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Abstract— Since the outbreak of the novel coronavirus 

(COVID-19) disease pandemic in 2019, social distancing and 

quarantining have become normal practices all over the world. 

Frequent hospital contact visits are discouraged due to the full 

adoption of the above control practices. Contact-based hospital 

visits are now considered non-obligatory due to rapid 

technological advances in the areas of Internet of Things (IoT) 

technology, healthcare systems, and smart home automation. 

To this end, a real-time healthcare infrastructure called 

(CoronaCare) is proposed in this paper for monitoring 

patients’ health status and receiving doctors’ prescriptions 

while staying at home. The doctors can diagnose illnesses using 

the physiological health parameters collected remotely from 

patients through a live video conferencing-based interactive 

system that enables healthcare professionals to discuss with 

patients and help them. It would collect real-time symptom 

data from smartphone videos. The system is based on Multi-

access Edge Computing (MEC) as an IoT infrastructure and 

Cloud Radio Access Network (C-RAN) in 5G cellular networks 

structure which enables high bandwidth and ultra-low latency 

for efficient patients-doctors dual real-time communication. 

The system is simulated and the results demonstrate high 

throughput and low latency as the evaluation of service time is 

approximately 2 seconds and the average utilization of Virtual 

Machines (VMs) is approximately 98% for different edge 

computing architectures which effectively improve the system 

performance. 

Keywords— COVID-19 pandemic, Multi-access Edge 

Computing (MEC), 5G mobile network, Real-time healthcare 

platform, Internet of Things (IoT) 

I. INTRODUCTION  

Over 185 million positive cases of COVID-19 had been 
reported by the World Health Organization (WHO) by the 
end of June 2021, resulting in over 4 million deaths, as 
illustrated in Figure 1. As a result of the COVID-19 
pandemic, countries have faced several issues of healthcare, 
financial, and societal. Overburdened healthcare facilities are 
encountering disruptions in the delivery of routine health 
services as a result of the rapid development of new COVID-
19 patients. Furthermore, healthcare workers are growing 
prone to COVID-19, putting even more strain on hospital 
resources. The current healthcare systems are under 
tremendous strain as a result of the rising number of COVID-
19 patients and the resulting longer hospitalizations. COVID-
19 symptoms include moderate manifestation in the majority 
of patients, protracted hospitalization in a small percentage 

of severe cases, and rapid spread [1]. As a result, the most 
effective technique for reducing the spread of the disease has 
been recommended as self-isolation and social distancing. 
Because of the particular circumstances of this disease, it is 
critical to keep track of patients to prevent rapid 
deterioration. This surveillance can also be extended to 
people who have been exposed to COVID-19 and the general 
population. 

The effectiveness of a consolidated monitoring technique 
would be determined by its widespread availability and low 
cost of implementation. Consequently, the Internet of 
Medical Things (IoMT), as a powerful solution, is an IoT 
framework for a medical and healthcare-related specific 
purpose, for collection and analysis of data, and monitoring 
[2]. The IoMT has been referenced as smart healthcare as the 
technology to build a digitized healthcare system, linking 
accessible medical resources and healthcare services [3- 4].  

The majorities of IoT healthcare systems have 
proprietary software interfaces defined by their makers and 
communicate using a variety of proprietary protocols [5-6]. 
This adds complexity not only for developers who construct 
new sensor-based apps, but also for providers of gateways, 
portals, and services that may access this data. As a result, 
monitoring a massive population, such as the COVID-19 
pandemic, presents significant interoperability issues. It's 
critical to address the problems of heterogeneity and access 
networks [7-9]. 

In this regard, the emergence of edge computing is very 
important. Edge computing, which performs computing at 
the edge of the network, has created a great revolution in 
both academia and the industry [10-11]. Edge computing 
pushes the computing from the centralized cloud to 
decentralized edges, close to the data source such as mobile 
devices by the huge deployment of massive edge nodes, such 
as base stations. Edge computing builds hierarchical 
computing layers as mobile devices, edge nodes, and the 
cloud, forming edge-centric computing [12-14].  

Consequently, the remarkable characteristic of edge 
computing is that it provides ultra-low latency, high 
bandwidth, reduces the influx of data to the backbone, and 
applications can access heterogeneous networks in real-time 
[15-16]. 

 

mailto:nariman_abdelsalam@cic-cairo.com


 Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 1, Jan. 2022 

 10 

Fig. 1: COVID-19 pandemic, (a) new cases surge to pandemic high, (b) statistics situation reported by World Health 
Organization (WHO) at June 2021. 

Recently, MEC provides the capabilities of cloud 
computing within the C-RAN at the edge of the network, and 
it is considered as the key enabler in 5G networks [17]. 

