
International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

Presented in 46th International Conference of (AEAS), Cairo, Egypt, Dec. 24-26, 2019.

 http://ijisd.journals.ekb.eg 39

Survey of Apache spark optimized job scheduling in big data

Walaa Ali Khalil*, Hanaa Torkey and Gamal Attiya

Computer Science and engineering dept. Faculty of Electronics Engineering, Menofiua university, Egypt

*Corresponding Author: walaaali412@gmail.com

Abstract

Big data have acquired big attention in recent years. As big data makes its way into companies and

business so there are some challenges in big data analytics. Apache spark framework becomes very popular for

using in distributed data processing. Spark is an analytic machine for big data processing with various modules

for SQL, streaming, graph processing and machine learning. Different scheduling algorithms vary with its

behavior, design and also the goal required solving a problem like data locality, energy and time. The main goal

in this research is to represent a comprehensive survey on job scheduling modes using in spark, the types of

different scheduler, and existing algorithms with advantages and issues. In this paper, various adaptive ways to

schedule jobs on spark and development algorithms to improve performance in Spark will be discussed, analyzed

and evaluated. A comparison between different scheduling algorithms, strength and weakness points of them are

provided. This can aid to the researchers understanding of which scheduling mechanisms best applied for Big

Data.

Keywords: Big Data, Spark; Scheduler; Scheduling algorithm

1. Introduction

 With the appearance of big data [1], and is becoming of equal importance to business and

society. More data needs more accurate analysis, better management and decisions, higher

operational efficiencies and cost reducing. Big Data analysis is a complex process of collecting

data from various resources so it can be organized and then analyzing those sets of data to

discover reliable facts from gathering these data. Big data is generally characterized using the

three V's. One of them is the volume which means huge amounts of data that is produced every

second. The second one is Variety that refers to increase different forms that data can come in.

The most important one is velocity that refers to the data speed can be produced. Some articles

include two additional V's, which Veracity refers to the abnormality and noise in data, and

Valence refers to the connectedness of big data like atoms in the form of graphs.

As big data makes its way into companies and business so there are some challenges in big

data analytics. Such as which technology works best for big data developed without the

introduction of new problems, and the questions arise if proper insights from big data analytics

will be gained. Other challenges are very detrimental, such as wrong insights and messages

when merging between data sets while ignoring data diversity. Security is also a big concern

for companies with big data stores and it includes risks related with big data when it comes to

the privacy of data. The storage of this huge amount of data is becoming a real challenge. Data

storage options like data lakes or warehouses are commonly used to collect and store large

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 40

amount of structured and unstructured data in its local format. The real problem increases when

data storage tries to combine unstructured and inconsistent data from various resources. In big

data analytics there are another challenge is how to plan the completion of tasks and processing

in proficient way.

The process of jobs/tasks scheduling in the cluster to reduce resource utilization of the

resources and time of completed jobs is called job scheduling. The major demands of job

scheduling are cost efficiency, handling various kinds of processing models, scalability, and

others. Another major objective of task scheduling is minimizing the task migrations and

allocating the number of dependent and independent tasks. The successfulness in performing

these objectives in a near optimal manner can reduce the computation time of the jobs and

enhance cluster resources utilization.

The structure of this paper is as follows. Section 2 illustrates the problem statement. Section 3

shows job scheduling techniques in apache Hadoop. While, Section 4 explains job scheduling

techniques in apache spark. In Section 5, we represent our discussion about these different

techniques. Finally, Section 6 is the conclusion.

2. Problem Statement

 The main factor to achieve the high-performance goal in big data analyzing is job

scheduling. Nominal and proficient scheduling strategies to reach the performance can be

influenced by some problems like energy, locality, fairness and synchronization. Huge

quantities of energy in handling the data are required, the resources are common between the

workers, and fair measures are demanded in scheduling the jobs. Another issue of big data

scheduling is data locality. Finally cost reduction in processing time in scheduling jobs in big

data analysis must be taken as a goal. In the other word, scheduling aims is to minimize the

response time, by using best procedures for scheduling, with the better resources utilization

and to make job faster in processing. The processing of big data runs on any framework cluster

by separating a job into lesser tasks and classified the load to the worker nodes as shown in

Fig. 1.

