect on some liver enzymes in bodybuilders": Ali, AS (2008): "The effect of the anaerobic threshold load intensity on some physiological variables and the cortisol, masculine, and growth hormones concentration levels"; Mohamed, N.S (2005): "The effect of a proposed training program of morning biorhythm on cortisol and anxiety and the level of performance on the balance beam"; Strobel (2003): "The effect of running on the treadmill on the concentration of Noradrenaline in male athletes". These studies found that high intensity training improves the level of cortisol and testosterone hormones as physical capacities, well as which improves skills performance.

The researcher observed some deficiencies in training programs through his work in soccer training in several Egyptian clubs, as they neglected the development of anaerobic endurance. especially the ones based on energy generation systems that have and efficient impact in raising the functional capacity of the vital systems. This is evident from the continental levels compared to the international levels. The player needs the energy provided by glycogenic the system, especially the anaerobic one. Therefore, the players' high performance throughout the is linked the game to of improvement glycogenic anaerobic capacities of the players. Thus, it is important to use glycogenic anaerobic during the efforts training process. This motivated the researcher to conduct the present study in order to effect identify the of glycogenic training on some physical variables, and cortisol and testosterone levels in soccer players.

Research Objective:

This research aims at identifying the effect of the glycogenic training on some physical variables as well as the levels of cortisol and testosterone in soccer players.

Research Hypotheses:

There are statistically significant differences between the pre-test and post-test of measurements some physical variables and the level of cortisol and testosterone in the soccer players of the experimental group.

There are statistically significant differences between and the pre-test post-test measurements of some physical variables and the level of cortisol and testosterone in players of the the soccer control group.

There are statistically significant differences between the post-test measurements of some physical variables and the level of cortisol and testosterone in the soccer players of the experimental and control groups.

Research terms:

Endocrine glands: ductless glands that secrete their substances directly into the blood stream without any ducts between the gland and the blood stream (30: 210)

Cortisol: A hormone that is secreted by the Adrenal Cortex and it works on increase protein synthesis and reducing glucose in tissues.

Testosterone: is the male hormone which is produced by testicles. It serves the in increasing protein synthesis

236

and the production of sperms (30: 115)

Research Procedures:

Research Methodology:

researcher used The the experimental method with two groups: an experimental group and a control group. He used the pretest/ posttest measurement experimental design as it was deemed the most appropriate for the nature of this research.

Research Population:

The research population consisted of male soccer players under 18 years of age registered at 6^{th} October club,

Guiza Governorate, in the sport season 2013/2014. Research Sample:

The research sample was selected by complete census method from all the soccer players below 18 years of age at 6^{th} October club. The research sample consisted of 32 soccer players below 18 years of age. The goalkeepers (two) were excluded. The core sample consisted of 22 players divided into two groups: an experimental group and а control group. Each group consisted of 11 players.

Table (1)

Means, Medians, Standard Deviations, and Skewness Of Growth Rates, Physical Variables, Cortisol and Testosterone Levels in the Experimental Group and the Control Group (N = 22)

Variables		Measurement		Experimer	ntal Gro	oup	Control Group				
		Unit	Mean	Median	SD	Skewness	Mean	Median	SD	Skewness	
	Age	Year	17.1	17	0.95	1.01	17.6	17.5	1.95	1.12	
so	Height	Cm	160.2	160	1.12	0.95	163.2	163	1.25	1.52	
Growth rate:	Weight	Kgm	55.6	55.2	2.11	0.96	56.1	56	2.21	1.65	
	Training	year	4.6	4.2	2.61	1.12	4.1	4.0	0.94	1.20	
	period										
Physical tests	Speed of	Second	4.42	4.2	2.30	1.23	4.45	4.2	2.25	1.23	
	composite										
	motor										
	performance										

Follow Table (1)

Means, Medians, Standard Deviations, and Skewness Of Growth Rates, Physical Variables, Cortisol and Testosterone Levels in the Experimental Group and the Control Group (N = 22)

Variables		Measurement		Experimen	oup	Control Group				
		Unit	Mean	Median	SD	Skewness	Mean	Median	SD	Skewness
	Running 30m × 5	Second	28.3	28	1.25	1.65	28.1	27.6	1.62	2.51
	Performance endurance	Second	55.1	55	1.65	1.85	54.8	54.5	2.11	1.65
	Zigzag run (Barrow)	Second	8.3	8.2	2.12	1.98	7.9	7.5	2.20	1.87
mical	Cortisol	Milligram/ deciliter	13.22	13.20	0.51	0.021	13.28	13.22	0.27	0.058
Biocher	Testosterone	Milligram/ deciliter	519.21	519.0	2.98	0.0028	515.62	515	2.19	0.0027

Table (1) demonstrates that the skewness coefficients of rates, growth physical variables. and cortisol and testosterone levels examined in and both the experimental control groups are in the range of ± 3 , which indicates the moderate distribution of the sample with respect to these variables.