 Compared to 4G, 5G communications represents a new 
paradigm from existing mobile networks, providing 
universal high-rate connectivity and a seamless user 
experience [18]. 5G networks target delivering 100x higher 
number of connected devices, 1000x higher mobile data 
volume per area, 10x longer battery life for low power 
massive machine communications, 100x higher user data 
rate, and 5x reduced End-to-End (E2E) latency. Key 
technologies including small cell networks, beamforming, 
and mmWave, massive Multiple Input Multiple Output 
(MIMO) will help achieve these goals. 5G will primarily 
enable three service classes using these technologies: Ultra-
Reliable and Low Latency Communication (URLLC), 
enhanced Mobile Broadband (eMBB), and massive Machine 
Type Communication (mMTC). Fundamental technologies 
such as Network Function Virtualization (NFV), Software-
Defined Networking (SDN), Multi-access Edge Computing 
(MEC), and Network Slicing (NS) will be used to build the 
new 5G networks. NFV and SDN make 5G networks 
programmable, allowing for flexible management and rapid 
deployment of 5G services. MEC brings intelligence to the 
radio network's edge, as well as increased processing and 
storage capacity. With 5G networks, NS develops logical 
networks on a shared infrastructure to enable various sorts of 
services [19].  

The mmWave spectrum is used in 5G networks, allowing 
for the development of ultra-dense small cell networks. 
Massive MIMO integrated with beamforming technologies 
will help provide extraordinarily high data rates for a large 
number of users. These technologies work together to deliver 
superior indoor localization. They develop the eMBB service 
class, which enables the transmission of 4K/8K videos 
between a healthcare expert and a patient regardless of 
access location [20]. 

Meanwhile, on the flip side, Software-Defined 
Networking (SDN) facilitates network virtualization such 
that multiple virtual networks can run on given physical 
network infrastructure. 5G networks enable the development 
of new network services as software Network Functions 
(NFs), in contrast to current 4G networks. Because the 
network is programmable, increasing the capacity of the 5G 
network is considerably easier. SDN provides important 
functions as control schemes and data schemes isolated from 
each other [21]. Network Function Virtualization (NFV) can 

isolate network functionality from hardware infrastructure; 
network functions can be managed as software modules and 
deployed on edge computing infrastructures according to any 
standard [22]. To maximize resource utilization, NFV 
enables a single infrastructure to provide computing services 
for multiple mobile devices by creating multiple VMs to 
perform different tasks simultaneously or to run different 
network functions.  

On the other hand, as indicated in Figure 2, telehealth is 
the delivery of healthcare services through the internet using 
telecommunication technologies. Telenursing, Telemedicine, 
Telesurgery, and Telepharmacy are examples of these 
services. Due to various factors, including a lack of resources 
(i.e., human resources, hospital capacity, and protective 
equipment), social distancing, the need to maintain regular 
healthcare services while adhering to the new guidelines, and 
the need to reduce the risk of healthcare professionals 
contracting COVID-19, all of these healthcare-related 
teleservices are strongly encouraged in the post-COVID-19 
period. 

Although several patient monitoring systems' researches 
provide cooperative monitoring healthcare systems, most of 
these researches lack offering of the end-to-end management 
of the disease, delivering a high number of connected 
devices, introducing a high data volume per area, or reducing 
the (E2E) latency. These issues are considered as the main 
shortages in these monitoring systems. Our proposal can 
overcome these shortages by bridging the gap between 
current technologies and patient monitoring systems. In our 
framework, the MEC capabilities of cloud computing within 
the C-RAN at the edge of the network in 5G networks, the 
IoT technology, and the clinical decision support system are 
integrated to provide a comprehensive and complete model 
for disease detection and monitoring a person with COVID-
19 in real-time with high throughput and low latency. 

This paper proposes a monitoring real-time healthcare 
infrastructure called (CoronaCare). CoronaCare is designed 
to facilitate remote ePrescribe medicines and treatments and 
detect fluctuations in patients' medical conditions through 
remote consultations based on a live video conferencing-
based interactive system that enables healthcare 
professionals to discuss with patients and help them. In 
CoronaCare; signs and symptoms data of (COVID-19) 
generated by smartphone videos are processed in real-time. 
In our proposal, patients and self-isolation people at home 
will be monitored.  

 

 
(a) 

 
(b) 
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Fig. 2: 5G Telehealth services in COVID-19, [17] 

 

The healthcare providers, such as hospitals, doctors, and 
nurses, who support the remote monitoring of all types of 
patients and maintain ubiquitous communication in the event 
of danger, are also part of our infrastructure. It is based on 
MEC as an IoT infrastructure and C-RAN in 5G cellular 
networks structure for efficient patients-doctors dual real-
time communication which is divided into a physical 
infrastructure scheme and a virtual control and management 
scheme. (CoronaCare) intelligently maintains integrity 
between the smartphone and the edge servers to ensure real-
time detection. This integration is achieved by using 
Network Virtualization Function (NVF) to achieve a 
centralized management scheme that controls operations and 
resource allocation of the infrastructure. 

The system contains four main components: (1) real-time 
symptom video recording via smartphones, (2) a data 
analysis center that uses artificial intelligence (AI) algorithm, 
(3) a cloud infrastructure, and (4) virtual control and 
management scheme. 

A video recording of a telemedicine session may contain 
personal information that the patient wishes to keep private. 
Furthermore, without the knowledge of the owners, 
automated contact tracing tools accumulate sensitive location 
data. It is a major privacy infringement to share such 
sensitive user data with unauthorized parties such as third-
party advertisements. To address the privacy issue, solutions 
like software-defined privacy [23] must be implemented 
early in the design phase of 5G health applications. Edge 
computing is useful for reducing data transmissions over 
various network elements and enabling local processing, as 
well as improving privacy. 

