
Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

109 
 

Impact of Small Files on Hadoop Performance: 
Literature Survey and Open Points 

 
Tharwat EL-SAYED, M. Badawy, and Ayman EL-SAYED 

Computer Science & Eng. Dept., Faculty of Electronic Eng.,  

Menoufia University, Menouf 32952, Egypt. 

tharwat_uss89@hotmail.com, mohamed.badawi@el-eng.menofia.edu.eg 

ayman.elsayed@el-eng.menofia.edu.eg  

                          (Received: 3 Jan. 2018 – Accepted: 10 Apr. 2018) 

 

ABSTRACT 
Hadoop is an open-source framework written by java and used for big 

data processing. It consists of two main components: Hadoop 

Distributed File System (HDFS) and MapReduce. HDFS is used to 

store data while MapReduce is used to distribute and process an 

application tasks in a distributed processing form. Recently, several 

researchers employ Hadoop for processing big data. The results 

indicate that Hadoop performs well with Large Files (files larger than 

Data Node block size). Nevertheless, Hadoop performance decreases 

with small files that are less than its block size. This is because, small 

files consume the memory of both the DataNode and the NameNode, 

and increases the execution time of the applications (i.e. decreases 

MapReduce performance). In this paper, the problem of the small files 

in Hadoop is defined and the existing approaches to solve this problem 

are classified and discussed. In addition, some open points that must 

be considered when thinking of a better approach to improve the 

Hadoop performance when processing the small files. 

Keywords: Hadoop, Big Data, Small Files, Hive, HBase, Amazon 
EMR, S3DistCp. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

110 
 

1.  INTRODUCTION 

Hadoop is an open-source software framework and is developed to run in a 

distributed environment for parallel computing and storage. It is known that 

Google File System (GFS) was the atom of Hadoop Distributed File System 

(HDFS). The HDFS consists mainly of several DataNodes which are used for 

storing the data and one NameNode which is used for organizing client access 

to the DataNodes and manages the metadata of the stored files, Figure 1 

represents the HDFS architecture [1-6].  

 

Figure 1: The HDFS Architecture 

Hadoop was developed for dealing with large files and enabling streaming 

data access patterns [7]. These large files should be in the range of DataNode 

block size (128 Mbyte) or its doubles. Files that are less than the DataNode 

block size results in a huge burden on Hadoop performance, like high 

memory consumption and increasing CPU processing time [8, 9]. So, there is 

a big challenge in storing large number of small files in the HDFS and 

processing them. Solving the problem of the small file is more complex. The 

reasons why Hadoop faces the problem of small files: the management of the 

NameNode memory and the MapReduce performance [10]. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

111 
 

To evaluate the performance of Hadoop there are some evaluation metrics 

that are shown in [11] as follow: DataNode Memory: the number of blocks 

consumed by each file reflects the optimum use of the DataNode memory. 

Files of size smaller than the default block size will waste a lot of DataNode 

memory. NameNode Memory: defines the size of the metadata stored in 

HDFS. The capacity of namespace of the system is limited by the physical 

memory. Files, directories, and blocks are named objects in HDFS and each 

of which requires 150 bytes. CPU time spent: defines the time taken by the 

MapReduce application. The less CPU processing time the highest Hadoop 

performance. This paper presents a literature survey of the impact of small 

files on Hadoop performance and discusses the existed solutions to overcome 

this problem. 

This paper is organized as follow: In section 2, we provide a taxonomy of 

small files in Hadoop solutions and the advantage and disadvantage for each 

approach for small files problem. In section 3, we discuss the open points. 

Finally, we conclude this survey in section 4. 

3. The Existed Solutions for the Small Files problem 
in Hadoop  

This section presents a literature survey a comparative study of the following 

approaches: Hadoop Archive Files, Federated NameNodes, Change the 

ingestion process/interval, Batch file consolidation, Sequence files, HBase, 

and S3DistCp.  

3.1 Hadoop Archive Files  

Principles: For solving the small files problem, the Hadoop Archive 

approach (HAR) was done by Hadoop itself. It is obvious from the name that 

an archive file (.har) should be created [12], the main idea in the HAR 

approach is to put the small files in an archive file. Converting a large set of 

small files into one (.har) file results in a good enhancement on the 

NameNode meta-data. Figure 2 shows the HAR architecture [13]. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

112 
 

 

Figure 2: HAR Architecture 

 

Figure 3: Reading Files from HAR  

MapReduce programs can access the part files in parallel. To access a file 

from part-0 two index files should be used. Figure3 shows how the reading 

process done in HAR. Two indexing steps is an overhead to the NameNode, 

as two different index files should be stored in NameNode. Discussion: HAR 

files used to overcome the problem of the NameNode, but the processing 

performance may worsen. HAR Files should be used when data stored for 

archival purposes [14]. If the small files are part of our normal processing 

flow, another approach should be used. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

113 
 

3.2 Federated NameNodes   

Principles: in large cluster, there are thousands of DataNodes and a single 

NameNode that holds the all the object metadata, this strategy is not a good 

solution to make a single NameNode holds all the metadata, Federated 

NameNodes is a good solution to overcome this problem by allowing to have 

multiple NameNodes in the cluster [15, 16]. If the cluster houses multiple 

tenants and applications, each NameNode will store the metadata for a 

definite tenant. Figure 4 shows the architecture for federated NameNode 

approach. 

