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ABSTRACT 

This paper investigates forced convection associated with the cross-flow of micropolar fluids 
over a horizontal heated circular cylinder. The full conservation equations of mass, linear 
momentum, angular momentum and energy are solved to give the details of flow and thermal 
fields. Heat convection process are mainly influenced by Reynolds number, Prandtl number and 
material parameters of micropolar fluid. The Reynolds number is considered up to 200 while the 
Prandtl number is fixed at 0.7. The vortex viscosity is the only material parameter considered in 
this study and is selected in the range from 0 to 5. The study has shown that generally the mean 
heat transfer decreases as the vortex viscosity increases. The results have also shown that both the 
natural frequency of vortex shedding and the amplitude of oscillating lift force experience clear 
reduction as the vortex viscosity increases. 
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1. INTRODUCTION 

The problem of heat convection and 
hydrodynamics associated with fluid flow over a 
circular cylinder has received great attention both 
theoretically and experimentally [I-61. This is not 
only due to fundamental aspects of the problem but 
also due to its importance in many practical 
engineering applications. These applications include 
nuclear reactors, heat exchangers, hot wires, steam 
pipes and off-shore structures. Moreover, the 
interaction between circular cylinder and its 
surrounding viscous stream is a good model problem 
for studying heat and fluid flow over bluff bodies. 

Many industrial equipment deal with certain noo- 
Newtonian fluids, such as ferro liquids colloidal 
fluids, heterogeneous mixtures, exotic lubricants, 
most slurries and some liquids with polymer 
additives. For the best design of these equipment, the 
extension of the studies to explore and understand the 

behavior of such fluids is important. One of the 
theories which is expected to describe successfully 
the behavior of these fluids is the theory of 
micropolar fluids. Micropolar fluid theory formulated 
by Eringen [7] takes into account the local effects 
arising from microstructure and intrinsic motions of 
the fluid elements. Micropolar fluids can support 
surface and body couples which are not present in the 
theory of Newtonian fluids The extension of 
micropolar fluids theory to deal with 
thermomicropolar fluids has been given by Eringen 
PI .  

The volume of previous studies of both flow and 
heat convection problems related to micropolar is 
relatively small. Arimen et al. [9] has thoroughly 
reviewed the literature up to 1973. In the last two 
decades there was an escalated interest in the 
theoretical studies related to heat convection in 
micropolar fluids. These studies however, mostly 
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focused on heat convection through boundary layer 
flow over flat plates and vertical cylinders. Gorla 
[lo] investigated the heat transfer characteristics of a 
micropolar boundary layer in a cross flow over non- 
isothermal circular cylinder. Hassanien et al. [ l l ]  
investigated combined convection on a vertical 
slender cylinder. The axisymmetric thermal boundary 
layer of a micropolar fluid on a cylinder was solved 
by Gorla [12] while the mixed convection in an 
axisymmetric stagnation flow of micropolar fluid on 
a vertical cylinder was studied by Mohammedien et 
al. [13]. Hassanien and Salama 1141 studied the flow 
and heat transfer of a micropolar fluid in an 
axisymmetric stagnation flow oq a cylinder while 
Gorla and Takhar [15] studied the unsteady mixed 
convection boundary layer flow of a micropolar fluid 
near the lower stagnation point on a cylinder. In a 
recent study Mansour et al. [16] studied heat and 
mass transfer in magnetohydrodynamic flow of 
micropolar fluid on a circular cylinder with uniform 
heat and mass flux. 

The aforementioned studies are mostly based on 
the solutions of boundary layer equations. Such 
solutions are invalid in the regions of flow 
separation as that resulting in the cylinder wake. 
Needless to say that these solutions can not trace the 
vortex shedding from the cylinder surface and can 
not predict the resulting oscillating heat transfer and 
hydrodynamics forces. It is well known that as the 
flow Reynolds number exceeds a certain value (about 
40 in Newtonian fluids) the boundary layer separates 
alternately and periodically from the upper and lower 
sides of the cylinder, forming the well known 
Karman vortex street. The process of vortex shedding 
causes unsteady flow behavior close to the cylinder 
which in turn results in oscillating lift and drag forces 
acting on the cylinder. In response to these oscillating 
forces the cylinder may vibrate. The cylinder 
vibrations resulting from the shed vortices can cause 
structural fatigue and, in certain circumstances, can 
lead to drastic failure of the structure. 