In addition to that, the virtual network function to 
simulate the manager is implemented. The proposed 
infrastructure is capable to achieve an accurate result which 
makes it more dependable. The simulation of the system is 
established and the performance of the infrastructure is 
evaluated to verify the feasibility and effectiveness of the 

system and to meet the Quality of Service (QoS) 
requirements. The results demonstrate that the scheme can 
effectively improve system performance. 

This paper presents a proposal for a real-time MEC-based 
healthcare infrastructure for monitoring COVID-19 in 5G 
networks. The salient features of the proposed system can be 
summarized as: 

  This paper proposes a monitoring real-time healthcare 
infrastructure designed to facilitate remote ePrescribe 
medicines and treatments and detect fluctuations in 
patients' medical conditions through remote 
consultations based on a live video conferencing-based 
interactive system that enables healthcare professionals 
to discuss with patients and help them. 

  The patients in self-isolation or self-quarantine can send 
daily health symptoms and challenges to doctors via 
their mobile phones videos. 

  Using edge computing provides ultra-low latency, high 
bandwidth, reduces the influx of data to the backbone, 
and applications can access heterogeneous networks in 
real-time where MEC provides the capabilities of cloud 
computing within the C-RAN at the edge of the 
network. 

  By using the 5G networks, the proposed system can 
deliver a high number of connected devices, high mobile 
data volume per area, and long battery life for low 
power massive machine communications, high user data 
rate, and improved overall system latency.  

  The utilization of the hierarchical IoT-MEC framework 
enables the reduction of bandwidth required to deliver a 
significant amount of misalignment data. It makes use of 
a smartphone to track and report COVID-19 symptoms, 
resulting in multiple datasets. 

  It facilitates a connection between a MEC server and the 
cloud via control and management systems, allowing 
data analytics to be visualized on the front-end 
monitoring tool.  
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  In pandemics like COVID-19, automating the technique 
of data collecting, storage, interoperability, and data 
analytics using a real-time system will be an effective 
tracking solution. 

The rest of this paper is organized as follows. Some 
previous works of literature are introduced in section 2. 
Section 3 presents an overview of the system architecture 
including the physical infrastructure scheme and the control 
and management scheme. Section 4 introduces the 
simulation of the system. Section 5 presents the results and 
discussion. Finally, Section 6 introduces the conclusion of 
the paper. 

II. RELATED WORK 

In this section, some previous literature that focused on 
health surveillance systems is proposed. Li et al. [24] have 
presented a secure and efficient data management system for 
mobile healthcare systems. Local authorities are established 
to schedule edge servers for processing healthcare data and 
facilitating data trading.  

Alabdulatif et al. [25] have proposed real-time health 
surveillance for the early detection of life-threatening 
diseases through sensing and communication technology. It 
reduces medical expenses and saves the lives of community 
residents.  

Verma et al. [26] have proposed a model that uses 
distributed storage, embedded data mining, and notification 
services at the edge of the network to process the patient's 
real-time data at the Fog Layer.  

Ray et al. [27] have introduced an edge-IoT-based 
architecture for e-healthcare called EH-IoT and developed a 
demo test-bed. The results of the test showed promising 
results in minimizing dependency over IoT cloud analytics.  

Kaur et al. [28] have used various machine learning 
techniques to develop a system that enables real-time and 
remote health tracking based on IoT infrastructure and 
associated with cloud computing, and have considered public 
health care datasets stored in the cloud.  

Mohapatra et al. [29] have developed a prototype model 
that uses the Internet of Things (IoT) and cloud computing 
for healthcare monitoring systems. These technologies make 
it possible to track and evaluate, in real-time, different health 
parameters. The IoT activated device consists of different 
patient-attached bio-sensors. Data is read and registered by 
sensors and transmitted to the database, i.e. to the cloud 
server. The collection, analysis, and decision-making of the 
stored data are the responsibility of a cloud server. The cloud 
that serves as an interface for the various actors involved 
with the healthcare system hosts a web portal.  

Dumka et al. [30] have implemented a smart ambulance 
system based on technology. Technology such as wireless 
body sensor networks (WBANs), the Internet of Things 
(IoT), big data analytics, and artificial intelligence are used 
in the proposed design (AI).  
       Rathee et al. [31] implemented a healthcare multimedia 
data protection system through blockchain technology by 
generating the hash of each data so that any modification or 
alteration of data or violation of drugs can be mirrored in 
users of the entire blockchain network. 

Onasanya et al. [32] have implemented an IoT-based 
cancer care services and business analytics/cloud services 
healthcare framework and have also recommended the 
adoption and deployment of IoT/WSN technologies to 
expand the current opportunities for treatment to deliver 

healthcare solutions. Market analytics/cloud platforms are 
the enablers of actionable insights, decision-making, the 
transmission of information, and reporting to enhance cancer 
therapies. Besides, a range of frameworks and architectures 
have been proposed to demonstrate and support the practical 
IoT-based approach that is being considered or used for 
cancer care services in the smart healthcare solution. 

