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Abstract— Due to the serious effectiveness of congestion 
problem in the Internet performance, congestion control has 
the most concern in the network community. Several End-to-
End mechanisms were developed to overcome this problem. 
However, most of the existing mechanisms adapt the sending 
rate at the sender,  when detecting congestion, without 
considering the network status. This behavior degrades the 
Internet performance. This paper presents a new fuzzy 
controller to adjust the sending rate at the sender dynamically 
based on the network load. The intended controller is 
employed to enhance the TCP-Vegas and the performance is 
evaluated by using the well-known Network Simulator   NS-2. 
The results indicate that the intended controller  the AT&T 
real network increases the throughput and decreases both the 
packet loss and packet delay. 
 
Keywords— Congestion Control, Fuzzy Logic, TCP, TCP-Vegas, 
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I. Introduction 
  

During the past few years, several changes have been 
made to the Transmission Control Protocol (TCP) [1], and 
different mechanisms have been implemented to avoid 
congestion problem  [2]. The most popular mechanisms 
include TCP Tahoe [3], Reno , New-Reno [12], Sack [6] and 
Vegas [4,5,7,8,10]. However, most of the existing 
mechanisms adapt the sending rate at the sender without 
considering the network load. Briefly, when detecting 
congestion, some mechanisms adjust the congestion window 
size to one segment and go back to slow start phase. Other 
mechanisms adjust the congestion window to slow-start 
threshold and go back to congestion avoidance phase. This 
behavior decreases the network throughput especially at high 
traffic load because the protocol does not use the available 
network capacity.  

This paper presents a new fuzzy controller to enhance the 
TCP-Vegas for congestion control. The intended controller 
changes the sanding rate at the sender dynamically based on 
the network load. It detects the load by using the Round Trip 
Time (RTT) and then adjusts the congestion window size 
that in turn adjusts the sending rate. The achievement of the 
intended TCP-Vegas fuzzy controller is evaluated by using 
the well-known Network Simulator NS-2. 

The remainder is regular as follows, Section 2 describes 
the behavior of the TCP Vegas while section 3 presents the 
problems of TCP Vegas. Section 4 describes the intended 
Fuzzy based TCP congestion controls while section 5 
presents performance evaluation. Finally, the paper 
conclusions. 

 

II. TCP Vegas 
 

TCP Vegas is prefectly different from TCP Tahoe, Reno and 
their modifications. It uses packet delay, rather than packet 
loss, as a signal to detect congestion at an incipient stage 
and then determine the sending packet rate at the sender . In 
other words, TCP Vegas develops the congestion avoidance 
and fast retransmission phases of TCP Reno to linearly 
increase or decrease the window size at the sender 
conformity  to the observed Round Trip Time (RTT) of the 
packets that it has already sent. Commonly, Vegas works by 
observation the difference between the expected and the 
actual flow rates and adjusts the congestion window. It first 
sets Base RTT to the smallest measured RTT, and calculates 
the expected flow rate according to 

                             (1) 

Where, cwnd is the current window size.  

In addition, it calculates the actual flow rate as follows.  

                                         (2) 

Where, RTT is computed by the difference between the time 
at which the ACK comes back and the sending time of the 
packet. 

Then, it computes the difference between the expected and 
the actual flow rates as follows. 

           (3) 
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Finally, it updates the cwnd continuously to:   

 

 

 
Where, α and β are two thresholds more than zero [10] . 
 
 In TCP Vegas, the difference is used to adapt the window 
size. TCP Vegas defines two threshold 
values . When Diff < , 
Vegas increases the window size linearly during the next 
RTT. If Diff >  reduced then Vegas decreases the window 
size linearly during the next RTT. Otherwise, it leaves the 
window size unchanged. This means that, if the observed 
RTT becomes large, the network is encounter congestion, 
causing TCP Vegas to reduce its window size. In addition, if 
the observed RTT becomes small, the network is not 
encounter congestion causing TCP Vegas to increase its 
window size. 
 