The lack of the information about the effect of 
vortex shedding on both hydrodynamics and heat 
transfer associated with micropolar fluid flow over 
cylinders was the motivation for this study. To the 
author's knowledge, this is the first study focuses on 
the vortex shedding process in case of micropolar 
fluids. The study considers the effect of Reynolds 
number and material parameters on vortex shedding, 
hydrodynamics forces and forced convection 
associated with the cross flow of micropolar fluids 
over horizontal circular cylinder. In order to predict 
the vortex shedding process the full governing 
equations in its elliptic form are considered and 
solved using a highly accurate numerical technique. 

NOMENCLATURE 

B dimensionless microinertia 
D dimensionless vortex viscosity 
K, vortex viscosity 
j micro-inertia density 
L dimensionless wake length (=Lr/c) 
M dimensionless microratation 
Nu local surface Nusselt number - 
Nu mean surface Nusselt number 
pr Prandtl number 
I dimensionless radial coordinate ( r '  / C )  

SO Strouhal number 
t dimensionless time 
T temperature 
Y the distance from the cylinder (= r-1) 

Greek symbols 
a thermal diffusivity 

dimensionless temperature 

Y spin gradient viscosity 
p viscosity coefficient. 
2. dimensionless spin gradient viscosity . 
o microrotation vector in r', 8 plane 

Subscripts 
s at cylinder surface 
m very faraway from the cylinder surface 

2. PROBLEM FORMULATION 

In the problem considered, a circular isothermal 
cylinder of radius c is placed horizontally in a 
uniform cross-stream of micropolar fluid of 
temperature T,. The cylinder surface temperature is 
kept constant at T, (T,> T, ). The micropolar fluid 
flow is assumed two-dimensional and the viscous 
dissipation and microrotation heat conduction are 
assumed negligible. In polar coordinates ( r', 8 ), 
where 0 is measured counterclockwise from the 
rearmost point on the cylinder surface and under the 
above assumptions the conservation equations of 
motion and energy in terms of the vorticity, stream 
function, microrotation and temperature can be 
expressed as 
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where 

a2  l a  i a2 v =- +---;+-- and 
arP2 r '  r rr2 

K,, j and y are the vortex viscosity, micro-inertia 
density and spin-gradient viscosity. z is the time, 
p i s  the density, k is the thermal'conductivity and c, 

is the specific heat. &'is the vorticity, $is the 
stream function, T is the temperature and o is the 
component of microrotation vector whose direction 
ofrotation is in the r'- 8 plane. 

The boundary conditions to be satisfied are the no- 
slip, impermeability and isothermal conditions on the 
cylinder surface together with the free stream 
conditions very far away from the cylinder surface. 
These conditions can be expressed as 
at r f = c  

aw' -  @ ' -  v'=--0 --0, and T=T, 
do ' a' 

Jw' 3w' as, r ' + a  - - - t r ' U c o s B ,  --t - U s i n s ,  as 3' 
< ' - t o  and T+T, (5b) 
For micro-rotation, rs, the boundary conditions are 
assumed as 

The dimensionless forms of the above equations are 
obtained by introducing the following dimensionless 
variables 

K J Y T-T,  D = ~ , B = -  a=- and $ = - 
P c2 ' c2,U Ts - Tm 

Using the above variables in equations (1)-(4) and 
using the modified polar coordinates 
(5,8, k=Enr)  resultsin 

2puc is the Reynolds number and where, Re=- 
P 

P .  Pr = - 1s the Prandtl number 
/'a 

The boundary conditions (5) based on the new 
variables can be expressed as 

< - t o ,  M-tO and +-+o  (lob) 
The micropolar fluid flow is assumed to start 

impulsively from rest. The fluid around the cylinder 
is assumed initially at the ambient temperature (i.e 
d=O). 
3. THE METHOD OF SOLUTION 