Data collection tools:

A. Used measuring tools and devices:

1. A restameter for measuring height, measurement unit is the centimeter.

2. A scale for measuring weight, measurement unit is the kilogram.

3. A set of digital stopwatches of the same type that work to the nearest 1/100,

measurement unit is the second.

4. Soccer s, medicine balls,
Swedish benches, graduated
ruler, clubs, lime, cones, sticks.
5. A set of glass tubes for
blood samples and
anticoagulants (Heparin).

6. Sterilized plastic 5-cm syringes.

7. Ice box to put the blood tubes until they are transferred to the laboratory.

8. ELISA Colorimeter device to measure the biochemical variables of the research.

The proposed training program (attachment 4):

- Purpose of the program: The training program aims at improving some biochemical (cortisol and testosterone), and physical variables in soccer players under 18 years of age according to the glycogenic training method. Doing this, the researcher seeks to make the players achieve the best possible technical level.

- <u>Steps of designing the</u> <u>training program:</u>

The researcher used the opinions of 8 experts in the field of sports training and soccer training (attachment 1) through an opinion poll form about the themes and duration of the proposed training program (attachment 3). The acceptance rate reached 75% as follows:

- The number of training modules during the special preparation period (6 weeks):

- The number of training modules per week = 4 training modules - 4 modules \times 6 weeks = 24 training modules

– Duration of the daily training modules 90-120 minutes

- Average module duration = $90 + 120 = 210 \div 2$ = 105 minutes

- Average module duration = 105 minutes

105 minutes

- Duration of the training modules of the program = 24modules × 105 minutes = 2520minutes

- The total duration of the program was divided to the load degrees according to the limited load cycle (1 : 2).

Results and Discussion:

A. Results:

Table (2)

Significance of the statistical differences between the Means of the pre-test and post-test measurements in physical and biochemical variables of the experimental group (N = 11)

Variables		Measure-	Pre-test		Post-test		Difference	Improve-	Calculated
		ment unit	М	SD	М	SD	between	ment	t value
							Means	rate	
Physical tests	Speed of composite motor performance	Second	4.45	2.25	3.90	2.11	0.55	14.1%	3.80*
	Running 30m × 5	Second	28.1	1.62	22.4	1.45	5.7	25.4%	4.25*
	Performance endurance	Second	54.8	2.11	49.1	2.60	5.7	11.6%	3.99*
	Zigzag run (Barrow)	Second	7.9	2.20	6.5	2.14	1.4	21.5%	3.98*
Biochemical	Cortisol	Milligram/ deciliter	13.22	0.51	19.22	0.98	6.00	45.38%	2.65*
	Testosterone	Milligram/ deciliter	519.21	2.98	625.25	8.98	106.04	20.42%	3.98*

* Value of tabular t at level 0.005 = 2.08

239

Table	2	shows	respect to the physical and
statistically	sign	nificant	biochemical variables in favor
differences bet	ween th	e pre-	of the post-test measurement.
test and	po	ost-test	Moreover, the improvement
measurements	of	the	rate ranges between 11.6% and
experimental	group	with	45.38%.

Table (3)

Significance of the statistical differences between the Means of the pre-test and post-test measurements in physical and biochemical variables of the control group (N = 11)

Variables		Measure-	Pre-test		Post-test		Difference	Improve-	Calculated
		ment unit	М	SD	М	SD	between Means	ment rate	t value
Physical tests	Speed of composite motor performance	Second	4.24	2.30	4.20	2.11	0.22	5.2%	3.22*
	Running 30m × 5	Second	28.3	1.25	26.5	2.12	1.8	6.7%	3.24*
	Performance endurance	Second	55.1	1.65	53.6	2.65	1.5	2.7%	3.90*
	Zigzag run (Barrow)	Second	8.3	2.12	7.6	1.17	0.7	9.2%	3.70*
Biochemical	Cortisol	Milligram/ deciliter	13.28	0.27	13.35	0.21	0.07	0.52%	1.17
	Testosterone	Milligram/ deciliter	515.62	2.91	521.15	0.98	5.53	1.07%	1.25

* Value of tabular t at level 0.005 = 2.08

Table3showsstatisticallysignificantdifferencesbetween the pre-testandpost-testmeasurementsof the controlgroupwithrespecttothephysical variablesandin favorofthe post-testmeasurement.TheTheimprovementrateranges

between 2.70% and 9.02%. However, there are no significant differences in the biochemical levels of cortisol and testosterone hormones, as the value of t ranges between 1.17 and 1.25 which is less than its tabular value at significance level of 0.05.