 How to assign these tasks into slave nodes through the different two types of priority

scheduling in the cluster [2] is the main point to analyzing big data. Usually master node is

responsible for distributing the tasks to the slave nodes and makes the best scheduling

techniques to execute. Some scheduling methods and strategies can be used to get the best

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 41

implementation depending on the goal of these scheduling. There are more many schedulers in

big data analysis framework like apache Hadoop [3] and Apache Spark [4] to determine the

suitable one to use there are many factors, such as type, approach, when to use each scheduler

and the goal from using it as illustrate in Fig. 2.

3. Job scheduling in Hadoop

Apache Hadoop is the most favorite frameworks of big data processing. A Hadoop cluster

containa master node and various slave nodes. The master node encompasses four units; a

JobTracker, TaskTracker, Data node and Name node. Jobtracker main role is to control the task

trackers. JobTracker is a node that manages the execusion of job. TaskTracker also delivers the

reports to Jobtracker. MapReduce operate double functions; Map and Reduce operations.

scheduling mechanisms are being shared with Hadoop jobs. Schedulers used in Hadoop are:

I. Default FIFO scheduler

FIFO scheduler is running as a default algorithm on Hadoop [5]. The way that this algorithm

work is depend on the priority of the job, that mean all jobs will be executed has a priority to

run on the available resources on cluster. The jobs arranged on a queue with their priorities.

II. Fair scheduler

The priorities for each job are used by this scheduler[6] relying on the weights to transact with

the portions of the total resources. The job will be split to number of tasks and the available

slots can ready for processing. The scheduler examines the time deficit against the ideal fair

allocation of this job. if the tasks have finished and the slot is ready for next scheduling, then

high priority tasks are assigned to the free slot.

III. Delay scheduler

In this scheduler, when the data is not ready, a task tracker stays for a specific time [7]. If there

is task assigning requested the node, The size of the job will be reviewed by delay schedulers;

when the job is very short, it will be cancelled and if any later jobs ready to run. The important

problem that resolved by these schedulers is the locality problem.

IV. Capacity scheduler

Capacity scheduler is utilized when different companies need to share the huge cluster with

less capacity and sharing overflowing capacity between users [8]. MapReduce slots is

configure any existing queue. The queue has priority with FIFO. resources can be accessed by

high priority jobs, matched to the jobs with minimum priority. Scheduled tasks are knew by

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 42

memory exhaustion of each task. Also, the scheduler has capable of monitor memory with

available resources.

V. Matchmaking scheduler

Matchmaking scheduling can improve Data localities of map tasks [9]. Scheduler guarantees

that assign job first by slave nodes before assigning non local tasks. Scheduler hold on trying

to detect matches with a slave node. The node will be sign by locality marker and ensures that

each node pulls the tasks.

VI. LATE (Longest Approximate Time to End) scheduler

 LATE [10] scheduling algorithm tries to improve Hadoop by seeking to find real slow tasks

by calculating remaining time of all the tasks. It is based on prioritizing tasks to speculate then

selecting fast nodes to run on, and capping speculative tasks to block thrashing. This method

only takes action on appropriate slow tasks and does not break the synchronization phase

between the map and reduce phase.

VII. Deadline constraint scheduler

Deadline constraints [11] can be appropriated when the jobs scheduling guarantees that jobs

met deadline. Deadline constraint scheduler enhances system utilization dealing with data

processing. It is achieved by cost model for job execution and Hadoop scheduler with

constraint. Cost model with job execution considers some parameters such as the size of input

data, task with runtime distribution of job .