The method of solution is based on integrating the 
governing equations of motion and energy in time to 
obtain the velocity and temperature fields. Using the 
Fourier Spectral method and following the works of 
Badr and Dennis [I71 and Mahfouz and Badr [IS] 
the dimensionless stream function W , vorticity 6 ,  
Microrotation M and temperature are 
approximated as follows : 

1 N 

y~ = - F, + x [f,, sin(n.9) + F,, cos(n.9)], 
n=l 

1 N 
M =-R, + z [ r ,  sin(nB) + R,, cos(n8)J 

2 "=I 

where F,, f., F. , G, , g, , G, , % , r, , R., H,, h. , and 
H, are the Fourier coefficients and N represents the 
number of terms considered in Fourier series. 
Substitution of Equations (1 1) in Equations (1)-(4) 
results in the following set of differential equations: 
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aH 2 a 2 ~ ,  
e 2 5 0  =-- 

at RePr at2 + Z0 ( W  

where So, S,I , S.Z, KO , K,I, K.2, Z, , GI and Z,2 
are all easily identifiable functions of < and t. 
Equations (12a)-(15c) define a set of (8N+4) 
differential equations that have to be solved at every 
time step to get the flow and thermal fields. The 
boundary conditions for all functions present in 
Equations (12-15) are deduced from (10) and can be 
expressed as 
at <=0 

Rn= -0.5Gn , r,= -0.5 g,, H b 2 ,  and Hn=h,= 0 (16a) 

and as <+ m 

and H,, H,, , h, -to (16b) 

Integrating both sides of Equation (12a) with respect 
to < between <= 0 and t=m and using the boundary 

conditions in Equation (16) gives the following 
integral condition: 

Similarly, integrating both sides of Equations (12b) 
and (12c) and making use of the boundary conditions 
(16), one can obtain the following integral conditions 

where ifn=l and &,,, =O if n;el 

The above integral conditions are used at every time 
step to calculate the values of the functions G o ,  g. 
and G. on the cylinder surface ( 5  = 0) .  These 
functions are then used to compute accurately the 
vorticity distribution on the cylinder surface. The 
first condition (17a) is essential to ensure the 
periodicity of the pressure on the surface. The rest of 
the details of the method of solution and the 
numerical treatment is similar to that used in 
refs.[17-191 and will not be repeated here for the 
sake of brevity. 

4. RESULTS AND DISCUSSION 

The governing equations along with boundary 
conditions are solved in order to give the details of 
both flow and thermal fields. The main controlling 
parameters beside the classical ones ( Re and Pr) are 
the dimensionless micropolar material parameters. 
These are vortex viscosity D, spin viscosity h and 
microinertia density B. The close scrutiny of Eq.(6) 
and Eq. (8) shows that the vortex viscosity 
represents a direct link between the flow field and 
microrotation field. The other two dimensionless 
material parameters (spin viscosity and microinertia 
density B) appear only in microrotation, Eq. 8 and so 
they indirectely affect flow and thermal fields. For 
this reason and for the sake of brevity this study 
focuses only on the effect of the vortex viscosity on 
flow and thermal fields. The vortex viscosity is 
varied in the range from 0 to 5 while the spin 
viscosity and microinertia density are assigned value 
of 1. The Reynolds number is varied up to 200 while 
Prandtl number is fixed at 0.7. 

Wake flow, vortex shedding and  lifr coefficient 
With the start of computation, the flow 

commences impulsively over the cylinder surface. 
As the time goes the flow separates from the upper 
and lower surfaces of the cylinder, forming two 
symmetric vortices behind the cylinder. For Reynolds 
numbers less than a certain value ( about 40 for 
Newtonian fluids ), the flow over the cylinder 
remains stable and keeps horizontally symmetric 
with respect to the cylinder axis. The two generated 
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symmetric vortices keep attached behind the cylinder 
and the wake length continues to grow with time till 
the quasi-steady state condition is almost reached at 
late times. The wake length is the length (divided by 
cylinder radius) of the separated wake measured 
along the line 9 = 0 from the rearmost point of the 
cylinder to the end of re-circulating region. The 
calculations carried out for different cases for the 
symmetric flow (without vortex shedding ) show that 
the wake length at a certain Reynolds number is 
greatly affected by the vortex viscosity. The results 
showed that as the vortex viscosity increases the 
wake length clearly decreases. The effect of 
increasing vortex viscosity seem? similar to the effect 
of decreasing Reynolds number, that is to say that the 
flow becomes more viscous as the vortex viscosity 
increases. 

