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Abstract 

Big data have acquired big attention in recent years. As big data makes its way into companies and 

business so there are some challenges in big data analytics.  Apache spark framework becomes very popular for 

using in distributed data processing. Spark is an analytic machine for big data processing with various modules 

for SQL, streaming, graph processing and machine learning. Different scheduling algorithms vary with its 

behavior, design and also the goal required solving a problem like data locality, energy and time. The main goal 

in this research is to represent a comprehensive survey on job scheduling modes using in spark, the types of 

different scheduler, and existing algorithms with advantages and issues. In this paper, various adaptive ways to 

schedule jobs on spark and development algorithms to improve performance in Spark will be discussed, analyzed 

and evaluated. A comparison between different scheduling algorithms, strength and weakness points of them are 

provided. This can aid to the researchers understanding of which scheduling mechanisms best applied for Big 

Data. 
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1. Introduction 

 With the appearance of big data [1], and is becoming of equal importance to business and 

society. More data needs more accurate analysis, better management and decisions, higher 

operational efficiencies and cost reducing. Big Data analysis is a complex process of collecting 

data from various resources so it can be organized and then analyzing those sets of data to 

discover reliable facts from gathering these data. Big data is generally characterized using the 

three V's. One of them is the volume which means huge amounts of data that is produced every 

second. The second one is Variety that refers to increase different forms that data can come in. 

The most important one is velocity that refers to the data speed can be produced. Some articles 

include two additional V's, which Veracity refers to the abnormality and noise in data, and 

Valence refers to the connectedness of big data like atoms in the form of graphs. 

As big data makes its way into companies and business so there are some challenges in big 

data analytics. Such as which technology works best for big data developed without the 

introduction of new problems, and the questions arise if proper insights from big data analytics 

will be gained. Other challenges are very detrimental, such as wrong insights and messages 

when merging between data sets while ignoring data diversity.  Security is also a big concern 

for companies with big data stores and it includes risks related with big data when it comes to 

the privacy of data. The storage of this huge amount of data is becoming a real challenge. Data 

storage options like data lakes or warehouses are commonly used to collect and store large 
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amount of structured and unstructured data in its local format. The real problem increases when 

data storage tries to combine unstructured and inconsistent data from various resources.  In big 

data analytics there are another challenge is how to plan the completion of tasks and processing 

in proficient way.   

The process of jobs/tasks scheduling in the cluster to reduce resource utilization of the 

resources and time of completed jobs is called job scheduling. The major demands of job 

scheduling are cost efficiency, handling various kinds of processing models, scalability, and 

others. Another major objective of task scheduling is minimizing the task migrations and 

allocating the number of dependent and independent tasks. The successfulness in performing 

these objectives in a near optimal manner can reduce the computation time of the jobs and 

enhance cluster resources utilization.   

The structure of this paper is as follows. Section 2 illustrates the problem statement.  Section 3 

shows job scheduling techniques in apache Hadoop. While, Section 4 explains job scheduling 

techniques in apache spark.  In Section 5, we represent our discussion about these different 

techniques. Finally, Section 6 is the conclusion.      

  

2.  Problem Statement 

   The main factor to achieve the high-performance goal in big data analyzing is job 

scheduling. Nominal and proficient scheduling strategies to reach the performance can be 

influenced by some problems like energy, locality, fairness and synchronization. Huge 

quantities of energy in handling the data are required, the resources are common between the 

workers, and fair measures are demanded in scheduling the jobs. Another issue of big data 

scheduling is data locality. Finally cost reduction in processing time in scheduling jobs in big 

data analysis must be taken as a goal. In the other word, scheduling aims is to minimize the 

response time, by using best procedures for scheduling, with the better resources utilization 

and to make job faster in processing. The processing of big data runs on any framework cluster 

by separating a job into lesser tasks and classified the load to the worker nodes as shown in 

Fig. 1. 