VIII. Resource aware scheduler

Resource utilization is minimized by this scheduler in Hadoop . These schemes focus on how

effectively resource utilization has been done with different types of utilization like IO, disk,

memory, network and CPU utilization[12]. dynamic free slot was being used in these

scheduler.

IX. Energy aware scheduler

The enormous clusters within data centers can run big data applications, where their energy

costs make executing energy efficiency. This scheduler[13] used for enhancing energy

efficiency of applications in MapReduce leads to a reduction of the cost in data centers. Table

1 provides a comparison among different Hadoop job scheduling techniques.

Table 1. Different schedulers used with Hadoop

scheduler Description Resource

sharing

Advantages Disadvantages

FIFO Default scheduler, not depend on priority in job

queue, job allocation: static, homogenous

environment.

NO Simple and

easy to

implement

Job starvation

Data locality

Fair Used weight of job assigned, depend on priority

in job queue, job allocation: static, used in

homogenous environment.

yes very effective

in allocating

resources,

Fairness

Configuration

problems,

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 43

Delay review the size of the job and decide to run it or

not if data of task not ready and task tracker

wait, used priority of job queue, job allocation:

static, homogenous environment

No No overhead

Simple and

easy

implement

wasting the

work of killed

task

Not effective.

Capacity allow sharing a large cluster while giving each

organization capacity guarantees ,Not need

priority of job queue, job allocation: static,

homogenous

yes Hierarchical

Queues,

Capacity

Guarantees

Security,

Complexity

choosing

scheduler

Matchmaki

ng

guarantees that all tasks appeals a slave node to

specifies job first, used priority of job queue,

job allocation: static, homogenous environment

yes High data

locality.

Utilization

level is high

None

LATE distinguish a moderate running task to dispatch

another comparable assignment as a backup,

used priority of job queue, job allocation: static,

homogenous & heterogeneous

yes Heterogeneity

more robust

Not reliable

Deadline

constraint

addresses the issue of deadlines but focuses

more on increasing system utilization, used

priority of job queue, job allocation: dynamic,

homogenous and heterogeneous environment

yes Helps in

Optimization

of Hadoop

implementatio

n

Uniform nodes

to afford cost

Resource

aware

Each Task Tracker node observes resources,

used priority of job queue, job allocation:

dynamic, homogenous & heterogeneous

yes Performance

resource

utilization

Monitoring

bottlenecks

Energy

aware

Minimize energy emitting from data centers,

used priority of job queue, dynamic,

homogenous & heterogeneous

yes Energy

optimized

Multiple jobs

needed

4. Job scheduling in Spark

Batch processing can be implemented with Hadoop MapReduce programming module.

There are some restrictions in Hadoop such as there are some constraints in Map and reduce

steps when executes big data pipeline. Hadoop is not efficient for performing big data pipeline.

There are another bottleneck in Hadoop affects performance, MapReduce relies on reading data

from disc that particularly problem for iterative algorithms. To overcome the shortcoming on

Hadoop , Spark came out to do this and expand the MapReduce framework.

Spark uses an abstraction called RDDs (Resilient Distributed Datasets) for in memory

processing that make it more efficient [14]. RDD is containers where the data stored in

memory, and it support fault tolerant. RDDs are immutable and can be created by a series of

one transformation. Actions are applied on RDD to guide spark to make computation and

retrieve the result to driver program. Spark has two basic components. Master node that has

driver program and another component is worker nodes as shown in Fig. 3, Spark context can

be created at first inside driver program. Spark Context is the point which services enter to the

Spark and receives the job, breaks it in tasks and distribute them to the worker nodes on the

cluster. Different jobs can be managed by Cluster Manager and also Spark Context. Cluster

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 44

Manager is capable of make scheduling and allocation of resources at the host machines on the

cluster. It handles all resources which formed the cluster such as CPU and memory, as well as

handling the resource sharing between Spark applications. Worker nodes are the slave nodes

whose job is to essentially implement the tasks. A worker node in Spark running Java virtual

machine, called JVM or executor. This JVM is the heart of worker node and it consider a core

that all the computation is executed, and this is the interface of the storage systems and tools

of Big Data.