 

III. Problem statement 
 

 TCP Vegas has some problems that have critical impacts on 
its performance ,When route of a connection changes, the 
RTT increases and Vegas misreads it as the outcome of the 
network congestion and accordingly decreases its own 
sending rate to one segment in some mechanisms and to the 
threshold value in other mechanisms . This behavior 
inefficiently utilizes the available capacity of the network. 
In case of no congestion, it leads to a considerable decrease 
of network throughput since the number of packets to be 
transmitted is less than the available capacity of the 
network.  

When a flow reaches to the network later than other flows 
and faces with congested queues, it wrongly assesses the 
measured RTT as its initial Base  RTT. This means that 
while other flows decrease their sending rates due to 
running congestion, this flow does not sense the congestion 
and inequitable increases its sending rate . 

To overcome these problems, a new design is required to 
adjust the sending rate at the sender according to the 
available bandwidth of the network at any time. 

 
IV. Intended Design 

 

In this section, a new congestion control design is developed 
to enhance the TCP Vegas. The main idea of the intended 
design is to employ fuzzy logic capabilities to dynamically 
adapt the congestion window (cwnd) that in turn adjust the 
sending rate. To do this, the controller changes the window 
size based on five distance values between the Diff value 
and the two thresholds  instead of changing the window size 
according to the comparison between the Diff with the two 

fixed thresholds  only. That is, if the distance between the 
Diff value and thresholds  is very low, low, medium, 
high or very high, the controller changes the window size 
very low, low, high or very high, respectively. 

Generally, designing fuzzy controller requires awareness of 
the effect of the membership functions on the efficiency of 
the controller. In other words, the challenging tasks 
associated with fuzzy controller are to choose appropriate 
membership functions, shape of membership functions i.e. 
triangular, Gaussian etc., inference mechanism, minimum 
rule base and the most convenient fuzzifier and defuzzifier .  

Research results have shown that singleton fuzzifier, 
triangular and trapezoid input membership functions, center 
average defuzzifier and product inference engine works best 
for the fuzzy controller [9,11,13,14].  

Fuzzy based TCP congestion control presents a fuzzy based 
TCP congestion controller using a Single Input – Single 
Output (SISO) fuzzy controller. The input parameter to the 
controller is Diff. The output of fuzzy controller is Adapt 
that used to adjust the value of congestion window rightly. 
The input and output Fuzzy sets of the linguistic variables 
are shown in Fig. 1 and Fig. 2, respectively.  

Fig.  1  the input fuzzy sets of Diff  .  

 
 
 

 
Fig. 2  the output fuzzy sets of Adapt 
 
 
 

 

 

 

 

 

In Fig. 2, the output of fuzzy controller, Adapt  is added to 
the current window size and the new window size is 
purposed.  
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(4) 

 

Where, l is the rule number and A  is the center of fuzzy set 
used in the part of  lth  rule. 

Using the singleton fuzzifier, suppose the inference engine 
to be provided with a precise and specific observation and 
center of average defuzzifier, the final output of fuzzy 
controller is calculated . 

 

The intended fuzzy controller uses the following linguistic 
rules in its rule-base: 

Rule 0: if diff is d0 then Adapt A10  

Rule 1:  if diff is d1 then Adapt A9    

Rule 2:  if diff is d2 then Adapt A8    

Rule 3: if diff is d3 then Adapt A7    

Rule 4: if diff is d4 then Adapt A6    

Rule 5: if diff is d5 then Adapt A5    

Rule 6: if diff is d6 then Adapt A4    

Rule 7: if diff  is d7 then Adapt A3    

Rule 8: if diff is d8 then Adapt A2  

Rule 9: if diff is d9 then Adapt A1    

Rule 10: if diff is d10 then Adapt A0 

 
 

V. Performance Evaluation 

To evaluate the achievement of the intended fuzzy 
controller, it is coded in C++ and implemented in the 
Network Simulator (NS2)  . In addition, different designs; 
simple and real AT&T design, are used to test the 
performance. In each designing, comparison is done 
considering throughput, congestion window, packet delay 
and packet loss. 