Coincidence with that, different related techniques used 
to track the COVID-19 pandemics are presented in Table 1. 
Support Vector Machine (SVM), Neural Network, Nave 
Bayes, K-Nearest Neighbor (K-NN), Decision Table, 
Decision Stump, OneR, and ZeroR are the eight machine 
learning techniques proposed by Otoom et al. [33]. After 
choosing the appropriate symptoms, an experiment was done 
to test these eight algorithms on an actual COVID-19 
symptom dataset. The results show that five of these eight 
algorithms achieved an accuracy of more than 90 %.  

To predict body temperature from a sequence of facial 
photographs, Zheng et al. [34] employed a CNN plus support 
vector machine (SVM) technique (CNN-SVM). Multiple 
pictures or video frames were taken with a smartphone 
camera that could be used to create the sequence images. 
First, a face detection algorithm, which can be implemented 
on the smartphone or in the cloud, is used to crop the facial 
region out of a digital image. Second, using a pre-trained 
CNN model, normalize the batch of facial photos and extract 
the facial features. Finally, using a multiclass SVM classifier, 
train a body temperature prediction model utilizing CNN 
features. 

Feriani et al. [35] used a shared representation learning 
method to extract actionable data from massive amounts of 
high-dimensional data collected from IoT edge devices. The 
tri-sensors on these edge devices allow for real-time 
monitoring of COVID-19 symptoms. Real datasets are used 
to test the feasibility of the proposed system. 
Based on the patient's X-ray scan images and transfer 

learning, El-Rashidy et al. [36] proposed a convolutional 

neural network-based deep learning model for COVID-19 

identification. 
Hossain et al. [37] developed a B5G framework that uses 

5G networks to detect COVID-19 using chest X-ray or CT 
scan pictures, as well as a mass surveillance system that 
monitors social distancing, mask wear, and body 
temperature. The framework investigates three deep learning 
models: ResNet50, Deep Tree, and Inception v3. 
Additionally, blockchain technology is employed to secure 
healthcare data. 

Ionescu et al. [38] demonstrated how smaller, 
inexpensive sensors can be merged into a bigger array of 
sensors to provide better coverage and be utilized for shape 
detection and object tracking. The AMG8833 Feather Wing 
sensors were employed, and the Raspberry Pi platform was 
used.  

To execute collision-free navigation in a crowd and 
estimate the distance between all identified individuals in the 
camera's field of view, Sathyamoorthy et al. [39] used a 
mobile robot with commodity sensors, specifically an RGB-
D camera and a 2-D lidar. Furthermore, we outfit the robot 
with a thermal camera that wirelessly communicates thermal 
images to security/healthcare personnel who monitors 
whether somebody has a temperature that is greater than 
normal. 

Chatrati et al. [40] presented a smart home health 
monitoring system for people with diabetes and high blood 
pressure. The system assists in assessing the patient's blood 
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pressure and glucose readings at home, providing an alert to 
the caregiver or healthcare practitioner if an irregularity is 
discovered, and forecasting the status of hypertension and 
diabetes in patients via training results obtained from the 
readings. Support vector machine classification was used to 
provide effective and efficient training jobs for the model. 
The technology can also send alerts and real-time updates 
regarding the patient's health to a licensed physician or clinic 
from the patient's home. 

Taiwo et al. [41] presented a remote smart home 
healthcare support system for monitoring patients' health 
status and obtaining prescriptions from doctors while at 
home. Besides, doctors can diagnose illnesses using data 
collected remotely from the patient. For effective patients-
doctors dual real-time communication, an Android-based 
mobile application that is connected with a web-based 
application is built. Sensors are built into the system to 
capture the physiological health parameters of patients 
automatically. 

Din et al. [42] provide an IoT-based intelligent health 
monitoring and management architecture. The architecture is 
made up of three layers: (1) data production and processing 
from battery-powered medical sensors; (2) Hadoop 
processing; and (3) applications. Because of the battery's 
limitations, the experiment used an energy-harvesting 
method including piezoelectrical devices connected to the 
human body. 

Al-Humairi et al. [43] developed a COVID-19 real-time 
system for tracking and identifying suspected instances, 
which uses an Internet of Things platform to capture user 
symptoms and alert authorities. 

By using IoT-based smart solutions to monitor, contract 
trace, and detect the COVID-19 pandemic, Arun et al. [44] 
aided in the fight against COVID-19. The Internet of Things 
(IoT) is a web of interconnected smart devices, sensors, 
actuators, and data that is collected in raw form and delivered 
via the internet. The goal of this study is to offer a method 
for detecting and monitoring asymptotic patients using IoT-
based sensors. 

Multi-Access Edge Computing (MEC) of the edge 
paradigms was considered by Ranaweera et al. [45] for 
developing contact-less ways that aid COVID-19 mediation 
and the future of healthcare. They introduced three use cases 
and explain their application in the MEC environment to 
establish this ideology. In addition, the prerequisites for 
implementing these services are outlined. 