4.1. Apache Spark Ecosystem

The Apache Spark provides API environment including some libraries of code for use

in analyzing the data applications. These libraries are Spark SQL, Spark Streaming, Spark

MLlib and Spark GraphX as illustrates in Fig. 4 and there are shown in details.

Spark consist of Spark SQL that is the most commonly used component on Spark. It enable

to querying the structure and unstructured data. Data sources can be connected with Spark

SQL to convert the query result to RDDs in Java, Scala, and Python programs because it

contains API responsible for these conversion. To deploy complex operation to data set,

DataFrame can be created by the SQLContext. DataFrame is considered as programming

abstraction.

Fig.4. Main modules in Spark ecosystem

Spark Streaming is one of spark component that use to implement and process live stream

of data such as sensor data to follow up weather conditions or log files[16]. Spark

Streaming support Scala, Java, Python, R and can manipulate data streams that like the

Spark Core’s RDD API.

Spark GraphX is a library for executing graph-parallel computations and manipulating

graphs. GraphX is generated on special RDDs for vertices and edges. It supports a library

of combined graph algorithms. It can be write the iterative graph algorithm and fastest

graph system make GraphX more performance while keep Spark's flexibility, fault

tolerance, and ease of use and this consider as a benefit of GraphX.

Fig.3. Apache Spark Architecture

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 45

Spark MLlib contains many techniques and algorithms that used in machine learning

process. It is provides some algorithms to build models for regression, clustering and

classification and also more than one technique to evaluate resulting models . Spark

enables MLlib to run fast at iterative computation so it contains high quality algorithms to

deal with iteration and generates better results [17] .

4.2. job scheduling in Spark

The activity planning for Spark is where job scheduler determine occupation to the

following order schedulers to also plan and execute [18]. The Directed Acyclic Graph

(DAG) scheduler in Spark produces numerous jobs by executing the submitted application

programs. Worker nodes recomputed the data automatically depended on the DAG

information from the scheduling systems, which aids in managing data-loss.

 There are three kinds of Cluster Manager, there are standalone Cluster Manager[19],

Hadoop Yarn[20], and Apache Mesos[21].

5. Discussion

In this papers, the different job scheduling techniques in popular big data platforms, and

task scheduling for big data analysis and streaming processing is reviewed. To improve

efficiency of jobs execution, some researches proposed pool scheduling pool. In this

technique, users send their jobs to scheduling pool which responsible for scheduling its

internal jobs. That is mean the scheduling range of scheduling pool is restricted to the inner

of application. Sharing and reusing jobs of various application program become very

difficult because of the failure of interacting directly with the scheduling pool. In [22], an

algorithm support the guarantee, the fairness and the reuse mechanism is proposed. The

algorithm can be passed by many steps; a scheduling pool should be selected as mother

pool of reuse matching jobs and has reserved the most of cluster resources, then cache the

first job in this pool and then cache the result of its execution, another pool contain

number of jobs which job scheduler will select.

Another issue is based on streaming data. In Spark streaming, many small sets of

records can processes together that called micro-batches then they can be treated by arrived

continuously to RDDs. Meanwhile, Spark Streaming buffer the incoming stream and

convert it into micro batches. It is essential to improve architecture of the job scheduler. A

research at paper [23] proposed a scheduler used for schedules parallel micro-batch jobs

in Spark streaming. It improves efficiency because it automatically adjusts scheduling

parameters and resource performance. It uses FIFO scheduling with the dependent job and

uses fair scheduling for jobs in the independent job pool. There are two factors which

restrict the overall efficiency of job scheduling, the complexity of the tasks and the

heterogeneity of the cluster, specially Spark.. To solve this scheduling problem, it is vital

to determine the priority of scheduling depend on tasks complexity. The scheduling that

depends on only number of cores is not suitable for actual heterogeneous cluster. A paper

at [24] presented a node scheduling algorithm to optimize the local scheduling in Spark.