 

Figure 4: Federated NameNode Architecture  

Discussion: Federated NameNodes make isolation for the object metadata; 

each NameNode will store only the tenant metadata. 

3.3 Change the Ingestion Process/Interval    

Principles: To get rid of the small files problem easily, is to avoid the small 

files to be stored inside the HDFS, this process can be done by changing the 

data ingestion interval process inside the Hadoop, changing the source system 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

114 
 

to produce large files instead of the large number of the small files, or 

converting the small files to large ones by concatenating them before storing 

in the HDFS. If we are ingesting 10 MB of data per hour, and the ingestion is 

modified to be once a day, we will produce a 1x240MB large file instead of 

24x10MB small files [17-18]. Discussion: we may not have control over the 

source system creating the files or business needs require that we ingest data 

at interval frequencies such that small files are unavoidable [2]. If small files 

are unavoidable and data ingestion intervals should be short, then another 

solution should be reached. 

3.4 Batch File Consolidation  

Principles: in this approach, the problem of the small files is solved by 

bagging these small files in large files, the small files will be stored in a 

definite folder and a MapReduce job will run periodically for rewriting the 

small files into larger files. This solution can be done by using only 2 lines of 

Pig, both a load statement and a store statement [19-20], as following: 

A = load ‘/data/inputDirectory’ using PigStorage(); 

Store A into ‘/data/outputDirectory’ using PigStorage(); 

If we have 1000 small files in a definite folder and 5 reduces are specified for 

the MapReduce job, the 1000 small files will be merged into 5 larger files.  

This will reduce the DataNode memory consumption; the metadata stored in 

the NameNode, and will in turn enhance the Hadoop performance. These 

MapReduce jobs require cluster resources during execution, and are 

scheduled to run during off hours. However, they should be run frequently 

enough so the small files impact over the Hadoop performance does not 

become too extreme. Discussion: Batch file consolidation does not index or 

save the original file names. So, if the names of original files are important 

when processing, then batch file consolidation will not be the perfect solution 

for solving the problem of the small files.   



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

115 
 

3.5 Sequence Files    

Principles: The Sequence files approach solves the problem of saving the 

names of the small files [21-22], each sequence file will contains two 

components: (1) The key which stores the file name, (2) The value which 

stores the file content. Table 1 shows how the small files would be stored in a 

sequence file: 

Table 1: Storing the small files in a sequence file. 

Key Value Key Value Key Value 

file1.txt file1 

contents 

file2.txt file2 

contents 

fileN.txt fileN 

contents 

If we have 2,000,000 small files stored in the HDFS, then the created 

sequence file will contain 2,000,000 keys, one key per file. Sequence files 

support the option of block compression, and these Sequence files are split 

able, this means that the MapReduce jobs will launch each map task for each 

block (128MB) rather than each map task for each small file. This reduction 

in the number of all the map tasks results in a large reduction in the 

MapReduce operations execution time and in turn enhancing the Hadoop 

performance. The Sequence Files approach is a perfect solution when the 

name of the input files needed to be saved. In addition, if a large number of 

the small files should be stored at the same time in Hadoop, then multiple 

sequence files should be created in parallel to aggregate this large number of 

the small files. Discussion: Hadoop files are immutable and cannot be 

appended to, so we need to ingest a large number of the small files at a time 

in order to make the sequence file works well. In addition, Hive software does 

not work well with sequence files structure. For creating one sequence file a 

large time will be consumed, so the sequence file is not practical in case of 

existing a plenty of large files. 

 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

116 
 

3.6 HBase    

Principles: HBase tables can be used for restoring a large number of HDFS 

small files as individual records. HBase approach is the best solution, if the 

data access pattern is based on a well-defined or random-access lookups. 

Several advantages result in using HBase as, high-velocity data inserts, real 

time processing and individual record lookups. HBase approach performance 

is not well in case of full data scan, so, for queries tend toward full table 

scans, HBase is an inefficient solution [23, 24]. Discussion: if the data access 

pattern tends toward full table/file scans, then the HBase approach may not be 

optimal. Balancing HBase with other cluster processes requires advanced 

system administration. Additionally, HBase performance depends largely on 

data access patterns and this point should be considered before we choose 

HBase for solving the small file problem. 