Re=40 
--- Present (D-0) 

0 Num. 131 
EXP. [41 

0 4 8 12 16 20 24 28 
Time, t 

Fig. 1 Time development of wake length for the case 
Re=40, D=O and comparison with refs. [3] and [4] 

Fig. 1 shows the time development of the wake 
length for the case of symmetric flow of a Newtonian 
fluid (D=O ) at low Reynolds number of 40. Shown 
also in the same figure are the numerical results of 
Collins and Dennis [3] and experimental results of 
Honji and Tanida [4]. The figure shows very good 
agreement with numerical results of Collins and 
Dennis [3] at both initial and late times, while the 
comparison with the experimental results of Honji 
and Tanida [4] is very good up to time F l 8  and 
reasonable for t >18. Further rigorous testing of the 
method of solution can be found in the works of 
Mahfouz and Badr [18,19] 

As the Reynolds number exceeds a certain value 
the flow in the cylinder wake becomes unstable and 
vortices are shed alternately and periodically from 
the upper and lower sides of the cylinder, forming the 
well known Karman vortex street. In the present 
numerical treatment, in order to excite the Karman 

vortex street, the flow is intentionally perturbed by 
rotationally oscillating the cylinder for only one 
complete cycle. The amplitude and duration of the 
cycle were selected in order to trigger the vortex 
shedding as rapidly as possible without causing any 
long-time effects. The frequency of vortex shedding, 
f. , is computed from Fourier frequency analysis 
(FFT) of the time record of lift coefficient. 

Table 1 Strouhal number and time averaged Nusselt 
number at different Re and D 

The dimensionless frequency of vortex shedding is 
known as Strouhal number (S0=2h cN). The 
Strouhal number depends not only on the Reynolds 
number ( as in case of Newtonian fluids ) but also on 
the material parameters of micropolar fluid. The 
numerical results for Strouhal number at various 
values of Re and D are displayed in Table 1, together 
with the results of time averaged mean Nusselt - - - 
number Nu . The results of Nu will be explained 
later. The table shows that the Strouhal number for 
the cases of Newtonian fluids (D=O) compares very 
well with the corresponding ones in refs. [IS, 20, 
211. The table also shows clearly that as the vortex 
viscosity increases the frequency of vortex shedding 
decreases. The void ( dashed) entries in the table 
mean that the flow will be symmetric (i.e no vortex 
shedding) at very large time." 

In order to figure out further the effect of vortex 
viscosity on vortex shedding process let us examine 
the lift coefficient. The lift coefficient is defined as 
CL = LF / c P ~ 2  where LF is the lift forces exerted 
on a unit length of the cylinder . In terms of Fourier 
coefficients the lift coefficients can be expressed as 

. .. 
For the case of symmetric flow over the cylinder the 
lift force vanishes as a result of equally opposing 
(pressure and viscous) forces acting on the upper and 
lower sides of the cylinder. With the development of 
periodic shedding of vortices the flow in the cylinder 
wake becomes unsteady and asymmetric which leads 
to asymmetric distributions of pressure and viscous 
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forces. These asymmetric distributions lead to 
periodic time variation in lift coefficient. The 
frequency of lifl coefficient oscillation is the same as 
the vortex shedding frequency. This is mainly due to 
the nature of vortex shedding mechanism in which 
vortices of opposite circulation shed alternately from 
upper and lower sides of the cylinder surface. The 
period of CL oscillation is equal to the time taken to 
detach two consecutive vortices, one from the upper 
side and the other from the lower side ofthe cylinder. 
The variation of CL is positive for one vortex and 
negative for the other due to opposite circulation. 