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 46

Table 2:Comparison between optimized various scheduling algorithms used with spark.

Its strategy depends on two points, calculating static level of nodes and dynamic factors.

These algorithm is Node stratifying calculate the level of computing performance of node

Lj by some steps based on time array then sort with the first place in this array is considered

as T[0] and first node as L1 then the layered result of each node can be calculate by this

equation:

Lj = {
Lj − 1 × α, 1 ≤ j < K

1, j = 0

Which k is total of layers and Lj is the level of the computing performance of node j and

α is constant. From these steps and this equation the level of computing performance of

node can be calculated and saved to array L then return array by the same steps to each

workers in the cluster.

Another approach is proposed a simple scheduling approach to minimize the case of

processing time by dynamic detecting the time window of batch intervals.In an application,

the spark submit jobs for each Dstream. jobs are split into a group of tasks. In Spark

Streaming, event stream is partitioned into batches in a fixed time interval. In a same batch

every event is submitted for processing, the event that comes previously in a time window

Scheduling

strategy

Environment Job

allocation

Resource

sharing

Features Drawbacks

FIFO Such as in Hadoop

Fair

Scheduling pool

scheduling algorithm

Homogenous

only

Static yes Reduce

waiting

&execution

time of job

Time

wasted in

matching

jobs

Adaptively scheduler to

parallel micro-batch jobs

in Spark Streaming

Homogenous,

Heterogeneous

Dynamic yes reducing

end-to-end

latency

Streaming

data only

Scheduling strategy in

distributed cluster

heterogeneity

Heterogeneous

only

Dynamic yes Less running

time, lower

CPU usage

Complexity

Heterogon-

ous Spark

Operative real time

improvement approach

to

the streaming system

Homogenous,

Heterogeneous

Dynamic yes Operative

real time

improvement

approach to

the streaming

system

Depend on

past job

statistics

Delay scheduler Homogenous Static No Locality,

fairness

wasting

work of

killed task

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 47

consider with bigger delay. So the total delay time of event (e) in a batch is equal time

window, data processing time and scheduling delay time:

𝑡 𝑡 = 𝑡 𝑤 + 𝑡 𝑠 + 𝑡 𝑝

Supposing that scheduling data processing and delay time are constant . the total delay of

event processing can reduce by minimizing 𝑡 𝑤. A comparison among these optimized

various scheduling algorithms is proved in Table 2.

6. Conclusion

Job scheduling shows an important vision to reach the performance in big data analysis. This

paper makes an attempt to present background of Job scheduling for big data analysis in

Hadoop, Spark architecture, various feature and modules in the spark ecosystem and the job of

these modules. Then we discussed the scheduling of spark and the main component which

responsible for scheduling, the modes which scheduling occur then make comparison between

them and show the main scheduling algorithms in spark. Different optimization mechanics are

used to efficiently employ of the resources was discussed. We discover that it is essential to

consider various factors when designed a job scheduling algorithm namely; data locality,

resource workload, energy consumption, job attributes, deadline of the job, and others. Also, it

is noticed that existing task scheduling algorithms are either concentrated on user centric or

resource centric paradigm as they failed to address the two factors at once. Our future work

will focus on developing a novel job scheduling algorithm considering of all the parameters

describe in this paper which can provide better performance.

References

[1] Kaur M, Shilpa, “Big data visualization tool with advancement of challenges.”, International Journal of

Advanced Research in Computer Science and Software Engineering 4.

[2] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Job scheduling for multi-

user mapreduce clusters”, UC Berkeley, Tech. Rep. Technical Report UCB/EECS-2009-55, April 2009.

[3] S.Kuchipudi, T.S.Reddy, "Applications of Big data in Various Fields", International Journal of Computer

Science and Information Technologies (IJCSIT), Vol.6, No.5, Pp.4629-4632, 2015.

