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    Abstract 

In this paper, the Lagrange functions of Lagrange 

interpolation are expanded into Maclaurin 

polynomials to improve the performance of an 

improved formula of the Barycentric Lagrange 

interpolation with uniformly spaced nodes and was 

used for solving Volterra integral equations of the 

second kind. For the implementation of this technique, 

the given data function, the kernel and the unknown 

function are approximated by the given improved 

formula to get interpolated polynomials of the same 

degree. Furthermore, the interpolate unknown 

function is represented by four matrices and is 

substituted twice into both sides of the considered 

integral equation, while the kernel is represented by 

five matrices. This enforcement provided the 

possibility to reduce the solution of the Volterra 

equation into an equivalent algebraic linear system in 

a matrix form. For showing the efficiency of this 

method four examples are solved. It turns out that, the 

obtained approximate solutions were equal to the exact 

ones. Moreover, it is noticed that a smaller number of 

nodes are applied if the given function and the kernel 

were algebraic functions and the upper bound of the 

integration domain variable was canceled. For non–

algebraic given function and the kernel, the exact 

solutions were obtained by increasing the number of 

nodes and taking the upper bound of the integration 

domain equal to one, which ensures the accuracy and 

Authenticity of the presented method. 

  

11..  IInnttrroodduuccttiioonn  

Many published articles have provided innovative 

methods to solve linear and nonlinear, singular and non-

singular integral equations of different types and kinds. 

These equations usually appear when solving boundary 

value problems via integral equations. In fact, the solution 

of the original boundary problems through the integral 

equation method reduces the required solution to the 

solution of an equivalent boundary integral equation, 

which simplifies procedures for obtaining a solution by 

using the traditional methods of mathematical physics; 

Particularly in the case of open boundaries [1-4]. In 

addition, the equivalent integral equation clearly 

illustrates the characteristics and properties of the solution 

of the original problems. However, this paper is devoted 

to the numerical solutions of linear non-singular Volterra 

integral equations of the second kind. Although there are 

many types of research and a variety of methods [5-11] to 

solve similar equations, solutions using Barycentric 

Lagrange Interpolation are almost non-existent. However, 

the authors in [8] present a method for the numerical 

solution of the linear and nonlinear high-dimensional 

Fredholm integral equations of the second kind by means 

of two barycentric interpolation collocation methods 

based on the barycentric Lagrange function and the 

barycentric rational function. In this paper, an improved 

version of the Barycentric Lagrange Interpolation is 

created. The main incentive for this method is to 

reformulate the mathematical formula of the Barycentric 

Lagrange Interpolation to establish a new improved 

formula in a matrix form and using it for solving Volterra 

integral equations of the second kind without any need to 

apply collocation points to get the equivalent algebraic 

system. Based on the fact that finding Lagrange 

interpolant polynomial, requires  2O n
 additions and 

multiplication, in addition to the instability of the 

numerical computation [12-14], the improved formula 

will be created in such a manner that each Barycentric 

Lagrange Interpolation function is replaced by a product 

of two matrices the first is the constant coefficients matrix 

and the second is the monomial matrix. Thus, upon this 

idea, it is required only  O n  addition and multiplication 

and the numerical solutions become stable as shown in the 

presented solved examples.  

The procedure begins by interpolating the unknown 

function by the given adjustment Barycentric Lagrange 

formula to represent it as a product of three matrices, one 

of them is the unknown coefficient matrix. By the same 

way, the given data function is interpolated, while the 
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kernel is interpolated twice with respect to its two 

arguments and so it is turned into a product of three 

matrices. Moreover, the advantages of this method are not 

only to simplify the calculations but also to gain access to 

an equivalent system of equations without any need to 

apply collocation points. The achievement of this idea can 

be summarized in representing the interpolated unknown 

function through the interpolated kernel and approximate 

data functions, and then substituting it into both sides of 

the considered Volterra equation. By solving the obtained 

equivalent algebraic system, the unknown coefficients 

matrix is found and thereby we get the approximate 

unknown function of the considered Volterra integral 

equations. Four examples are solved by the proposed 

method, and the solutions are found to be converging to 

the exact solutions. In addition, the given tables and the 

plotted graphs demonstrate the authenticity, efficiency, 

and accuracy of the presented new method. 