Fig. 2 shows the time variation of the lift coefficient 
for the case of Re=5O and D=O, 0.1, 0.5 and D=2. 
The figure shows clearly that as vortex viscosity 
increases the amplitude of lift forces decreases. The 
lift coefficients for the cases D=O.O and D=0.1 
oscillate with almost constant amplitude which 
reflects the persistent nature of vortex shedding for 
these two cases. For higher values of D=OS and D=2 
the amplitude of lift coefficient is no longer constant 
but rather is continuously decaying with time, 
expectedly reaching zero after a long time. The rate 
of CL decaying as shown in the figure for the last two 
cases is much faster for the bigger values of D. The 
full diminishing of lift forces at large times indicates 
that the flow will eventually he symmetric. So, it can 
he inferred from Table I and Fig. 2 that the increase 
of vortex viscosity beyond a certain value may lead 
to a decrease in the flow response to the perturbation 
with tendency of the flow to he symmetric ( i. e. no 
vortex shedding ) at large times. In this study, 
however, no attempts were made to find the exact 
value of D (at certain Re ) at which the flow at large 
time becomes steady symmetric. This finding is 
important as far as the vortex shedding and 
separation control is concerned. The closer the 
behavior of the fluid to the micropolar fluid the 
weaker the possibility of vortex shedding. 

, 

100 120 140 160 180 200 
Time, I 

Fig. 2 Time variation of lift coefficient for the case 
of Re=% and D=O, O.l,O.S,and 2. 

The variation of microrotation M which represents 
micro-elements rotation as well as the variation of 
vorticity < which represents the mean flow rotation in 
the cylinder wake along the rear axis ( 6=0) is shown 
in Fig. 3 for the case ofRe=SO , D=O.l and at F200. 
The figure shows that both M and < fluctuates along 
the rear axis due to vortex shedding with decaying 
amplitude as a result of viscous diffusion. Also the 
figure clearly shows that almost at all points M is 
one-half that of < which means that micro-elements 
are rotating at the mean flow local rotating velocity. 

Heat transfer resulls 

Immediately following the impulsive flow motion 
over the constant temperature cylinder surface, the 
heat transfer rate gets very high values as a result of 
heat conduction through very thin thermal layer. In 
the early time stages, the fast growing of thermal 
boundary layer resulted in drastic decrease in heat 
transfer in a relatively short time. After that short 
time the thermal layer is almost developed with heat 
transfer tending to assume almost steady value (in 
case if the flow is still not perturbed ). Once the flow 
is perturbed the vortex shedding process develops 
and causes flow unsteadiness in the vicinity of the 
cylinder. Such unsteadiness cause an enhancement 
in mean heat convection in comparison with steady 
symmetric situation. In order to quantify the heat 
transfer results let us define the surface local and 
mean Nusselt numbers: 

Vortici!y 

........ Microrotalion 

0.4 

, , , , , , & , ,  

0 5 10 15 20 25 
Y 

Fig. 3 Variation of microrotation M, and vorticity, -< 
in the cylinder wake along the rear axis (6=0), 

2q' c 
Nu = and N u = -  N u d e  (19) 

k(T, - T J  - 2z X "  
q'is heat transfer per unit area given by 

z 
q' = -k--;I ,.=, . From the above definitions and 

& 
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using Equation (1 I), one can deduce the following 
relation for local and mean Nusselt numbers 

The time-averaged Nusselt number is obtained from 

where the time period between t, and t2 covers a 
good number of cycles of vortex shedding. 

Fig. 4 shows the steady mean Nusselt number 
distribution for the case of symmetric low Reynolds 
numbers I<Re<40 Newtonian fluid flow ( D=O) at 
value of Pr = 0.73. Shown also in the same figure for 
the purpose of comparison are the experimental 
correlation due to Hatton et al. 1221 and Knudsen 
and Katz [23]. The correction factors for temperature 
in both works have been taken as one. The 
comparison with these two correlation is very good 
with maximum difference less than 10% in case of 
comparison with Hatton et al. [22] and less than 7% 
in case of comparison with Knudsen and Katz 
1231. 

