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Abstract 
The paper describes the application of artificial neural networks for identification 
using experimental data of a computer controlled micro-alternator system. 
Mathematical algorithms are described in detail and associated architectures of 
analog artificial neural networks are presented. The accuracy of the identified 
model is assessed by direct comparison between micro-alternator outputs and 
neural network identified model outputs. 
1-Introduction 
In recent years, artificial neural networks (ANNs) have attmcted considerable 
attention as candidates for novel computational systems because of the variety of 
advantages that they offer over the c~nventional~computational systems. Among 
those advantages, the ability to memorize, rapidity and robustness arethe most 
profound and interesting properties, which have attracted'attention in many fields 
[I]. In power systems, ANNs are rapidly gaining populaiity among power system 
researchers. The number of ANN applications to electric power problems has 
increased dramatically in the last few years. A brief overview of ANN applications 
to various power system problems is presented in [2-81. The application areas 
include securitv and contingency analysis. fault diagnosis. harmonic source - .  . . - 
monitoring and identiticatton, alarm processing, load forecasring, state cstimatlon, 
cconomical load dispatchmy, etc. The results have shown that ANNs have great -~ 
potential in power system on-line and off-line applications. 

In this paper, the ANNs are applied to identify linear models for a micro- 
alternator system. The system is treated as a multi-inputkingle output system. The 
accuracy of neural models is assessed by direct comparison between its outputs and 
system outputs. 

2-System Confi~uration 
Fie. 1 shows the micro-alternator system configuration of the University of - 
Liverpool [9]. The system comprises -a 3 kva micro-alternator connected t o  a 
laboratory busbar through a transmission line simulator. An analogue simulator 
represents a three-stage steam turbine with a single reheater and an electro- 
hydraulic governor with interceptor and governor valves. 
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Fig. 1 System Coni5guration 

3-ANN Architecture 
In this paper we have used Multi Layer Feed Forward (MLFF) network with Back 
~ r o ~ a ~ a i i o n  (BP) learning algorithm. In MLFF network the Processing Elements 
(PEs) are arranged in layers and only PEs in adjacent layers are connected. It has a 
minimum of three layers of PEs; (i) the input layer, (ii) the hidden layer, (iii) the 
output layer. The information propagation is only in the forward direction (input to 
output) and there are no feedback loops. A MLFF network topology is shown in 
Fig. 2. In order to obtain bounded output from PEs, a sigmoidal activation function 
is chosen where output is limited in the range from 0 to 1 for the input range from - 
ca to m . MLFF network is trained using back propagation (BP) algorithm. The BP 
algorithm adjust the weights using the relationship given below: 

w .. (new) = w . (014 + qy .O . + a ( A w  .. (old)) 
rJ 'I ' J '1 

(1) 

where, 

w?, the weight from node i to node j 

yi the error gradient at node i 

y . for output layer neurons, 
I 

y .  = ( t .  - o . ) o . ( l - 0 . )  
I 1 1 1  I 

y .  for hidden layer neurons, 
I 

ti = the target for i" output neuron 
o, =the output of ith neuron 
no =the numbcr of output neuron 



q =the learning coefficient 
=the momentum factor 

During training, the actual patterns of the network in the final layer are compared 
with their target values for the given pattern. The aim is to minimize the square of 
the difference between the desired output (target) and the actual generalized output 
for the p - ~  pattern in the final layer. 

. - 
In order to ensure thg' stability of the BP algorithm, small values of a and 7 are 
used. But these results in slow learning requiring very large number of iterations 
for algorithm to converge. Higher values of a and 7 leads to faster learning but 
also results in oscillations. 
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Fig.2 MLFF Network 

4-Scaling of the Invut and Outvut Data 
The input and output variables for the neural network will have very different 
ranges and this may cause convergence problem during the learning process. To 
avoid this, the input and output data were scaled such that they were within the 
range (0,1), with majority of the data having values near to 0.5 (where the slope of 
the activation function is highest). For this purpose the actual input or output 
parameter was scaled using the following relationship. 

where, 

X = actual data parameter 
xs = scaled data parameter which is used as input to the net 
X,, = maximum value of data parameter. 
X,, = minimum value of data parameter. 



, , 

5- Svstem Identification 
The neural networks can be extended to solve the identification probleni which can 
be divided into the following three steps: 

1. Model building, 
2. The learning procedure (i.e. determination of model parameters), 
3. Testing output reconstmction. 

The experimental data for identification have been obtained from the computer 
controlled micro-alternator system of the University of Liverpool [9]. A sequence 
of random step signals updated every 0.2 second was imposed on the turbine 
governor and generator exciter inputs, in order to produce data for identification of 
the neural network models. Fig. 3 shows the inputs with random step signals. 