 

22..  BBaarryycceennttrriicc  MMaaccllaauurriinn  IInntteerrppoollaattiioonn  mmeetthhoodd  

Consider Volterra integral equation of the second kind 

       , ;a
x

a

u x f x k x t u t dt x b      

 

(1) 

where the Volterra operator    ,
x

a

u k x t u t dt   acting 

in  2
,L a b . The theory of Volterra integral equations 

of the second kind ensures the existence and uniqueness 

of the square-integrable solution for each complex   

such that 
 
1

M b a
 


, where the kernel  ,k x t  is 

defined on the square   , : ,  x t a x t b   and vanishing 

in the triangle a x t b   . Moreover, it is assumed that 

 
 

, ,
max ,

a x a b
k x t N


  and 

2
( , )k x t M  . For 

1 , we have  

       
0

, ;    0
x

u x f x k x t u t dt x b      

 

(2) 

where    , ,f x k x t  are given functions, and  u x  is 

the unknown function.  
 

 

 

 

 

 

 

 

 

 

 

Let    1 ,bnu x C a
 
and  u x%  be the Lagrange 

interpolating polynomial of degree n  that interpolates 

 u x  at the  1n  equally spaced distinct nodes 

   
0

,
n

i i
x a b


 . By choosing a step size 0h  such that 

bh
n

  we get the required  1n  equidistant 

interpolation nodes ; 0,jx jh j n  . The presented 

method begins firstly; by adjustment the Barycentric 

Lagrange interpolation formula in a matrix form of three 

matrices, and in addition to this improvement we expand 

each Barycentric functions matrix into Maclaurin 

polynomial. Using this technique, the unknown function 

of Eq. (2) can be replaced by the approximate one denoted 

by  u x%  in the following matrix form  

     Tu x X x C WU%  
(3) 

Here U  is the unknown coefficients column matrix, W  

is a square diagonal matrix, C  is a known Maclaurin 

coefficients matrix, and  X x is a known row power 

matrix such that 
(See equations (4), (5) and (6)) 

 In the same manner, let F  denotes the known Barycentric 

coefficients column matrix  of the given data function 

 f x , then it can be replaced by its approximate 

function  f x%
 in the matrix form 

   X C WFTf x x 
 
%  (7) 

where 

 0 0F ... ;   ;   0,
T

n j jf f f f f x j n      (8) 

Consequently, the kernel  ,k x t  can be approximated 

twice with respect to its two variables ,x t  to get 

     , X C KCXT Tk x t x t 
 
%   

(9) 

where the square matrix K  is given by 

(See equations (10) )  

Subediting by  ,k x t%
, and  u t%   into the right  side of 

Eq. (2), we get:     (See equations (11)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 1 , 0
U= ... , W , ,..., ,C ,

X 1 ...

nT
o n n ji i j

n

u u u diag c

x x x

  


          

  

  

(4) 

where 
 

 
 

 

 

0
 , 0, ;    0,

!

i
j j

ji j

x
c i j n x j n

i x

 



     

%
 

 

(5) 

and 

         
0

1;   1 ; 0, ;  ;  0,
n

j
j j j j

jj

n
x x j n x j n

j x x
    



     


%  (6) 
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Now, let 

     
, 0

X X ; , 0,
n

T i j
i j

t t t t i j n


     
%  (12) 

Then Eq. (11) becomes 

         +X C KC C WUT Tu x f x x x %  
(13) 

 
where (See equations (14)). 

Moreover, by replacing  u x%  defined by Eq. (13) into 

the both sides of Eq. (2) we find that (See equations (15)). 

 (15) 

where 

     
0

C KC
x

Tx t t dt   
% %  (16) 

Simplifying Eq. (16) yields (See equations (17)). 

 

Thus, we find that the solution of the system given by Eq. 

(17), yields the unknown Barycentric coefficients column 

matrix U , and thereby the interpolated unknown function 

 u x%  can be found. 

33..  CCoommppuuttaattiioonnaall  rreessuullttss    

Four examples are given to illustrate the performance of 

the presented method. The computations have been done 

by using MATLAB Version 2016.  From examples 1, 2 

where the kernels and the given data functions are analytic 

algebraic functions, it turns out that the numerical 

solutions are obtained in explicit and finite formulas equal 

to the exact solutions. From examples 3,4 where the 

kernel and the given data functions are transcendental 

functions it turns out that the obtained numerical solutions 

are of higher accuracy and strongly converge to the exact 

solutions. It is noticed that, for any value of x  , where 

0 x b    the real number b  is canceled during 

the Workflow  of the solution’s computation regardless of 

the choice of the step-size h , the smoothness of the 

kernel or the given data function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example (1) 

Consider Volterra integral equation 

2 4

0

1

1 2
( ) ( - ) ( )

x
u x x x t x u t d t     (18) 

whose exact solution is given by   2u x x [15], Using 

equation (17) we find that the unknown coefficients 

matrix U  for 4n   is given by 

2 2 2
29

U 0      
1 6 4 1 6

T
b b b

b
 
 
  

 (19) 

and by substituting U into equation (3), the parameter b  

was canceled and the obtained numerical solution is found 

to be   2u x x%  which equals the exact one.                    