Table (4)

Significance of the statistical differences between the Means of the post-test measurements in physical and biochemical variables of the experimental and control groups (N = 22)

Variables		Measure- ment unit	Experimental group		Control group		Calculated t value
			М	SD	М	SD	
	Speed of composite motor performance	Second	3.90	2.11	4.20	2.11	3.12*
ts	Running 30m × 5	Second	22.4	1.45	26.5	2.12	4.8*
tes	Performance endurance	Second	49.1	2.60	53.6	2.65	3.10*
ysical	Zigzag run (Barrow)	Second	6.5	2.14	7.6	1.17	3.70*
Ph	Seated forward bend	cm	4.20	1.24	3.75	2.24	2.99*
uical es	Cortisol	Milligram/ deciliter	19.22	0.98	13.35	0.21	2.12*
Biochen capacitie	Testosterone	Milligram/ deciliter	625.25	8.98	521.15	0.98	3.90*

* Value of tabular t at level 0.005 = 1.77

Table 4 indicates significant differences between the post-test measurements of both the experimental group and the control group with respect to physical and biochemical variables in favor of the post-test measurement of the experimental group.

B. Discussion:

From table 2, it is shown that there are statistically significant differences between pre-test and post-test measurements in physical and biochemical variables of the experimental group in favor of the post-test measurement. Additionally, the improvement rate ranged between 11.6% and 45.38%. The researcher attributes this improvement to the proposed program that uses glycogenic physical effort.

This is consistent with the Abdel Mawla findings of (2008) that using multipleeffect training doses at the beginning of the training in helps the season development various of physical qualities in a balanced manner, equal effect of fatigue and rest intervals also helps in developing the functional qualities including anaerobic work. He also warned from using single effect training doses at the beginning of the training season as it is

preferable to use multiple direction doses. He also pointed out that using single effect doses leads to the improvement of results, special physical qualities. and functional capacities of body systems. However, they may subject the athlete to extreme fatigue (exhaustion) during the training program (3: 79).

Abdel Fattah and Shaalan (2002) also agree that continuing the training increases lactic anaerobic (glycogenic) work. However, the concentration of lactic acid in the blood reduces with the performance of a structured physical load as a result of cutting back on effort, the increase in the capacity of getting rid of lactic acid, and player's improving the functional condition (1: 34-35). Moreover, McMillan (2005) emphasizes that the cortisol hormone increases glucose production in the liver, leading to the decomposition of the as well as hormone the increase in liver glycogen due to the activation of glycogen synthase and the reduction of immune response. Additionally, cortisol maintains blood pressure and cardiac outcome in their normal level (31: 503).

On the other hand, Astrand Eral (2003) notes that glycogenic anaerobic training leads to the increase in cortisol concentration. This increase in cortisol concentration resulting from the increase in physical load reflects the central nervous system's control of this hormone (23: 62).

Thus. the first hypothesis which reads: "There statistically significant are differences between the pretest and post-test of measurements some physical variables and the level of cortisol and testosterone in players of the the soccer experimental group" is supported.

Table (3) demonstrates statistically significant differences between the preand test post-test in measurements physical variables in favor of the postmeasurement. The test improvement ranges rate between 2.70% and 9.02%. However. there are no significant differences in the biochemical levels of cortisol and testosterone, as the value of t ranges between 1.17 and 1.25, which is less than its

tabular value at significance level of 0.05. The researcher attributes these results to the fact that the traditional training includes general program physical activities that improve physical qualities, but not the high, structured physical effort that may improve the levels of cortisol and testosterone. Thus, explains this that no improvement in these variable has been found.

This is consistent with Abdel Halim and Ibrahim (2001) observation that the intensity of exercises should be regulated in order for the individual improve. А to training load that is less than the player's minimum level only maintains the player's vitality, a moderate load helps in the development and improvement of the player but only to a certain limit, after this an increase in the load (high load) should take place in order the player's ensure to development and improvement (14:66).

Ahmad (2001) also emphasizes that it is important to determine the athlete's physical capacities as it helps in the scientific planning of the physical preparation program. This should be simultaneous with the athletes' performance of these programs so as to benefit as much as possible from them and elicit their hidden potential (5: 97).

Thus, the second hypothesis is partially supports, as the physical variables of the soccer players in the control group have improved but the levels of cortisol and testosterone have not.