3.7 S3DistCp       

Principles: This solution is only used by users of Amazon EMR. Amazon 

EMR clusters are short lived, storing the data in Amazon S3. S3DistCp is a 

tool provided by Amazon used for distributed copying of data from S3 to 

HDFS. The utility enables to concatenate files together by using of group by 

and target size options. This is useful when we have large number of the small 

files stored in S3 that should be processed by using Amazon EMR. S3DistCp 

has two benefits; concatenating several small files and making the data appear 

faster than normal HDFS storage. The results show that the performance 

improvement using this mechanism is 15x [25-26]. Discussion: processing a 

large number of the small files still results in launching more map tasks than 

necessary decreasing performance. S3DistCp works the batch file 

consolidation approach. 

4. Discussion and open points   
The DataNode block size is set to 128 Mbyte and there is a trend to double it, 

because of this trend, small files problem becomes unavoidable and solving 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

117 
 

this problem is a good achievement. Several approaches have been produced 

for solving the NameNode memory consumption problem and the 

MapReduce performance problem like Hadoop Archive Files, Federated 

NameNodes, Change the ingestion process/interval, Batch file consolidation, 

Sequence files, and HBase and S3DistCp. Sometimes choosing between these 

approaches becomes elusory but can be evaluated according to some metrics 

like the number of DataNode blocks consumed to store each file, NameNode 

memory consumed and the time taken by the CPU to perform operations on 

the data(MapReduce performance). Sequence Files approach uses (key/value) 

pair technique for solving the small files problem in Hadoop, this approach 

has several advantages but it is still suffering from some drawbacks like (1) It 

is slow to convert existing data into Sequence Files. (2) It is not suitable in 

case of large number of large files stored in the HDFS. An enhancement must 

occur on the Sequence Files approach to overcome its previous drawbacks. 

We are going to enhance the sequence files strategy in order to improve the 

Hadoop performance with small files as efficient as possible. In addition, 

there are some points that should be considered when we talk about the recent 

approaches, as follows: 

4.1 NameNode Consumed Memory 

An observed enhancement over NameNode Memory used space can be 

reached when we use approaches like HAR approach, Change the Ingestion 

Process/Interval approach, Batch File Consolidation approach, Sequence Files 

approach, HBase approach and S3DistCp approach, but when we use 

Federated NameNodes approach it makes isolation for the object metadata 

and each NameNode will store only the tenant metadata, so, Memory 

enhanced by isolation not by reducing the used space. 

4.2 Processing time 

MapReduce applications processing time will be enhanced when we use 

approaches like Federated NameNodes approach in case of homogenous 

systems, Change the Ingestion Process/Interval approach, Batch File 

Consolidation approach, Sequence Files approach, HBase approach in case of 

real time processing and individual record lookups and S3DistCp approach, 

but MapReduce applications processing time will be increased when we use 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

118 
 

approaches like HAR approach, Federated NameNodes approach in case of 

heterogeneous systems and HBase approach in case of full data scan.  

4.3 Hadoop performance 

The performance of Hadoop will be enhanced when we use approaches like 

Federated NameNodes approach, Change the Ingestion Process/Interval 

approach, Batch File Consolidation approach, Sequence Files approach, 

HBase approach in case of real time processing and individual record lookups 

and S3DistCp approach, but when we use approaches like HAR approach and 

HBase approach in case of full data scan results in a bad Hadoop 

performance.  

5 Conclusion  
Hadoop framework was developed for storing and processing big data. 

However, the size of the files stored in the HDFS impacts on the Hadoop 

performance. For large files, (the file size close to or double the DataNode 

block size), Hadoop runs well. Nevertheless, for small files (file size 

significantly smaller than the block size), Hadoop performance degrades. This 

is because, storing and processing small files inside the HDFS results in a 

high overhead in the system. Briefly, the default DataNode block size is 128 

MB and each file will be stored in a separate block so the DataNode storage 

will be consumed for storing small files. In addition, each file will be defined 

as a name object in HDFS and each of which requires 150 bytes so a large 

numbers of the small files stored in the system metadata occupies a large 

portion of the namespace. The time consumed by the MapReduce operations 

will increase. Therefore, the performance of the Hadoop will go down when 

large number of small files are stored in the HDFS. In this paper, several open 

points, which should be taken into consideration to improve Hadoop 

performance with small files, are discussed. 

References  
[1] Youssef M. ESSA, Gamal ATTIYA and Ayman EL-SAYED, "Mobile Agent 

based New Framework for Improving Big Data Analysis", Proceeding of the 

2013 IEEE International Conference on Cloud Computing and Big Data 

(CloudCom-Asia 2013), Fuzhou, China, December 16-19, 2013. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

119 
 

[2] White, Tom, " Hadoop: The definitive guide", O'Reilly Media, Inc., 2012.  