                                                                                    

Example (2) 

Consider Volterra integral equation 

3

0

1
6

2
( ) ( )

x
u x x x t u t d t     (20) 

whose exact solution is given by   6u x x  [15], Using 

equation (17) we find that the unknown coefficients 

matrix for 3n   is given by 

 U 0  2   4   6
T

b b b  (21) 

and by substituting U into equation (3), the parameter b  

was canceled and the obtained numerical solution is found 

to be   6u x x%  which equals the exact one. 

 

 

 

 

 

 
0

K  ;

0

n

i j i j i j i j i j i j ii j

j

k k k x t x i h

t j h i j n

   


     
 

 

,
; , ; ,

; , ,

  

(10) 

           
0

+ X C KCX X C WU
x

T T Tu x f x x t t dt %  (11) 

 

     
1

, 0
0

; ;  , 0,
1

xn i j
i j

ij iji j

xx x x t dt i j n
i j

 
 




     
     (14) 

       

   

X C KC C WU X C KC. C WU

X C KC C WF

T T T T

T T

x x x x

x x

  

 

%
 

(15) 

 

      
1

U C W C W C WFT T Tx x x


   %  
(17) 
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Table 3.1: A comparison between the exact solution ( )u x  and the obtained numerical solutions ( )nu x%  for 1,7n .     

  

i
x

 
( )iu x

 1( )iu x
 2( )iu x

 3( )iu x
 

0 1 1 1 1 

0.1 0.990049833749168 0.968050347308118 0.965096305667170 0.988178473645131 

0.2 0.960789439152323 0.934092478088200 0.928118475157479 0.958942383177158 

0.3 0.913931185271228 0.896281806357759 0.886615276672535 0.913383573359188 

0.4 0.852143788966211 0.853001926140921 0.838473730638968 0.853093508386680 

0.5 0.778800783071405 0.802941876883807 0.782021261784757 0.780349487999808 

0.6 0.697676326071031 0.745186603608021 0.716150010913991 0.698236287516647 

0.7 0.612626394184416 0.679304059941753 0.640443209534905 0.610676356016801 

0.8 0.527292424043049 0.605409739908463 0.555278992272820 0.522344123621700 

0.9 0.444858066222941 0.524190280411857 0.461885146424586 0.438449774594771 

1 0.367879441171442 0.436873273418402 0.362320969443342 0.364395266601207 

 

i
x

 
4( )iu x

 5( )iu x
 6( )iu x

 7( )iu x
 

0 1 1 1 1 

0.1 0.990939275505837 0.990164089651141 0.990037561529195 0.990047676065065 

0.2 0.961107565361279 0.960789174086447 0.960792540339213 0.960790403405768 

0.3 0.913706636330270 0.913889128796197 0.913932829453292 0.913931021656491 

0.4 0.851860784514063 0.852144354186609 0.852142094909402 0.852143575920709 

0.5 0.778786940171890 0.778834418636473 0.778800911920815 0.778801108367714 

0.6 0.697885514536014 0.697681724406560 0.697677859968795 0.697676059667288 

0.7 0.612745046454548 0.612596826541250 0.612625506983340 0.612626076109454 

0.8 0.527056408788599 0.527331391492625 0.527290421867404 0.527292939160052 

0.9 0.444440392353419 0.445064982676276 0.444858871252218 0.444854760897668 

1 0.368205007251191 0.367973730488135 0.367868437935520 0.367877867570473 

 

Table 3.2: The absolute errors  n iE x  for 1 7,n   respectively. 