III. ARCHITECTURE OVERVIEW 

CoronaCare healthcare infrastructure is designed as real-
time surveillance and automated infrastructure of community 
residents' such as a hospital or home-based patients. The 
architecture of the infrastructure consists of two main 
schemes which are the physical scheme and the virtual 
control and management scheme. The physical infrastructure 
scheme provides the original information to the control and 
management scheme and executes the commands issued by 
the control and management scheme. The control and 
management scheme has a centralized controller and 
orchestrator that controls the operations and allocates 
resources of the physical infrastructure scheme elements. 
The control and management scheme includes different 
control functions to ensure the Quality of Services (QoS) 
requirements. 

A. The Physical Infrastructure Scheme 

The overview of CoronaCare healthcare physical 
infrastructure is presented in Figure 3 which consists of four 
main categories. The first category is patients in the smart 
city. The second category is the three-layered MEC 
architecture: (1) the front-end layer (edge devices); (2) 
mobile edge computing (MEC) edge nodes layer; (3) back-
end layer (the cloud). The third category is the Authorized 
Healthcare Provider (AHP), and finally, the fourth category 
is the operators and third parties. 

a. First Category ( The Patients in Smart City) 

The first category in (CoronaCare) healthcare physical 

infrastructure is the patients in smart cities where Billions of 

edge devices, smartphones, which are geographical, 

dispersed producing Billions of data every day. In it, fog 

data streams are mostly created from people by front-end 

smartphones for single or multiple signs and symptoms 

indicate the progression of coronavirus disease (COVID-

19). The patient's signs and symptoms such as increased 

body temperature and fever; coughing and sneezing; sore 

throat; headache; difficulty in breathing; heart rate; and 

blood pressure are collected by smartphones. These 

symptoms start within 14 days of being infected as shown in 

Figure 4. 

 

b. Second Category (MEC) 

The MEC is designed as three-layered architecture: the 

front-end layer; the edge node layer; and finally the back-

end layer. The layers will be described in detail in the 

following sections: 

 The front-end layer (edge devices) 

The edge devices layer represents mobile devices and 

User Equipment (UE) such as smartphones. Smartphones 

are normally containing many types of sensors. Some of the 

sensors that are included in a smartphone are the wireless 

sensor, Fingerprint sensor, Bluetooth module, Barometer, 

Gyroscope, Magnetometer, Accelerometer, Proximity, GPS 

tracker, and Near Field Communication (NFC) sensor which 

are widely used in developing health monitoring systems. In 

our proposal, we use the smartphone camera to make a live 

video conference. The generated massive data has multiple 

features such as larger size, higher velocity, more modes, 

higher data quality, and heterogeneity. The massive data is 

then transmitted from front-end devices to the edge network 

servers. It can be achieved by the MEC acting as an IoT 

gateway between mobile devices and the cloud. MEC 

enables smartphones to collect patient physiological 

information and send it to the edge servers. 

 The edge node layer 

A large set of sensing and communication techniques 

can be utilized for IoT data collection in the Wireless Local 

Area Network (WLAN), including Wi-Fi access point, 

Mobile Crowdsensing (MCS), femto access point (low 

power cellular base station), and base stations for fifth-

generation (5G) cellular networks as in our proposal. 

Coinciding with that, MEC is composed of geo-distributed 

servers or virtual servers installed directly at the premises of 

mobile users. 

TABLE 1: The comparison of the characteristics in the related work 
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Authors Ref. Technique System type Methodology 

Otoom et al. 

(2020) 
[33] 

IoT-based 

(Machine 

Learning) 

Surveillance 

Presented eight machine learning algorithms based on 

Support Vector Machine (SVM), Neural Network, 

Naïve Bayes, K-Nearest Neighbor (K-NN), Decision 

Table, Decision Stump, OneR, and ZeroR and test the 

eight algorithms on an actual COVID-19 symptom 

dataset. 
 

Zheng et al. 

(2020) 
[34] 

Convolutional 

Neural Network 

Facial and 

thermal 

Used a CNN plus support vector machine (SVM) 

approach (CNN-SVM) to estimate body temperature 

from a sequence of facial images. 
 

Feriani et al. 

(2020) 
[35] 

IoT-based 

(Machine 

Learning) 

Surveillance 

Utilized a shared representation learning process to 

extract actionable information from massive high-

dimensional data obtained from IoT edge devices. 
 

El-Rashidy et al. 

(2020) 
[36] 

Convolutional 

Neural Network 

X-ray scan 

images 

Introduced a convolutional neural network-based deep 

learning model for COVID-19 detection based on 

patient’s X-ray scan images and transfer learning. 
 

Hossain et al. 

(2020) 
[37] 5G framework 

Surveillance 

and thermal 

Developed a framework that uses 5G networks to 

detect COVID-19 using chest X-ray pictures. The 

framework investigates three deep learning models: 

ResNet50, Deep Tree, and Inception v3.  
 

Ionescu et al. 

(2021) 
[38] AI-based 

Thermal-

body 

Demonstrated how smaller, inexpensive sensors can be 

merged into a bigger array of sensors to provide better 

coverage and be utilized for shape detection and object 

tracking.  
 

Sathyamoorthy et 

al. 