 

 
 How to assign these tasks into slave nodes through the different two types of priority 

scheduling in the cluster [2] is the main point to analyzing big data. Usually master node        is 

responsible for distributing the tasks to the slave nodes and makes the best scheduling 

techniques to execute. Some scheduling methods and strategies can be used to get the best 
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implementation depending on the goal of these scheduling. There are more many schedulers in 

big data analysis framework like apache Hadoop [3] and Apache Spark [4] to determine the 

suitable one to use there are many factors, such as type, approach, when to use each scheduler 

and the goal from using it as illustrate in Fig. 2. 

 
3. Job scheduling in Hadoop 

 

Apache Hadoop is the most favorite frameworks of big data processing. A Hadoop cluster 

containa master node and various slave nodes. The master node encompasses four units;  a 

JobTracker, TaskTracker, Data node and Name node. Jobtracker main role is to control the task 

trackers. JobTracker is a node that manages the execusion of job. TaskTracker also delivers the 

reports to Jobtracker. MapReduce operate  double functions; Map and Reduce operations. 

scheduling mechanisms are being shared with Hadoop jobs. Schedulers used in Hadoop are: 

I.  Default FIFO scheduler 

FIFO scheduler is running as a default algorithm on Hadoop [5]. The way that this algorithm 

work is depend on the priority of the job, that mean all jobs will be executed has a priority to 

run on the available resources on cluster. The jobs arranged on a queue with their priorities. 

II. Fair scheduler 

The priorities for each job are used by this scheduler[6]  relying on the weights to transact with 

the portions of the total resources. The job will be split to number of tasks and the available 

slots can ready for processing. The scheduler examines the time deficit against the ideal fair 

allocation of this job. if the tasks have finished and the slot is ready for next scheduling, then 

high priority tasks are assigned to the free slot.  

III. Delay scheduler 

In this scheduler, when the data is not ready, a task tracker stays for a specific time [7]. If there 

is task assigning requested the node, The size of the job will be reviewed by delay schedulers; 

when the job is very short, it will be cancelled and if any later jobs ready to run. The important 

problem that resolved by these schedulers is the locality problem. 

IV. Capacity scheduler 

Capacity scheduler is utilized when different companies need to share the huge cluster with 

less capacity and sharing overflowing capacity between users [8]. MapReduce slots is 

configure any existing queue. The queue has priority with FIFO. resources can be accessed by 

high priority jobs, matched to the jobs with minimum priority. Scheduled tasks are knew by 
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memory exhaustion of each task. Also, the scheduler has capable of monitor memory with 

available resources.  

V. Matchmaking scheduler 

Matchmaking scheduling can improve Data localities of map tasks [9]. Scheduler guarantees 

that assign job first by slave nodes before assigning non local tasks. Scheduler hold on trying 

to detect matches with a slave node. The node will be sign by locality marker and ensures that 

each node pulls the tasks. 

VI. LATE (Longest Approximate Time to End) scheduler 

 LATE [10] scheduling algorithm tries to improve Hadoop by seeking to find real slow tasks 

by calculating remaining time of all the tasks.  It is based on prioritizing tasks to speculate then 

selecting fast nodes to run on, and capping speculative tasks to block thrashing. This method 

only takes action on appropriate slow tasks and does not break the synchronization phase 

between the map and reduce phase. 

VII. Deadline constraint scheduler 

Deadline constraints [11] can be appropriated when the jobs scheduling guarantees that jobs 

met deadline. Deadline constraint scheduler enhances system utilization dealing with data 

processing. It is achieved by cost model for job execution and Hadoop scheduler with 

constraint. Cost model with job execution considers some parameters such as the size of input 

data, task with runtime distribution of job .  

VIII. Resource aware scheduler 

Resource utilization is minimized by this scheduler in Hadoop . These schemes focus on how 

effectively resource utilization has been done with different types of utilization like IO, disk, 

memory, network and CPU utilization[12]. dynamic free slot was being used in these 

scheduler.  