 

A. program code 

// calc actual and expect thruput diff, Adapt 
int delta=int((expect-v_actual_)*v_baseRTT_+0.5);  
int opt , i; 

double up,den;    
switch(opt) 
{ 
case (1): 
if (delta < (v_alpha_- 0.75)) return 1; 
if (delta >= (v_alpha_- 0.625)) return 0; 
return (-0.125 * delta) + (0.125 * v_alpha_) + 0.078125; 
break; 
case(2): 
if (delta < (v_alpha_- 0.75)) return 0; 
if (delta >= (v_alpha_- 0.5)) return 0; 
if (delta < (v_alpha_- 0.625)) return (0.125 * delta)-(0.125 * 
v_alpha_ ) + 0.09375 ; 
return (-0.125 * delta) + (0.125 * v_alpha_ ) - 0.0625 ; 
break; 
case(3): 
if (delta < (v_alpha_- 0.625)) return 0; 
if (delta >= (v_alpha_- 0.375)) return 0; 
if (delta < (v_alpha_- 0.5)) return (0.125 * delta)-(0.125 * 
v_alpha_ ) + 0.078125 ; 
return (-0.125 * delta) + (0.125 * v_alpha_ ) - 0.046875 ; 
break; 
case(4): 
if (delta < (v_alpha_- 0.5)) return 0; 
if (delta <= (v_alpha_- 0.125)) return 0; 
if (delta < (v_alpha_- 0.375)) return (0.125 * delta)-(0.125 * 
v_alpha_ ) + 0.0625 ; 
return (0.25 * delta) - (0.25 * v_alpha_ ) + 0.03125 ; 
break; 
case(5): 
if (delta < (v_alpha_- 0.375)) return 0; 
if (delta >= (v_alpha_+ 0.125)) return 0; 
if (delta < (v_alpha_- 0.125)) return (0.25 * delta)-(0.25 * 
v_alpha_ ) + 0.09375 ; 
return (-0.25 * delta) + (0.25 * v_alpha_ ) + 0.03125 ; 
break; 
case(6): 
if (delta < (v_alpha_- 0. 125)) return 0; 
if (delta >= (v_beta_+ 0.25)) return 0; 
if ((v_alpha_+ 0.125< delta >v_beta_- 0.25)) return 1 ; 
if (delta > (v_beta_- 0.25)) return (-0.5 * delta)+(0.5 * 
v_beta_ ) + 0.125 ; 
return (0.25 * delta) - (0.25 * v_alpha_ ) + 0.03125 ; 
break; 
case(7): 
if (delta < (v_beta_- 0.25)) return 0; 
if (delta > (v_beta_+ 1.0)) return 0; 
if ( delta < (v_beta_+ 0.25)) return (0.5 * delta)-(0.5 * 
v_beta_) + 0.125 ; 
return (-0.75 * delta) + (0.75 * v_beta_ ) + 0.75 ; 
break; 
case(8): 
if (delta < (v_beta_+ 0.25)) return 0; 
if (delta > (v_beta_+ 2.0)) return 0; 
if (delta < (v_beta_+ 1.0)) return (0.75 * delta)-(0.75 * 
v_beta_) + 0.1875 ; 
return (-1.0 * delta) +  v_beta_  + 2.0 ; 
break; 
case(9): 
if (delta < (v_beta_+ 1.0)) return 0; 
if (delta > (v_beta_+ 3.0)) return 0; 
if (delta < (v_beta_+ 2.0)) return delta - v_beta_ - 1.0 ; 

 

mohamed
Typewriter
41

mohamed
Typewriter

Edited by Foxit Reader
Copyright(C) by Foxit Corporation,2005-2010
For Evaluation Only.