(2020) 

[39] 

Deep 

Reinforcement 

Learning (DRL) 

method  

Vision-

guided 

mobile robot 

used a mobile robot with commodity sensors, 

specifically an RGB-D camera and a 2-D lidar To 

execute collision-free navigation in a crowd and 

estimate the distance between all identified individuals 

in the camera's field of view 
 

Chatrati et al. 

(2019) 
[40] 

Convolutional 

Neural Network 

Diabetes and 

blood 

pressure 

A smart home health monitoring system for remote 

diabetes and blood pressure monitoring in patients was 

demonstrated. The technology aids in the analysis of a 

patient's blood pressure and glucose measurements 

while they are at home. 
 

Taiwo et al. 

(2020) 
[41] AI-based 

Physiological 

parameters 

Introduced a remote smart home healthcare support 

system for monitoring patients’ health status. 
 

Din et al. 

(2020) 
[42] AI-based Surveillance 

Presented an IoT-based intelligent health monitoring 

and management architecture. Using piezoelectrical 

devices, the researchers were able to harvest energy. 
 

Al-Humairi et al. 

(2020) 
[43] AI-based 

Facial and 

thermal 

Introduced a COVID-19 real-time system for tracking 

and identifying suspected cases, which uses an Internet 

of Things platform to capture user symptoms and alert 

the appropriate authorities. 
 

Arun et al. 

(2020) 
[44] AI-based Surveillance 

By connecting with IoT-based smart solutions, the 

authors were able to aid in the fight against COVID-19 

by monitoring, contract tracing, and detecting the 

COVID-19 pandemic. 
  

Ranaweera et al. 

(2020) 
[45] 

Multi-Access 

Edge Computing 

(MEC) 

Surveillance 

MEC of the edge models were considered for 

implementing contact-less techniques that aid COVID-

19 mediation and the future of healthcare. 

 

The proposed 

system 
 

MEC as an IoT 

infrastructure 

Real-time 

surveillance 

Design a healthcare infrastructure called (CoronaCare). 

In CoronaCare; signs and symptoms data of (COVID-



 Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 1, Jan. 2022 

 15 

and C-RAN in 

5G cellular 

networks 

via live 

video-

conferencing  

19) generated by smartphones via live videos are 

processed in real-time. It is divided into a physical 

infrastructure scheme and a control and management 

scheme. (CoronaCare) intelligently maintains integrity 

between the smartphone and the edge servers to ensure 

real-time detection. This integration is achieved by 

using Network Virtualization Function (NVF) to 

achieve a centralized management scheme that controls 

operations and resource allocation of the infrastructure. 

MEC deployed at a base station of a multi-technology 
(5G/LTE) cell aggregation site. 5G has extended coverage, 
higher throughput, lower latency, and connection density of 
massive bandwidth, paving the way for the connection of 
billions of sensors over the Internet. Furthermore, some 
potential methods and technologies have been proposed, 
such as millimeter-wave (mm-Wave), massive Multiple-
Input Multiple-Output (MIMO). To push intelligence at the 
base station and to effectively optimize RAN services, MEC 
technology develops an energetic ecosystem and a new value 
chain that allows intelligent and smart services at nearby 
locations to mobile subscribers.  

The massive collected data from billions of smartphones 
were to be analyzed. Afterward, the data is filtered to check 
the efficiency of the data. Also, this stage classifies the 
received data into static data reflecting sensors' status and 
real-time data streaming. Static data are directly stored in a 
database, while the real-time data stream is broken down into 
various layers. Based on these levels, a data analyzing level 
reorganizes data into a neighborhood structure. The data 
filtering and classifying based on several local servers to 
analyze collected data. Computation offloading usually 
happens across the layers from outside in or inside specific 
layers. The healthcare infrastructure enables real-time 
application. In which smartphones can directly migrate the 
execution of the application to the edge nodes servers to 
perform the computation offloading for latency reduction. 

 The back-end layer (the Cloud) 
The cloud, standing at the core of the network, is a 

critical centralized node, and it can help to discover edge 
nodes, conduct resource management, and perform global 
big data analytics. This stage carries out application-specific 
processing tasks based on the collected data streams at 
multiple individual fog servers. Here, some processing tasks 
are specific for fog stream applications, such as the 
networked control and real-time tasks. The processing results 
are consumed by applications and may also be stored for 
offline batch processing. It is worth noting that applications 
may also produce data streams, resulting in loops in the 
typical life cycle. 

c. Third Category: The Authorized Healthcare 

Provider (AHP) 

It shows how health advisers having access to the server 
can immediately diagnose patients and assist the patients, 
independent of their geographical location accordingly.  The 
healthcare provider, such as hospitals, doctors, and nurses, 
who support the remote monitoring of all types of patients 
and maintain ubiquitous communication in the event of 
danger monitors and in case of increasing trends in signs and  

symptoms of Covid-19 which are considered as seriously 
anomalies. Such trends are computed using smart decisions 

(e.g., notifications) are sent to the health professionals upon 
detection of such trends. 

d. Fourth Category: The Operators and Third Parties  
The operators and third parties such as E-government and 

the World Health Organization (WHO), to be part of a 
system where patient records are stored in a database. It 
allowing access to patients' information and analyzing a huge 
amount of big data from the database. Such data is first pre-
processed and analyzed at the MEC. The pre-processed data 
is, then, sent to central servers for further analysis. The 
scenario of the CoronaCare Healthcare infrastructure 
processing is described in the flowchart shown in Figure 5. 