IX.  Energy aware scheduler 

The enormous clusters within data centers can run big data applications, where their energy 

costs make executing energy efficiency. This scheduler[13]  used for enhancing energy 

efficiency of applications in MapReduce leads to a reduction of the cost in data centers. Table 

1 provides a comparison among different Hadoop job scheduling techniques. 

 

Table 1. Different schedulers used with Hadoop 

scheduler Description Resource 

sharing 

Advantages Disadvantages 

FIFO Default scheduler, not depend on priority in job 

queue, job allocation: static, homogenous 

environment. 

NO Simple and 

easy to 

implement 

Job starvation 

Data locality 

Fair Used weight of job assigned, depend on priority 

in job queue, job allocation: static, used in 

homogenous environment. 

yes very effective 

in allocating 

resources, 

Fairness  

Configuration 

problems,  
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Delay review the size of the job and decide to run it or 

not if data of task not ready and task tracker 

wait, used priority of job queue, job allocation: 

static, homogenous environment 

No No overhead 

Simple and 

easy 

implement  

wasting the 

work of killed 

task 

Not effective. 

Capacity allow sharing a large cluster while giving each 

organization capacity guarantees ,Not need 

priority of job queue, job allocation: static, 

homogenous  

yes Hierarchical 

Queues, 

Capacity 

Guarantees 

Security,  

Complexity 

choosing 

scheduler 

Matchmaki

ng 

guarantees that all tasks appeals a slave node to 

specifies job first, used priority of job queue, 

job allocation: static, homogenous environment 

yes High data 

locality. 

Utilization 

level is high 

None 

LATE distinguish a moderate running task to dispatch 

another comparable assignment as a backup, 

used priority of job queue, job allocation: static, 

homogenous & heterogeneous  

yes Heterogeneity 

more robust 

Not reliable 

Deadline 

constraint 

addresses the issue of deadlines but focuses 

more on increasing system utilization,  used 

priority of job queue, job allocation: dynamic, 

homogenous and heterogeneous environment 

yes Helps in 

Optimization 

of Hadoop 

implementatio

n 

Uniform nodes 

to afford cost 

Resource 

aware 

Each Task Tracker node observes resources, 

used priority of job queue, job allocation: 

dynamic, homogenous & heterogeneous  

yes Performance 

resource 

utilization 

Monitoring 

bottlenecks 

Energy 

aware 

Minimize energy emitting from data centers, 

used priority of job queue, dynamic, 

homogenous & heterogeneous  

yes Energy 

optimized 

Multiple jobs 

needed 

 

4. Job scheduling in Spark 

Batch processing can be implemented with Hadoop MapReduce programming module. 

There are some restrictions in Hadoop such as there are some constraints in Map and reduce 

steps when executes big data pipeline. Hadoop is not efficient for performing big data pipeline. 

There are another bottleneck in Hadoop affects performance, MapReduce relies on reading data 

from disc that particularly problem for iterative algorithms. To overcome the shortcoming on 

Hadoop , Spark came out to do this and expand the MapReduce framework.  

Spark uses an abstraction called RDDs (Resilient Distributed Datasets) for in memory 

processing that make it more efficient [14]. RDD is containers where the data stored in 

memory, and it support fault tolerant. RDDs are immutable and can be created by a series of 

one transformation. Actions are applied on RDD to guide spark to make computation and 

retrieve the result to driver program. Spark has two basic components. Master node that has 

driver program and another component is worker nodes as shown in Fig. 3, Spark context can 

be created at first inside driver program. Spark Context is the point which services enter to the 

Spark and receives the job, breaks it in tasks and distribute them to the worker nodes on the 

cluster. Different jobs can be managed by Cluster Manager and also Spark Context. Cluster 
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Manager is capable of make scheduling and allocation of resources at the host machines on the 

cluster. It handles all resources which formed the cluster such as CPU and memory, as well as 

handling the resource sharing between Spark applications. Worker nodes are the slave nodes 

whose job is to essentially implement the tasks. A worker node in Spark running Java virtual 

machine, called JVM or executor. This JVM is the heart of worker node and it consider a core 

that all the computation is executed, and this is the interface of the storage systems and tools 

of Big Data. 