47 

- 
NU 

2 - 
Pr=0.73 

---- Present (D=O) 

- - - - - . . Exp. Corr. 1221 

0 10 20 30 40 

- Re 

Fig. 4 Variation of Nu with Re and comparison with 
the correlation of [22] and [23] 

Fig. 5 shows the late time variation of surface 
mean Nusselt number, Nu for the unsteady flow for 
the case of Re=200, Pr=0.7 and D= 0,0.5,1 , 5 .  The - 
figure shows that Nu fluctuates around a mean 
value and the amplitude of these fluctuations are 
more pronounced for smaller values of D (D=O and 
D=0.5). While at bigger values of D the amplitude of 
fluctuation is getting smaller. The frequency of 
fluctuation is twice the frequency of vortex shedding. 
It can be also observed from the figure that the time- - 
averaged value of Nu is getting markedly smaller 
as D increases. The numerical results of time - - 
averaged Nusselt number, Nu for the cases 

considered in this study are listed in Table 1. The 
= 

table shows that as D increases Nu decreases. This 
finding is consistent with the previous results of 
Mahfouz 124-251 for natural convection from circular 
and elliptic cylinders placed in micropolar fluids and 
so can be considered as a general conclusion for heat 
convection (forced or natural) in micropolar fluids. 

Shown in Fig. 6 are the local Nusselt number, Nu 
distributions for the unsteady flow for the case of 
Re=100, Pr=0.7, D= 0, 0.5, 1 , 5 and at late time 
t=150. The figure shows that Nu distributions for 
micropolar fluid are similar to that of Newtonian 
fluid (D=O). The figure shows that for all 
distributions Nu gets its maximum value at the front 
stagnation point (@=I80 ) or in its vicinity. At the 
front stagnation point the thermal layer is minimum 
which results in maximum heat rate at that point. The 
Nu then decreases due to thermal boundary layer 
growth in the direction of flow on upper and lower 
sides of the cylinder till it gets its minimum value 
near the rear most point of the cylinder (@=O). In the 
rear region and as a result of vortex shedding the heat 
transfer rate and so Nu assumes fluctuating and 
relatively higher values as compared with steady 
cases (not shown here ). 

The figure also shows a clear reduction in Nusselt 
number at almost all points of the surface as vortex 
viscosity increases. The reduction in Nu at almost all 
points at the surface means the reduction of mean - 
values of Nu as the vortex viscosity increases. The 
decrease of local values of Nu as vortex viscosity 
increases may be explained in the light of surface 
vorticity distributions shown in Fig. 7 for the same 
cases and at the same time. Higher values of surface 
vorticity at the same location ( same 0) means higher 
flow velocity gradient ( i.e higher convection ) near 
the surface which results in higher heat transfer ( i.e 
higher Nu). 

6.25 
110 T20 130 140 150 160 

Time, t 
Fig. 5 Time variation of mean Nusselt number at 

Re=200, Pr =0.7 and different values of D. 
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0 60 120 180 240 300 360 
Angle, 8 

Fig. 6 Distribution of Surface local Nu at Re=100, 
Pr=0.7, e l 5 0  and at different values of D 

0 60 120 180 240 300 360 
Angle, 0 

Fig. 7 Distribution of surface vorticity at Re=100, 
Pr=0:7, t=150 and at different values of D 

With the increase of the vortex viscosity the flow 
becomes more viscous and the low velocity gradient 
near wall results in low convection currents and so 
low local heat transfer as shown in Fig. 6. The 
maximum heat transfer rate at front stagnation point 
is not controlled by flow velocity gradient, which is 
zero at that point, but is rather controlled by the 
thickness of thermal layer which is minimum at that 
point. 

Fig. 8 shows the dimensionless temperature 
distribution in the wake of the cylinder along the rear 
axis(8=0 ) at time of t-150 and for the case of 
Re=100, PI-0.7 and D= 0, 0.5, 1 , 5. The figure 
shows that the temperature decreases in the wake for 
all cases, expectedly reaching the value of unheated 
fluid very far away from the cylinder ($=0 ). The 
figure shows clearly that for the cases of D=O, 0.5 
and 1 the temperature fluctuates during its decreasing 

while for the case of D=5 it monotonically decreases. 
These distributions of temperature again confirms the 
results shown in Table 1 that the wake flow is 
characterized by vortex shedding for the cases of D= 
0, 0.5, 1 while for the case of D=5 the symmetric 
wake flow without vortex shedding is reached at that 
time. The temperature distributions as shown in the 
figure reveal that as the value of D increases the 
temperature gradient at the surface decreases, 
declaring a smaller local heat transfer rates and, 
accordingly, as shown in Fig. 6, smaller Nu as D 
increases. 
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Fig. 8 Temperature distribution in the wake of the 
cylinder along line 8=0 