B. Control and Management Scheme 

In this section, the description of the CoronaCare control 
and management scheme will be introduced in detail as 
shown in Figure 6. It centrally controls and orchestrates the 
virtual resources to solve the problem of integrating 
heterogeneous access networks. It dynamically schedules the 
data flows to access the networks and edge servers through 
SDN and builds virtual networks according to different data 
traffic characteristics. Network Function Virtualization 
(NFV) orchestrator allocates the computing and storage 
resources according to various edge service QoS 
requirements to each isolated slice, which carries scalable 
network functions and corresponding service flows. The 
orchestrator performs management of the virtual 
infrastructures and Virtual Machines (VM), including create, 
initialize, reveal, start, stop, scale-up, and scale-down. The 
interfaces are provided to configure the platform based on 
our scheme. The control and management scheme has 
various function modules, such as resource orchestration, 
mobility management, and application orchestration 
management. Network Virtualization (NV) creates separate 
virtual networks (slices) for different users on a particular 
physical infrastructure. Each network slice can be created 
with the specified resource allocation. When the resource 
slice is no longer needed, it is deleted and the corresponding 
reserved physical resources are released. 

a. Resource Orchestration Management 

First, the resource orchestration plane manages physical 

resources, including infrastructure discovery and monitoring 

the status of types of equipment (e.g., network elements 

such as number of mobile devices, number of patients, and 

edge cloud servers). Virtualization abstracts the physical 

resources into the virtual network, edge storage, and 

computing resources. Then, the resource orchestration 

orchestrates virtual resources. The SDN controller manages 

network resources by scheduling service flows by 

dynamically configuring the flow entries of the SDN 

controller, and the NFV orchestrator allocates IT resources. 

Virtual network resources include heterogeneous virtual 
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network entities, radio spectrums, and bandwidth resources. 

The SDN controller slices the diversity resources and 

embeds the virtual networks on physical networks. The 

NFV orchestrator is responsible for determining whether to 

consume the virtual resources or not, how much virtual 

resource to occupy to create VMs, and which server to place 

VNFs. When a user accesses services deployed at the 

network edge, it requires the network together with edge 

computing or storage resources, which requires the SDN 

controller to coordinate with the NFV orchestrator to 

flexibly orchestrate and manage all of the resources. 

 
Fig. 3: The architecture of CoronaCare healthcare infrastructure 

 

Fig. 4: Signs and symptoms of COVID-19 

 

b. Mobility Management 



 Menoufia J. of Electronic Engineering Research (MJEER), Vol. 31, No. 1, Jan. 2022 

 17 

MEC should provide service continuity, application and 
VM mobility, and application-specific user-related 
information. Mobility management (e.g., mobile user 
mobility and its predictability and handover optimization) is 
important. When the user moves, his VM should be 
seamlessly sent between the MEC servers. VM mobility is 
sensitive to a variety of factors, such as data volume, 
processing speed, compression ratio, and bandwidth. A 
typical method of mobility management is that users report 
their location information to the mobility management entity 
(MME) of BSs. A novel solution to this problem is to collect 
users' mobility information, such as locations and times, by 
BSs. Then, a large amount of data is used to analyze and 
obtain the movement law of the user. The VM of a user can 
migrate according to his law, and the management module 
can preserve bandwidth and other factors.  

c. Application Orchestration Management 
MEC service is open to third parties such as the World 

Health Organization and E-government. These applications 
and services are hosted in various VMs. that are used to 
share the information of mobile user terminals with the 
applications. The ultra-low end-to-end response latency for 
emerging cloud applications makes the services on a 
distributed edge cloud close to the user, and the connectivity 
of the access networks facilitates direct communication of 
the edge clouds without the core network. The dynamically 
controlled routing of the access networks provides an 
effective solution for VM migration and service transmission 
link failure to ensure the high reliability and availability of 
the service. 

IV. THE SIMULATION OF THE SYSTEM 

In this section, we provide simulation results for the QoS 

parameters: average throughput and processing time as well 

as service time results using the proposed CoronaCare 

healthcare infrastructure that is based on MEC using a 5G 

cellular network. The simulation includes 200 to 2000 user 

devices that are located at different distances from the 

serving 5G base stations. Simulations are adopted to evaluate 

the proposed parameters of the control and management 

scheme. All the experiments are run on Matlab R2020a. 

Table 2 summarizes the list of main simulation parameters 

and their default values. 