 
 

 

4.1. Apache Spark Ecosystem 

The Apache Spark provides API environment including some libraries of code for use 

in analyzing the data applications. These libraries are Spark SQL, Spark Streaming, Spark 

MLlib and Spark GraphX as illustrates in Fig. 4 and there are shown in details. 

Spark consist of Spark SQL that is the most commonly used component on Spark. It enable 

to querying the structure and unstructured data.  Data sources can be connected with Spark 

SQL to convert the query result to RDDs in Java, Scala, and Python programs because it 

contains API responsible for these conversion. To deploy complex operation to data set, 

DataFrame can be created by the SQLContext. DataFrame is considered as programming 

abstraction.  

 
Fig.4. Main modules in Spark ecosystem 

 

Spark Streaming is one of spark component that use to implement and process live stream 

of data such as sensor data to follow up weather conditions or log files[16]. Spark 

Streaming support Scala, Java, Python, R and can manipulate data streams that like the 

Spark Core’s RDD API.  

Spark GraphX is a library for executing graph-parallel computations and  manipulating 

graphs. GraphX is generated on special RDDs for vertices and edges. It supports a library 

of combined graph algorithms. It can be write the iterative graph algorithm and fastest 

graph system make GraphX more performance while keep  Spark's flexibility, fault 

tolerance, and ease of use and this consider as a benefit of GraphX.  

Fig.3. Apache Spark Architecture 
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Spark MLlib contains many techniques and algorithms that used in machine learning 

process. It is provides some algorithms to build models for regression, clustering and 

classification and also more than one technique to evaluate resulting models . Spark 

enables MLlib to run fast at iterative computation so it contains high quality algorithms to 

deal with iteration and generates better results [17] . 

 

4.2. job scheduling in Spark 

The activity planning for Spark is where job scheduler determine occupation to the 

following order schedulers to also plan and execute [18]. The Directed Acyclic Graph 

(DAG) scheduler in Spark produces numerous jobs by executing the submitted application 

programs. Worker nodes recomputed the data automatically depended on the DAG 

information from the scheduling systems, which aids in managing data-loss.  

      There are three kinds of Cluster Manager, there are standalone Cluster Manager[19], 

Hadoop Yarn[20], and Apache Mesos[21]. 

 

5. Discussion 

In this papers, the different job scheduling techniques in popular big data platforms, and 

task scheduling for big data analysis and streaming processing is reviewed. To improve 

efficiency of jobs execution, some researches proposed pool scheduling pool.  In this 

technique, users send their jobs to scheduling pool which responsible for scheduling its 

internal jobs. That is mean the scheduling range of scheduling pool is restricted to the inner 

of application. Sharing and reusing jobs of various application program become very 

difficult because of the failure of interacting directly with the scheduling pool. In [22], an 

algorithm support the guarantee, the fairness and the reuse mechanism is proposed. The 

algorithm can be passed by many steps; a scheduling pool should be selected as mother 

pool of reuse matching jobs and has reserved the most of cluster resources, then cache the 

first job in this pool and then cache the result of its execution,  another pool  contain 

number of jobs which job scheduler will select.   

Another issue is based on streaming data. In Spark streaming, many small sets of 

records can processes together that called micro-batches then they can be treated by arrived 

continuously to RDDs. Meanwhile, Spark Streaming buffer the incoming stream and 

convert it into micro batches. It is essential to improve architecture of the job scheduler. A 

research at paper [23] proposed a scheduler used for schedules parallel micro-batch jobs 

in Spark streaming. It improves efficiency because it automatically adjusts scheduling 

parameters and resource performance. It uses FIFO scheduling with the dependent job and 

uses fair scheduling for jobs in the independent job pool.  There are two factors which 

restrict the overall efficiency of job scheduling, the complexity of the tasks and the 

heterogeneity of the cluster, specially Spark..  To solve this scheduling problem, it is vital 

to determine the priority of scheduling depend on tasks complexity. The scheduling that 

depends on only number of cores is not suitable for actual heterogeneous cluster.  A paper 

at [24] presented a node scheduling algorithm to optimize the local scheduling in Spark.  
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Table 2:Comparison between optimized various scheduling algorithms used with spark. 