Fig. 9 shows the thermal field, represented by 
contour plots of isotherm patterns for the case of 
Re=50 and at time -200 and at four values of D 
namely, D=O.O, 0.1, 0.5, and D=2. The flow is 
perturbed in the four cases at t = 30. The figure 
shows that for the value of D=O.O and 0.1 (Fig. 9a 
and Fig. 9b) the isotherms reflect the asymmehy of 
the flow which is persistently characterized by vortex 
shedding which is clear in time variation of l i f t  
coefficient (see Fig. 2). For larger value of vortex 
viscosity, D=0.5 (Fig. 9c) the isotherms are about to 
be symmetric while for much larger value of D=2 ( 
Fig. 9d) the perturbation effect is already damped and 
the flow and thermal fields became fully symmetric. 
The dashed contour line in Fig. 9 represents the 
isotherm contour of 4 = 0.1 which can be considered 
as a qualitative indicator of the thickness of the 
thermal layer. The figure clearly shows that the 
dashed contour encloses wider loop around the 
cylinder as D increases which indicates that the 
thermal layer around the cylinder gets thicker as the 
value of D increases. A thicker thermal layer means 
smaller temperature gradient near the cylinder 
surface and in turn smaller heat transfer rates. 
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Fig. 9 Isotherm patterns for the case of Re=5O, 
t=200, a) D=O.O, b) D=O.l, c) D=0.5 and d) D=2 

5. CONCLUSION 

This paper investigated forced convection and 
hydrodynamics forces associated with the flow of 
micropolar fluids over a horizontal circular cylinder. 
The effect of Reynolds number and material 
parameters of micropolar fluid are considered in this 
study. The Reynolds number is considered up to 
200. The vortex viscosity is the only material 
parameter considered in this study and is selected in 
the range from 0 to 5. The results have shown a 
reduction in mean heat transfer rate as the vortex 
viscosity increases. Similarly, the natural vortex 
shedding frequency decreases as the vortex viscosity 
increases. The amplitude of oscillating lift force also 
experiences a clear reduction as the vortex viscosity 
increases. 

6. REFERENCES 

[I] Eckert, E.R.G. and Soehngen E., 1952, 
"Distribution of heat transfer coefficient around 
circular cylinders in cross flow at Reynolds 
numbers from 20 to 500", J. Heat Transfer 74, 
343 -347. 

[2] Dennis, S. C. R., Hudson, J .  D. and Smith, N., 
1968, "Steady laminar forced convection from a 
circular cylinder at low Reynolds numbers" , 
Phys. Fluids 11 (9 ,933  -940. 

[3] Collins, W. M. and Dennis, S. C. R, 1973, 
"Flow past an impulsively started circular 
cylinder", J. Fluid Mechanics, 60(1), pp. 105- 
127. 

[4] Honji, H.and Taneda, S.,1969, "Unsteady flow 
past a circular cylinder", I. Phys. Soc. Japan, 27, 
pp. 1688-1698. 

[5] Karniadakis, G .  E., 1988, "Numerical simulation 
of forced convection heat transfer from a 
cylinder in cross flow", Int. J .  Heat Mass 
Transfer 31 (I), 407 4 1 8 .  

[6] Chun, W. and Boehm, R. F.,1989, "Calculation 
of forced flow and heat transfer around a 
cylinder in cross flow" , Numer.Heat Transfer 
15,101 -122. 