Table (4)shows statistically significant differences between the posttest measurements of both the control experimental and groups in physical and biochemical variables in favor of the experimental group. The researcher attributes this improvement of the proposed glycogenic training program.

In this respect. Davies and Few (2003) indicate that testosterone affect the tissues through a change in the chemical properties of the cell and its reaction with the nucleus. The researcher adds that testosterone is responsible for the development of primary sexual characteristics. It also serves a building role through protein synthesis and muscular growth.

The researcher believes that the increase in testosterone

_

in soccer players of the present study may contribute to the muscular growth process of the The researcher players. attributes these findings to the intense effort of the skills performance, which results in the production of a large number of calories and sweat. which helps in the concentration of both testosterone and cortisol in the blood and the excretion of a large amount of it with sweat immediately after the exertion of effort. This leads to the decline in the player's physical and functional capacities as lactic acid accumulates in the blood and muscles. which affect the skills level of players.

Fernando et al. (2008) note that testosterone is secreted then transmitted to the targeted tissues using a special transmitter called globulin. Globulin the cell enters through special cellular receptors, then it reaches the nucleus to perform its main namely job. growth and increasing protein synthesis. The important function of the hormone secretion is the intense physical load and duration of performance. Additionally, physical effort

increases the secretion of cortisol. The increase in this hormone is part of the major process of rebuilding inside the muscle tissues. In case muscle rupture occurs to a certain extent, the increase in cortisol is an indicator of rebuilding the muscle itself (26 : 41).

The findings of this study are consistent with the findings of Mohamed (2013)(4), Shaban (2008)(17), Salama (2005)(20), and Yousuf (2013)(21) in improving the levels of testosterone and cortisol using high-intensity exercises.

Thus. the third hypothesis that reads: "There statistically significant are differences between the posttest measurements of some physical variables and the level of cortisol and testosterone in the soccer players of the experimental and control groups" is supported.

Conclusions:

The following conclusions can be deduced from the research results and discussion:

- The glycogenic training program helped improve the following biochemical capacities (cortisol and testosterone) in soccer players below 18 years of age.

- The glycogenic training program improved some physical capacities (speed of composite motor performance, running $30m \times 5$, performance endurance, Barrow zigzag run, and seated forward bend) in soccer players below 18 years of age.

- The training program of the soccer players below 18 years of age in the control group did not affect the levels of cortisol and testosterone in soccer players.

Recommendations:

In light of what has been deduced from the research findings, the researcher makes the following recommendations:

- Using glycogenic exercises as an effective training means to develop soccer players' physiological capacities.

- Gradual progression of using glycogenic exercises when applying them to the different intervals.

- Replicating this study with other youth samples of different age, sex, and sport activity.

References:

A. Arabic References:

1- Abdel Fattah, A. & Shaalan, I (2002): Soccer training physiology, 3rd ed., Cairo: Dar Al-Fikr Al-Arabi

1. Abdel Fattah, A. (2003): The biology of sports, 3rd ed. Cairo: Dar Al-Fikr Al-Arabi

2- Abdel Mawla, A.I. (2008): The effect of a fitness training program on some functional responses and composite skills training efficiency in soccer youth players. Unpublished M.A. Thesis, Faculty of Physical Education, Mansoura University

3- Abbas, L.M. (2013): The effect of competition effort on the concentration levels of cortisol, insulin, and lactic acid in the blood in young basketball players. Journal of Sport Sciences, Baghdad University

4- Al-Bisaty, A. (2001): Training and Physical Preparation in Soccer, 3rd ed. Alexandria: Monshaat Al-Maarif

5- Abdel Aziz, A. A. (2013): The effect of using anaerobic (glycogenic) physical effort on some physiological variables and the and the level of accuracy in aiming in basketball players. Journal of Sports Sciences and Arts, Faculty of Physical Education, Assiout University **6- Bastawissy, A.B. (2013):** The bases of developing muscle power in sports events and games. Cairo: Modern Book Center for Publication

7- Salama, B.I (2000): Physiology of sports and physical performance (blood lactates). Cairo: Dar Al-Fikr Al-Arabi

8- Jasim, H.G. (2010): The effect of using competitive and traditional approaches in learning some basic soccer skills. Journal of Sports Education Sciences, vol. 3. No. 3, Faculty of Physical Education, Dilly University, Baghdad

9- Abu Abdo, H.A. (2001): Modern trends in planning and training soccer . Alexandria: Al-Ishaa technical print shop

10- Mahmoud, H.M. (2004): The effect of developing anaerobic endurance on some physical and physiological variables and the digital level of 1500-meter runners. Ph.D. Thesis. Faculty of Physical Education in Port Said, Suez Canal University