 4 

return (-1.0 * delta) +  v_beta_  + 3.0 ; 
break; 
case(10): 
if (delta < (v_beta_+ 2.0)) return 0; 
if (delta > (v_beta_+ 4.0)) return 0; 
if (delta < (v_beta_+ 3.0)) return delta - v_beta_ - 2.0 ; 
return (-1.0 * delta) +  v_beta_  + 4.0 ; 
break; 
case(11): 
if (delta < (v_beta_+ 3.0)) return 0; 
if (delta > (v_beta_+ 4.0)) return 1.0; 
return  delta -  v_beta_  - 3.0 ; 
break; 
} 
//fuzzy conclusion 
switch(i) 
{ 
case(1):up =up + delta*(1/cwnd_); 
break; 
case(2):up =up +delta*(1.5/cwnd_); 
break; 
case(3):up =up +delta*(2/cwnd_); 
break; 
case(4):up =up +delta*(2.5/cwnd_); 
break; 
case(5):up =up +delta*(3/cwnd_); 
break; 
case(6):up =up +delta*(-1/cwnd_); 
break; 
case(7):up =up +delta*(-1.5/cwnd_); 
break; 
case(8):up =up +delta*(-2/cwnd_); 
break; 
case(9):up =up +delta*(-2.5/cwnd_); 
break; 
case(10):up =up +delta*(-3/cwnd_); 
break; 
} 
//defuzzification 
if ((den==0)||(cwnd_<=1)){ 
                cwnd_=cwnd_+1; 
} else if (cwnd_ <= ssthresh_){ 
/* slow-start (exponential) */ 
cwnd_ =cwnd_ + (up/den)*(2-(cwnd_/ssthresh_)); 
}else{ 

cwnd_=cwnd_+(up/den)*(ssthresh_/cwnd_); 
//fuzzy congestion avoidance 
} 
 
B. Simple Design 

In this section, a simple design, shown in Fig. 3, is used to 
discussion the network execution when applying the 
intended Fuzzy-controller.  
 
Fig. 3  Simple Network. 
 

 

 

 

Fig.  4 Throughput versus simulation time. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5  cwnd versus simulation time. 
 
 

 

 

 

 

 

 

Fig. 6  the average delay versus simulation time. 

 

 

 

 

 

 

 

 

Fig. 4 shows the network throughput for the TCP-Vegas and 
TCP Fuzzy Vegas versus the simulation time while Fig. 5 
shows the modification of cwnd versus the simulation time 
for both of them. 

From the Fig.  4, the intended Fuzzy Vegas a chives a much 
better throughput than that of Vegas. This is because the 
intended Fuzzy Vegas efficiently use the available 
bandwidth at any time. Fig. 6 shows the average delay for 
the TCP-Vegas and TCP Fuzzy Vegas versus the simulation 
time. 
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Fig. 7  AT&T network topology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Throughput versus simulation time. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 cwnd versus simulation time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10  average delay versus simulation time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11  average packet losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12  Throughput versus simulation time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C. Real Design 

In this section, the AT&T real network, shown in Fig. 7, is 
used to discussion the inteded Fuzzy-controller. The design 
contains 166 nodes and 180 links. The simulation time is 80 
seconds. 

 

Fig . 8 and Fig . 9 show the throughput and the behavior of 
cwnd of the TCP Vegas and the intended Fuzzy Vegas. Fig. 
10 shows the average delay for the TCP-Vegas and TCP 
Fuzzy Vegas versus the simulation time. Fig. 11 shows the 
average packet losses for the TCP-Vegas and TCP Fuzzy 
Vegas versus the simulation time. 

Fig. 12 shows the measured throughput for the TCP Taheo, 
Reno, NewReno, Vegas and the intended TCP Fuzzy Vegas 
versus the simulation time. 

 
VI. Conclusions 

In this research work, an efficient fuzzy based TCP 
congestion controller is developed to avoid network 
collapse. The algorithm dynamically estimates the available 
network bandwidth at any time and adapts the sending rate 
at the TCP sender according to the changes in traffic load. 
The proposed mechanism efficiently utilizes available 
capacity of the network as it adapts the sending rate 
dynamically. The results indicate that the proposed 
controller real network is more effective than TCP Vegas 
real network.  
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