[3] Wang, Feng, et al. "Hadoop high availability through metadata replication" 

Proceedings of the first international workshop on Cloud data management. ACM, 

2009.   

[4] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung, "The Google file 

system", ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003. 

[5] Mall, Nupur N., and Sheetal Rana, "Overview of Big Data and Hadoop", 

Imperial Journal of Interdisciplinary Research 2.5, 2016. 

[6] Manjunath, R., R. K. Channabasava, and S. Balaji, "A Big Data MapReduce 

Hadoop distribution architecture for processing input splits to solve the small 
data problem", Applied and Theoretical Computing and Communication 

Technology (iCATccT), 2016 2nd International Conference on. IEEE, 2016. 

[7] Mir, Mansoor Ahmad, and Jawed Ahmed, "An Optimal Solution for small file 

problem in Hadoop", International Journal of Advanced Research in Computer 

Science 8.5, 2017. 

[8] Zheng, Tong, Weibin Guo, and Guisheng Fan, "A Method to Improve the 

Performance for Storing Massive Small Files in Hadoop", 7th International 

Conference on Computer Engineering and Networks, 2017. 

[9] Qin, Dongxue, "Study on Processing of Massive Small Files Based on 

Hadoop", Liaoning University, China, 2011. 

[10] Sharma, Garima, and Anita Ganpati, "Performance evaluation of fair and 

capacity scheduling in Hadoop YARN", Green Computing and Internet of 

Things (ICGCIoT), 2015 International Conference on. IEEE, 2015. 

[11] Fu, Songling, et al., "Performance Optimization for Managing Massive 

Numbers of Small Files in Distributed File Systems", IEEE Transactions on 

Parallel and Distributed Systems, Vol. 26, No. 12 pp. 3433-3448, 2015. 

[12] Vorapongkitipun, Chatuporn, and Natawut Nupairoj, "Improving performance of 

small-file accessing in Hadoop", Computer Science and Software Engineering 

(JCSSE), 2014 11th International Joint Conference on. IEEE, 2014. 

[13] Dev, Dipayan, and Ripon Patgiri, "HAR: Archive and metadata distribution! 

Why not both?”, Computer Communication and Informatics (ICCCI), 2015 

International Conference on. IEEE, 2015. 

[14] Huang, Yicheng, et al., "Towards model-based approach to Hadoop 

deployment and configuration", Web Information System and Application 

Conference (WISA), 2015 12th. IEEE, 2015. 

[15] Chintapalli, Sanket Reddy, "Analysis of Data Placement Strategy based on 

Computing Power of Nodes on Heterogeneous Hadoop Clusters", Diss. 

Auburn University, 2014. 

[16] Xiong, A. P., and J. Y. Ma., "HDFS distributed metadata management 

research", International Conference on Applied Science and Engineering 

Innovation, 2015. 



Menoufia J. of Electronic Engineering Research (MJEER), Vol. 28, No. 1, Jan. 2019 

 

120 
 

[17] Xie, Jiong, et al., "Improving mapreduce performance through data placement 

in heterogeneous Hadoop clusters", Parallel & Distributed Processing, 

Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. 

IEEE, 2010. 

[18] Eltabakh, Mohamed Y., et al., "CoHadoop: flexible data placement and its 

exploitation in Hadoop", Proceedings of the VLDB Endowment 4.9 (2011): 575-

585, 2011. 

[19] Shahrivari, Saeed. "Beyond batch processing: towards real-time and streaming 

big data", Computers 3.4 (2014): 117-129, 2014. 

[20] Zhou, Fang, "Assessment of Multiple MapReduce Strategies for Fast Analytics 

of Small Files", 2015. 

[21] White, Tom, "The small files problem", Cloudera Blog, blog. cloudera. 

Com/blog/2009/02/the-small-files problem, 2009. 

[22] Gohil, Parth, and Bakul Panchal, "Efficient ways to improve the performance of 

HDFS for small files", Computer Engineering and Intelligent Systems 5.1 (2014): 

45-49, 2014. 

[23] Team, Apache HBase, "Apache hbase reference guide", Apache, version 2.0, 

2015. 

[24] Harter, Tyler, et al., "Analysis of HDFS under HBase: a Facebook messages 

case study", FAST. Vol. 14, 2014. 

[25] Deyhim, Parviz, "Best Practices for Amazon", Technical report, 2013. 

Vorapongkitipun, C., & Nupairoj, N., "Improving performance of small-file 

accessing in Hadoop", In, 2014 11th IEEE International Joint Conference on 

Computer Science and Software Engineering (JCSSE), pp. 200-205, May, 2014. 

 

 

 الملخص باللغة العربية 