0.74 L I 
0 2 4 6 8 

Time (sec.) 

2.5 .( I 
0 2 4 6 8 

Time (sec.) 

Fig. 3 Inputs with random step signals 

The outputs of the system are selected to be the rotor speed deviation i, terminal 
power P,, and terminal voltage V,. The identification period is 8 seconds during 
which 400 input/output data are collected with a sampling interval of 20 
millisecond. By using these data, suitable neural network models can be 
constructed. When these models are subjected to the same input ui as the micro- 
alternator system, produce an output oi which estimates the output ti ofthe system 
in the sense that E,  is minimal. In this paper, two different neural network models 

are used. The first model shown in Fig. 4-a, the input vector X, is selected to be the 
governor and exciter inputs as well as three past values of the output. The single 

output oi can be chosen i or P, or V,. So, the three outputs can be identified from 
three neural network models with different inputs. The second model shown in Fig. 



4-b, the input vector, X contains the governor and exciter inputs as well as one past 

value of k , three past values of Pt and three past values of Vt. The three outputs 
can be identified from three neural network models, which have the same inputs. 
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Fig. 4 Different nonlinear neural network models 

(multi-input/single-output system) 

6-Simulation Results 
The MLFF network used is a three layered feed forward architecture with one input 
layer, one output layer and one hidden layer of neurons. A separate ANN was 
trained for each output. As shown in Fig. 4-a, three ANNs were needed to identify 
the three outputs of the system. As the input data for each ANN consists of five 
variables, five neurons were used in the input layer. In Fig. 4-b, nine neurons were 
used in the input layer for each ANN. The output layer contains only one neuron 
to provide the identified model output. The convergence criterion is defined by the 
following average sum of square errors (ASSE): 

N .  
C 6, 

p = 1  
ASSE ------ 

N 



N is the number of output patterns in the final layer. Figures 5 and 6 show the 
ASSE against number of iterations for both five-input and nine-input neural 
network models with ten hidden layer neurons. It is clear that the ASSE decreases 
when the number of iterations increases. After eighty iterations, ASSE was 
calculated for each output and given as follows: 
For five-input neural model 
ASSE = 0.0000152 for terminal voltage 
ASSE = 0.000143 for terminal power 
ASSE = 0.000801 for rotor speed deviation 
For nine-input neural model 
ASSE = 0.0000145 for terminal voltage 
ASSE = 0.0000625 for terminal power 
ASSE = 0.000933 for rotor speed deviation 
To increase the accuracy of both five-input and nine-input neural network models, 
ASSE is selected as: 

ASSE 5 0.0000025 for terminal voltage 
ASSE 5 0.00E015 for terminal power 
ASSES 0.00075 for rotor speed deviation 

The optimum number of hidden layer neurons was found by trial and error. The 
training conditions of the three different feedfonvard neural networks are 
summarized in Tables 1 and 2. It is observed that the optimum number of hidden 
layer neurons is different for the three ANNs. Best convergence was obtained when 
the number of hidden layer neurons equals 6, 10 and 10 for training the three five- 
input ANNs, and 8, 8 and 10 for training the three nine-input ANNs, respectively. 

Table 1 
Three five-input ANNs performance with different 

number of hidden layer neurons 
I I OUTPUT No. 1 I OUTPUTNO. 2 1 OUTPUTNO. 3 

Table 2 
Three nine-input ANNs performance with different 

SD is the standard deviation 



Figures 7 and 8 show comparisons between the micro-alternator outputs and ANN 
model outputs when the number of hidden layer neurons equals 10. A close 
agreement is observed between the micro-alternator and ANN model outputs. 
These results are very important because the ANN models can be used in the 
adaptive controller design. 

7- Conclusion 
The paper presents a new application of ANNs for identification of linear models . .  - 
for a micro- alternator svst& using inout/outuut ex~erimental data. The effect of 
number of hidden layer neurons on (0th A$h model accuracy and number of 
iterations for convergence has been studied. The accuracy of neural models was 
assessed by direct comparison between its outputs and alternator outputs for the 
same inputs. From the simulation results, a close agreement was observed between 
the system and ANN model outputs which illustrate the validity and performance 
of the described ANN algorithms. 
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Figure 5 ASSE against number of iterations for 
five-input neural network models. . 
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Figure 6 ASSE against number of iterations for 
nine-input neural network models. 
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Fig. 7 Comparison between micro-alternator outputs and 

five-input neural network models outputs. 
----- ANN model output 
- Micro-alternator output 
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Figure 8 Comparison between micro-alternator outputs and 
nine-input neural network models outputs. 

----- ANN model output 
- Microalternator output 