[7] Eringen A. C., 1964, "Simple micropolars", Int. 
J. Eng. Sci. 2: 205-217 

[8] Eringen A. C., 1972, "Theory of thermo- 
microfluids", J. Math. Anal. Appl. 38: 480-496 

[9] Ariman T, Turk M. A. and Sylvester N. D., 
1973, "Microcontinuum fluid mechanics, a 
review", Int. J. Eng. Sci. 1 I, 905-930 

[lo] Gorla, R. S. R, 1984, "Heat transfer 
characteristics of a micropolar boundary layer in 
a crossflow over a non-isothermal circular 
cylinder", lnt. J. of Eng. Sci., Vol. 22(1), pp. 47- 
55 

[ I l l  Hassanien, I. A, Mansow M .A. and Gorla, R. 
S. R., 1994, "Combined convection on a vertical 
slender cylinder in a micropolar fluid", Waerme 
und Stoffuebertragung 29,355-359 

[I21 Gorla, R. S. R, 1995, "Axisymmetric thermal 
boundary layer of a micropolar fluid on a 
cylinder", Int. J. Eng. Sci. 23, 401-407 

[13] Mohammedien, A. A., Gorla, R. S.R. and 
Hassanien, I. A., 1996, "Mixed convection in an 
axisymmetric stagnation flow of micropolar fluid 
on a vertical cylinder", Acta Mecanica. 114, 139- 
149 

1141 Hassanien, I, A. and Salama, A. A. 1997, "Flow 
and heat transfer of a micropolar fluid in an 

Engineering Research Journal, Minoufiya University, Vo1.28, No.4. October 2005 383 



F. A4 Mahfouz, "Forced Convection From anIsothevmal Circular Cylinder Placed in a Cross Stream ... " 

axisymmetric stagnation flow on a cylinder", 
Energy Cmuers. Mgmr Vol. 38, No. 3, pp. 301- 
310 

[15] Gorla, R.S.R. and Takhar, H. S.,1991, 
"Unsteady mixed convection boundary layer 
flow of a micropolar fluid near the lower 
stagnation point on a cylinder", Int. J. Eng. Fluid 
Mech. 4 (3), 337 

[16] Mansour, MA., El-Hakiem, M A  and El Kabeir, 
S M, 2000, "Heat and mass transfer in 
magnetohydrodynamic flow of micropolar fluid 
on a circular cylinder with uniform heat and 
mass flux", Journal of Magnetism and Magnetic 
Materials 220,259-270 

[17] Badr, H. M. and Dennis, S .  C. R., 1985, "Time- 
dependent viscous flow past an impulsively 
started rotating and translating circular cylinder", 
J. Fluid Mech. 158, pp. 447-488 

[IS] Mahfouz, F. M. and Badr, H. M.,2000, "Flow 
structure in the wake of a rotationally oscillating 
cylinder", ASME J. of Fluids Engineering, 122 , 
pp. 290-301. 

[19] Mahfouz, F. M. and Badr, H. M., 2000, "Forced 
convection from a rotationally oscillating 

cylinder placed in a uniform stream, lnt  J.  Heat 
and Mass Transfer, 43(17), pp. 3093-3 104 

[20] Roshko, AJ954, "On the development of 
turbulent wakes from vortex streets, NACA 
Rep., 1191. 

[21] Jordon, S. K. and Frumm, I. E., 1972, 
"Oscillatory drag, lift and torque on a circular 
cylinder in a uniform flow", Physics of Fluids, 
15(3), pp. 371-376. 

[22] Hatton, A. P., James, D. D. and Swire, H. W., 
1971, Combined forced and natural convection 
with low speed air flow over horizontal 
cylinders, J.  Fluid Mechanics, 42, pp. 17-31. 

[23] Knudsen, J.D., and Katz, D. L., 1958, Fluid 
dynamics and heat transfer, McGrow-Hill, New 
York,. 

[24] Mahfouz, F. M., 2003, "Transient free 
convection from a horizontal cylinder placed in a 
micropolar fluid, Heat and Mass Transfer, 39, 
pp. 455-462. 

[25] Mahfouz, F. M., 2004, "Natural convection from 
an elliptic tube with major axis horizontal and 
placed in micropolar fluid" , Int. J. Heat and 
Mass Transfer, 47(6-7), pp. 14 13-1422. 

Engineering Research Journal, Minoufiya University. Vo1.28, No.4. October 2005 