[4] Y. Jun, X. Hai et a1., “Spark Core Technology and Advanced Applications”, China Machine Press, pp.238-

253, 2015.

[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Job scheduling for multi-

user mapreduce clusters,” UC Berkeley, Tech. Rep. Technical Report UCB/EECS-2009-55, April 2009.

[6] F. Hamed,” An Overview of Hadoop Scheduler Algorithms”, modern applied science, 2018.

[7] M. Zaharia., D. Borthakur, J. Sensarma, “Delay Scheduling: A Simple Technique for Achieving Locality

and Fairness in Cluster”, European Conference on Computer Systems, pp. 265-278, 2010.

[8] D. Swans on. Matchmaking,” A New MapReduce Scheduling Technique”, IEEE International Conference

on Cloud Computing Technology and Science, pp. 40-47, 2011.

[9] M. Zaharia et al., “Improving MapReduce Performance in Heterogeneous Environments”, Operating

systems design and implementation, Pp 29-42, 2008 .

[10] A. Raut et al.,” Deadline aware scheduler for Hadoop Yarn”, IEEE International Parallel and Distributed

Processing Symposium, Pp 956-965, 2012.

[11] S. Kalra and A lamba, “A Review on HADOOP MAPREDUCE-A Job Aware Scheduling Technology”,

International Journal of Computational Engineering Research (IJCER), Vol. 04, Issue 5, 2014.

[12] L. Mashayekhy, M. M. Nejad, D. Grosu, D. Lu, W. Shi, “Energy-aware Scheduling of MapReduce Jobs”,

IEEE International Congress on Big Data, 2014.

[13] S. Ryza, U. Laserson, S. Owen, J. Wills, “Advanced Analytics with Spark”, April 2015.

[14] DAG: https://data-flair.training/blogs/dag-in-apache-spark/.

http://ijisd.journals.ekb.eg/
https://data-flair.training/blogs/dag-in-apache-spark/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No.1, pp. 39- 48, January 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 48

[15] M. Armbrusty, R. S. Xiny, C. Liany, Y. Huaiy, D. Liuy, J. K Bradleyy,X. Mengy, T. Kaftanz, M..

Franklinyz, A. Ghodsiy and M. Zahariay“Spark SQL: Relational Data Processing in Spark”, AMPLab, UC

Berkeley, 2015.

[16] S. Ryza, U. Laserson, S. Owen, J. Wills, “Advanced Analytics with Spark”, April 2015.

[17] Job scheduing in Spark: http://spark.apache.org/docs/latest/job-scheduling.html.

[18] Standalone Cluster Manger: http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-

standalone/.

[19] VK. Vavilapalli et al., “Apache Hadoop YARN: yet another resource negotiator”, Proceedings of the 4th

Annual Symposium on Cloud Computing, 2013.

[20] B. Hindman et al,” Mesos: a platform for fine-grained resource sharing in the data center” ,NSDI, 2013.

[21] Iman Elghandour, Ashraf Aboulnaga, “Reusing Results of MapReduce Jobs”, ReStore, pp:586-598, 2012.

[22] D. Cheng, Y. Chen , X. Zhou , D. Gmach and D. Milojicic, “ Adaptive Scheduling of Parallel Jobs in Spark

Streaming”, 2016.

[23] X. Zhang, Z. Li, G. Liu, J. Xu, T. Xie and J. P. Nees1, “ A Spark Scheduling Strategy for Heterogeneous

Cluster”, CMC, vol.55, no.3, pp.405-417, 2018

[24] X. Liao, Z. Gao, W. Ji, Y. Wang, “An Enforcement of Real Time Scheduling in Spark Streaming”, Beijing

Institute of Technology, 2015.

http://ijisd.journals.ekb.eg/
http://spark.apache.org/docs/latest/job-scheduling.html
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/