11- Mokhtar, H.M. (1997): The annual soccer training program. Cairo: Dar Al-Fikr Al-Arabi

12- Hassan, R.A. (2001): The effect of using longitudinal

training method on the improvement of skills and tactical performance level in vouth players. soccer Unpublished Ph.D. Thesis. Faculty of Physical Education, Assiout University

13- Abdel Halim, A.M. & Omar, A.I. (2001): Determining standard levels of some composite skills test for soccer youth players in Egypt. Assiout Journal of Sports Education Sciences and Arts, no. 13, part 1, Faculty of Physical Education, Assiout University

14- Mostafa, E.A. (2003): Sports Training (Theory and practice), 2nd ed. Alexandria: Dar Al-Maarif

15- Al-Beck, A.F. (2000): Planning sports training, 2nd ed. Alexandria: Monshaat Al-Maarif

16- Ali, A.S. (2008): The effect of anaerobic threshold load intensity on some physiological variables and the concentration levels of cortisol, male hormone and growth Journal hormone. of Educational Sciences studies, vol. 35, Kingdom of Saudi Arabia

17- Al-Gebaly, E.A. (2003): Sports Training: Theory and practice, 4th ed. Cairo

18- Saad Eddin, M.S. (2000): Physiology and physical effort. Cairo: Dar Al-Fikr Al-Arabi

19- Mohamed, N.S. (2005): The effect of a proposed training program of morning biorhythm on cortisol, anxiety, and performance level on the balance beam. Unpublished Ph.D. Thesis, Faculty of Physical Education for Girls, Helwan University

20- Ahmad, W.Y. (2013): Testosterone levels and their effect on some liver enzymes in bodybuilders. M.A. Thesis, Faculty of Physical Education for Boys, Alexandria University

B- References English

21-Anne Loucks (2006): The endocrine system. Lippincott, Williams and Wilkins; P. 453.

22- Astrand, P. & Rodahl, O.(2003):TextbookOfPhysiology,GrowhillbookCo., New York.

23- Arbason A Sigurdsson Sb, Goodman, Holem, Engebeten (2004) : Physical Fitness, injuries and team Performance in soccer, medicine, science and sport exercise, vol (36) P243-285.

24- Arturas andziulis, audios gocentas,nijole jascaniniene, (2001): cardiopulmonary function of elite basketball and soccer players during ,the preseason, journal of human kinetics volume 6, pp29-39

25- Ferrando A, Tipton K and Doyle D (2008): Testosterone injection stimulates protein synthesis but not tissue amino acid transport. Am J Physiol; 275: 864-871.

26- Gaibo, H. (2000): Hormonal and metabolic Adaptation to exercise" them verlag, Stuttgart, New York,.

27- Harry Golby and Simon Moore (1999): Intensive 10 week training program for ultimate GB, Captain,

28-Impellizzeri F.M Marcoro S. M Castagna, C. Reilly, t, Sassi, A.Iaia. F.M.and Rampinini, E.(2006) physiological and performance effects on generic versus specific aerobic training in soccer players ,sport Med 27.pp.483-492

Impellizzeri 29-F.M Marcoro S. M Castagna, C. Sassi, Reilly, t. A.Iaia, F.M,and Rampinini,E.(2006) physiological and performance effects generic on versus specific aerobic training in soccer players ,sport Med 27.pp.483-492

30- :Lin eral, T,chia, w,yingil (2008) Effect exhaust stie exercise on some homnone

profil 50th Ishper world congeress ,japapan

31- McMillan., K. Helgerud, J., Macdonald, R., Hoff, j., (**2005**): Physiological adaptations to soccer specific endurance training in professional youth soccer players, British journal of sports medicine, vol 39 (issue 5): pp 273-7

32- Niyazi Eniselern(2005): Heart Rate and Blood Lactate Concentrations as Predictors of Physiological Load on Elite Soccer Players During Various Soccer Training Activities, The Journal of Strength and Conditioning Research: pp. 799–804

33- Ryder J, Cotterrell D, Kellatt, Lafferty, Brodid (2004): An investigation into the impact of Limiting the Number of matches of the Competitive Soccer on the Fitness of the elite Youth Team Soccer Players aged (10) and (11) Years old university of Cambridge, Journal of Physiology.

34- Stroble, G., Friedmann, B., Siebold, R., & Bartsch, P. (2003). Effect of severe exercise on plasma catecholamines in differently trained theletes. Med Sci Sports Exerc31(4)(560-5).

35-Reilly Thomas and George A, Brooks (2000): selective persistence of circadian thythms in physiological responses to exercise, chronobiology International, Vol.7, No.1