 

i
x

 
 1 iE x

  2 iE x
 

 3 iE x
 

0 0 0 0 

0.1 0.0219994864410504 0.0249535280819984 0.00187136010403710 

0.2 0.0266969610641231 0.0326709639948446 0.00184705597516510 

0.3 0.0176493789134693 0.0273159085986933 0.000547611912040669 

0.4 0.000858137174709284 0.0136700583272439 0.000949719420469064 

0.5 0.0241410938124018 0.00322047871335240 0.00154870492840298 

0.6 0.0475102775369894 0.0184736848429600 0.000559961445615431 

0.7 0.0666776657573371 0.0278168153504884 0.00195003816761563 

0.8 0.0781173158654140 0.0279865682297717 0.00494830042134842 

0.9 0.0793322141889163 0.0170270802016446 0.00640829162817008 

1 0.0689938322469598 0.00555847172810048 0.00348417457023570 

 

 

 4 iE x
 

 5 iE x
 

 6 iE x
 

 7 iE x
 

0 0 0 0 

0.000889441756668385 0.000114255901972449 1.22722199727976e-05 2.15768410327666e-06 

0.000318126208955549 2.65065876248194e-07 3.10118688984229e-06 9.64253444646346e-07 

0.000224548940958580 4.20564750308605e-05 1.64418206349826e-06 1.63614737203055e-07 

0.000283004452148350 5.65220397819033e-07 1.69405680972012e-06 2.13045502350795e-07 

1.38428995151152e-05 3.36355650683018e-05 1.28849410141463e-07 3.25296309333645e-07 

0.000209188464982524 5.39833552892777e-06 1.53389776424984e-06 2.66403742954502e-07 

0.000118652270131414 2.95676431658620e-05 8.87201076382738e-07 3.18074962035730e-07 

0.000236015254449495 3.89674495763215e-05 2.00217564438887e-06 5.15117003385690e-07 

0.000417673869522017 0.000206916453335260 8.05029276740310e-07 3.30532527303973e-06 

0.000325566079748929 9.42893166928083e-05 1.10032359226797e-05 1.57360096902925e-06 
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Table 4.1: A comparison between the exact solution ( )u x  and the obtained numerical solutions ( )nu x%  for 1,7n  . 

i
x

 
( )iu x

 1( )iu x
 2( )iu x

 3( )iu x
 

0 1 1 1 1 

0.1 1.11622262725640 1.21533188814540 1.11476788201315 1.11613430515533 

0.2 1.27025886848658 1.46447076966676 1.26457190300607 1.26991838048057 

0.3 1.47134610025784 1.75243134084269 1.45877445591563 1.47069377062370 

0.4 1.73051664926387 2.08452153477496 1.70850780207946 1.72962220303298 

0.5 2.06090158837516 2.46612229196902 2.02704799459443 2.05985116830124 

0.6 2.47808156853109 2.90233526466490 2.43014761985728 2.47668097626638 

0.7 3.00049153413101 3.39747124496145 2.93621840274771 2.99777419930890 

0.8 3.64988712272765 3.95437068100348 3.56618946350098 3.64355264198063 

0.9 4.45188163119408 4.57358679617322 4.34277993773981 4.43810960064105 

1 5.43656365691809 5.25252525252525 5.28882522687427 5.41126116976399 

 

i
x

 
4( )iu x

 5( )iu x
 6( )iu x

 7( )iu x
 

0 1 1 1 1 

0.1 1.11633736248470 1.11625829217227 1.11622185745171 1.11621974396128 

0.2 1.27051329380398 1.27032301025571 1.27025794784522 1.27025553101232 

0.3 1.47164373498000 1.47140582087768 1.47134456027996 1.47134270332222 

0.4 1.73079080916449 1.73057282787897 1.73051502846970 1.73051227444740 

0.5 2.06116957987742 2.06098150303398 2.06090030093477 2.06089653537330 

0.6 2.47841312858372 2.47819138265434 2.47807865985192 2.47807570084991 

0.7 3.00090496581660 3.00058560405535 3.00048739374878 3.00048394139057 

0.8 3.65021832846967 3.64993379386447 3.64988875477847 3.64987904742878 

0.9 4.45173140894547 4.45203453516188 4.45187604273048 4.45187166064407 

1 5.43549981619957 5.43708812145705 5.43649564155370 5.43653854380627 

 

Table 4.2: The absolute errors  n iE x  for 1 7,n   respectively. 