 

Its strategy depends on two points, calculating static level of nodes and dynamic factors. 

These  algorithm is Node stratifying calculate the level of computing performance of node 

Lj by some steps based on time array then sort with the first place in this array is considered 

as T[0] and first node as L1 then the layered result of each node can be calculate by this 

equation:  

Lj =  {
Lj − 1 ×  α,        1 ≤  j <  K   

1,                          j = 0
   

Which k is total of layers and Lj is the level of the computing performance of node j and 

α is constant. From these steps and this equation the level of computing performance of 

node can be calculated and saved to array L then return array by the same steps to each 

workers in the cluster.  

Another approach  is proposed a simple scheduling approach to minimize the case of 

processing time by dynamic detecting the time window of batch intervals.In an application, 

the spark submit jobs for each Dstream.  jobs are split into a group of tasks. In Spark 

Streaming, event stream is partitioned into batches in a fixed time interval. In a same batch 

every event is submitted for processing, the event that comes previously in a time window 

Scheduling 

strategy 

Environment Job 

allocation 

Resource 

sharing 

Features Drawbacks 

FIFO Such as in Hadoop 

Fair 

Scheduling pool 

scheduling algorithm 

Homogenous 

only 

Static yes Reduce 

waiting 

&execution 

time of job 

Time 

wasted in 

matching 

jobs 

Adaptively scheduler to 

parallel micro-batch jobs 

in Spark Streaming 

Homogenous, 

Heterogeneous 

Dynamic yes reducing 

end-to-end 

latency 

 

Streaming 

data only 

Scheduling strategy in 

distributed cluster 

heterogeneity 

Heterogeneous 

only 

Dynamic yes Less running 

time, lower 

CPU usage 

Complexity 

Heterogon-

ous Spark  

Operative real time 

improvement approach 

to 

the streaming system 

Homogenous, 

Heterogeneous 

Dynamic yes Operative 

real time 

improvement 

approach to 

the streaming 

system 

Depend on 

past job 

statistics  

Delay scheduler Homogenous  Static No Locality, 

fairness  

wasting 

work of 

killed task 
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consider with bigger delay. So the total delay time of event (e) in a batch is equal time 

window, data processing time and scheduling delay time: 

𝑡 𝑡 =  𝑡 𝑤 +  𝑡 𝑠 +  𝑡 𝑝                

Supposing that scheduling data processing and delay time are constant . the total delay of 

event processing can reduce by minimizing 𝑡 𝑤. A comparison among these optimized 

various scheduling algorithms is proved in Table 2. 

 

6. Conclusion 

Job scheduling shows an important vision to reach the performance in big data analysis. This 

paper makes an attempt to present background of Job scheduling for big data analysis in 

Hadoop, Spark architecture, various feature and modules in the spark ecosystem and the job of 

these modules. Then we discussed the scheduling of spark and the main component which 

responsible for scheduling, the modes which scheduling occur then make comparison between 

them and show the main scheduling algorithms in spark. Different optimization mechanics are 

used to efficiently employ of the resources was discussed. We discover that it is essential to 

consider various factors when designed a job scheduling algorithm namely; data locality, 

resource workload, energy consumption, job attributes, deadline of the job, and others. Also, it 

is noticed that existing task scheduling algorithms are either concentrated on user centric or 

resource centric paradigm as they failed to address the two factors at once. Our future work 

will focus on developing a novel job scheduling algorithm considering of all the parameters 

describe in this paper which can provide better performance. 
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