TABLE 2: Main Simulation Parameters  

Parameters Value 

 Usage percentage (%) 20 

Task interarrival time (s) 10 

Idle period duration (s) 20 

Active period duration (s) 40 

Upload data size (kB) 1250 

Download data size (kB) 250 

Task length (Giga instruction) 2.5 

Virtual machine utilization of tasks (%) 4 

 

We design a virtual network that is similar to a smart city in 

our experiments. Patients in homes or hospitals are moving 

around and request services from the edge servers that are 

located at the base stations. Each building in the smart city 

is also serving a wireless access point; hence, the mobile 

users are connected to the related access point and offload 

their tasks via this connection. In our simulations, the 

mobile devices utilize a healthcare application and the edge 

and cloud servers provide corresponding services. Normally, 

mobile devices do not generate service requests 

continuously. We use an idle/active task generation pattern 

to simulate real-life properly. According to this pattern, the 

users create tasks during the active period, and then, they 

wait during the idle period. When the mobile user moves to 

the coverage area of the access point, they join the related 

WLAN. Then, the mobile devices start sending tasks to the 

edge server. If a task is decided to be offloaded to the global 

cloud, the WAN connection provided by the Wi-Fi access 

point is used. 

In the simulation, comparing three different 

architectures levels occurred are (i) edge layer, (ii) core 

layer, and (iii) manager layer. In our simulation, the 

offloading ratio to the cloud is decided as 20%, and hence, 

approximately four out of 20 tasks are offloaded to the 

cloud. The manager layer has a considerable advantage, 

because, for the tasks that are executed on the edge layer, 

only the manager layer can offload the tasks to other edge 

servers located in different base stations. In the simulation, 

the manager layer uses the least-loaded algorithm while 

selecting an edge server to offload in the edge layer. 

V. RESULTS AND DISCUSSIONS 

In our simulation, important performance metrics are 

shown. In Figure 7, the average task failure values 

concerning the number of mobile devices are given for 

different edge computing architectures. The devices in the 

edge-layer architecture can only offload to the nearest edge 

server, and as a result, the number of failed tasks in the 

edge-layer architecture is observed higher than the other 

architectures.  

 
 

Fig. 7: Evaluation of average failed tasks for different edge 

computing architectures 

 

In Figure 8, the average service time concerning the 

number of mobile devices is shown. When it comes to the 

core-layer architectures, they present better results than the 

edge-layer architecture because some of the tasks can be 

offloaded to the cloud servers. In this simulation, a basic 

probabilistic approach is used to decide offloading tasks to 

the cloud. Roughly, 20% of the tasks are sent to the cloud, 

so the core-layer architecture is slightly better than the edge-

layer. The edge-manager architecture outperforms the others 

since the edge orchestrator makes it possible to send the 

tasks to any edge server in the same LAN. Therefore, it can 
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balance the load of the edge servers efficiently and avoids 

the congestion occurred in the edge layer where too many 

users are present. 

 

 
 

Fig. 8: Evaluation of service time for different edge 

computing architectures 

 

The average processing time of the tasks generated for 

different edge computing architectures is shown in Figure 9. 

The processing time is the duration spent on the server while 

executing a task request. As a result, the manager layer 

architecture outperforms the others, since it can distribute 

tasks among the edge servers. The core-layer architecture 

provides slightly better performance than the edge-layer 

architecture since it can relay some tasks to the cloud 

servers. 

 

 
Fig. 9: Evaluation of processing time for different edge 

computing architectures 

 

The average VM utilization is shown in Figure 10 where the 

effect of the edge server capacity on the results is 

investigated. 

 

 
Fig. 10: Average VM utilization for different edge 

computing architectures 

 

Table 3 shows the comparison of the average latency 

between the proposed system and the similar previous works 

which show that the proposed system demonstrates high 

throughput and extremely low latency compared with 

similar works. 

 

TABLE 3 Comparison of the average latency between the 

previous work and the proposed system 

Ref. 

 Year Technique Latency 

[37] 

(2020) 

5G framework 

(surveillance and thermal) 
2.5 seconds 

[45] 

2020 

Multi-Access Edge 

Computing (MEC) 

(surveillance) 

3.3 seconds 

The 

proposed 

system 

MEC as an IoT 

infrastructure and C-RAN 

in 5G cellular networks 

(Real-time surveillance via 

live video-conferencing) 

2 seconds 

 

VI. CONCLUSION 

In this paper, we use mobile edge computing to present an 

efficient healthcare infrastructure system, called by 

CoronaCare to help patients affected by the Coronavirus 

(COVID-19). The architecture of CoronaCare is designed to 

enable medical practitioners to evaluate, diagnose patients, 

facilitate remote ePrescribe medicines and treatments, and 

detect fluctuations in their medical conditions through 

remote consultations through a live video conferencing-

based interactive system. Deploying multi-access edge 

computing (MEC) servers over 5G cellular networks is 

designed to reduce the heavy traffic load and the end‐to‐end 

latency. Resource allocation management among multiple 

users served by one base station to achieve the optimal 

system-wide user utility and ensure the feasibility of 

efficient data management is introduced. Centralized control 

for data management using virtual function networks and 

specialized schedules edge servers are designed. The 

interaction between a data collector and edge server and 

central cloud is formulated by virtual functions to closely 

approach the real data trading environment. Finally, 

numerical results with analysis of the system are provided to 

demonstrate that CoronaCare has significant advantages for 

healthcare data, and supports efficient data management to 

meet QoS requirements. The system is simulated and the 

results demonstrated high throughput and low latency as the 

evaluation of service time is approximately 2 seconds and 

the average utilization of Virtual Machines (VMs) is 

approximately 98% for different edge computing 

architectures which effectively improved the system 

performance. 
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