  

i
x

 
 1 iE x

  2 iE x
 

 3 iE x
 

0 0 0 0 

0.1 0.0991092608889950 0.00145474524325651 8.83221010747892e-05 

0.2 0.194211901180181 0.00568696548050451 0.000340488006010720 

0.3 0.281085240584849 0.0125716443422179 0.000652329634147852 

0.4 0.354004885511090 0.0220088471844180 0.000894446230893964 

0.5 0.405220703593856 0.0338535937807261 0.00105042007392164 

0.6 0.424253696133806 0.0479339486738120 0.00140059226471623 

0.7 0.396979710830435 0.0642731313833029 0.00271733482210612 

0.8 0.304483558275836 0.0836976592266647 0.00633448074701670 

0.9 0.121705164979139 0.109101693454271 0.0137720305530280 

1 0.184038404392838 0.147738430043821 0.0253024871540992 

 

 4 iE x
 

 5 iE x
 

 6 iE x
 

 7 iE x
 

0 0 0 0 

0.000114735228297524 3.56649158643751e-05 7.69804697986487e-07 2.88329512088126e-06 

0.000254425317398832 6.41417691327195e-05 9.20641358037599e-07 3.33747425651509e-06 

0.000297634722160600 5.97206198351685e-05 1.53997788232552e-06 3.39693562323440e-06 

0.000274159900615523 5.61786150936605e-05 1.62079417243000e-06 4.37481647841409e-06 

0.000267991502257647 7.99146588206234e-05 1.28744039562534e-06 5.05300186048885e-06 

0.000331560052625690 0.000109814123250729 2.90867916907800e-06 5.86768118404635e-06 

0.000413431685584609 9.40699243385801e-05 4.14038223395252e-06 7.59274043593550e-06 

0.000331205742020835 4.66711368178885e-05 1.63205081804563e-06 8.07529886603930e-06 

0.000150222248604948 0.000152903967796547 5.58846360032561e-06 9.97055001050740e-06 

0.00106384071852439 0.000524464538960601 6.80153643894954e-05 2.51131118265135e-05 
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Example (3) 

Consider Volterra integral equation 

2

2

0

1-

( )
2

x
x

x
x e

u x e xtdt





 
 
      

(22) 

Whose exact solution is given by 
2

( )
xu x e  [10]. 

Using equations (3), (17), it is found that the obtained 

numerical solutions  n iu x%  for 7 1n b ,  are 

strongly converge to the exact one. The obtained 

numerical solutions for 1,7, 1n b   are shown in table 

3.1. The absolute errors  n iE x  for 1,7, 1n b   are 

given in table 3.2. In Figure 3.1, plotted are the graphs of 

the exact solution ( )u x  and the obtained numerical 

solutions  n iu x%  for 1,7, 1n b  . 

Example (4) 

Consider Volterra integral equation 

2
2

2
0

1
( ) 1

1

x
x

u x x dt
t


  


  (23) 

Whose exact solution is given by 
2 ( ) (1 )xu x e x   

[11]. Using equations (3), (17), it is found that the 

obtained numerical solutions  n iu x%  for 7 1n b ,  

are strongly converge to the exact one. The obtained 

numerical solutions for 1,7, 1n b   respectively are 

shown in table 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The absolute errors  n iE x  for 1,7, 1n b   are given 

in table 4.2. In Figure 4.1, plotted are the graphs of the 

exact solution ( )u x  and the obtained numerical 

solutions  n iu x% for         1,7, 1n b                      

. 

44..  CCoonncclluussiioonn  

 
The Lagrange functions with uniformly spaced 

interpolation nodes are expanded into Maclaurin 

polynomials. Therefore, an adjustment and improved 

Barycentric Lagrange - Maclaurin formula was 

established in a matrix form. This new formula was used 

to solve Volterra integral equations of the second kind. 

The kernel is interpolated with respect to both two 

variables. Thus, it is transformed into a product of five 

matrices, where only one matrix dependent on the given 

kernel. The given data function is also interpolated by the 

new Barycentric Lagrange- Maclaurin interpolating 

polynomial of the same degree as well as the kernel. By 

the same way, the unknown function is interpolated and 

represented by four matrices and was substituted twice 

into the integral equation. Thus, the solution of the 

considered Volterra equation is found to be equivalent to 

the solution of a linear system in matrix form. The 

illustrated numerical examples show the efficiency and 

genuineness of the given method. Moreover, it turns out 

that the numerical solutions are obtained in explicit 

formulas that are equal to the exact solutions for algebraic 

kernel and given data functions. If the kernel and the 

given data functions are transcendental functions the 

solutions were found of higher accuracy and strongly 

converge to the exact solutions.  

 

      
 

 

 

 

 

 

Fig 3.1 The exact solution and the obtained numerical 

solutions for 1b  and 1,7n . 

 

Fig. 4.1 The exact solution and the obtained numerical 

solution  for 1b   and 1,7n . 
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