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ABSTRACT

Background: In spite of the claimed cardio-protective effects of ischemic preconditioning (IPC), it is
invasive and so using remote ischemic preconditioning (RIPC) may offer an alternative. Meanwhile, RIPC
cardio protective role is controversial, with an equivocal underlying mechanism. The hypoxia inducible
factor 1 alpha (HIF-1-alpha) which is increased following ischemic insults is claimed as a humoral mediator
for RIPC.

Objectives: To investigate the effect of remote ischemic pre-conditioning on myocardial
ischemia/reperfusion injury in rats, and to elucidate the possible role of hypoxia inducible factor in this
protection.

Patients and Methods: The present study was performed on 28 adult female albino rats in the same estrus
cycle evaluated by vaginal smear, and they were allocated into 3 groups: Group I: control rats subjected to
ischemic /reperfusion injury (I/R) only, group II: early RIPC rats (RIPC 2 hours prior to I/R), group IlI:
acriflavine-treated early RIPC rats. Acriflavine is a drug that binds directly to HIF-1 alpha and HIF-2 alpha
subunits, thus inhibiting its dimerization and transcriptional activity, and it was injected IP 10 days prior to
RIPC. On sacrifice day, ECG was recorded and isolated heart studies were performed. Later, cardiac
chambers weight, serum HIF-1-alpha, myocardial perfusate lactate dehydrogenase, and cardiac oxidative
markers: Malonaldehyde and glutathione perioxidase were measured.

Results: Compared to the control group, the early RIPC group showed significant increase in the heart rate
(HR), QTc interval in the ECG recording, glutathione peroxidase and the HIF la levels together with
reduction in the percent of decrease in PT and PT/LV, in the percent of prolongation in time to peak tension
(TPT), perfusate lactate dehydrogenase and MDA levels, while no significant changes were recorded in the
heart chronotropic activity, in the percent of half relaxation time (HRT) prolongation, or in the percent of
decrease of MFR. Following acriflavine treatment, the effects of RIPC were abolished highlighting the role
of HIF-1-alpha in mediating RIPC protective effects.

Conclusion: The non-invasive and non-pharmological remote ischemic preconditioning technique can
ameliorate the cardiac ischemic reperfusion injury with an obvious role of HIF-1a in mediating these
protective effects.
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INTRODUCTION

Cardiovascular diseases and ischemic
heart diseases (IHD) have been considered
as a major contributor to the total
morbidity and mortality worldwide
(Candilio and  Hausenloy, 2017).
Coronary heart disease (CHD) is
responsible for about one-third of all
deaths over age 35 worldwide (Gomar et
al., 2016).

Ischemic preconditioning (IPC) is an
experimental technique in which tissues
exposure to brief episodes of ischemia
protect them against a subsequent
ischemic insult (Hausenloy and Yellon,
2016).

Cardiac ischemic preconditioning was
able to reduce myocardial infarct size and
to attenuate the incidence and the severity
of  reperfusion-induced  arrhythmias
(Iliodromitis et al., 2007 and Heusch et
al., 2015).Classic IPC is invasive and can
lead to dangerous complications including
coronary artery rupture (Zhang et al.,
2013). Remote ischemic-preconditioning
(RIPC) has emerged as an interesting
alternative to direct IPC (Lemarroy,
2014).

Remote ischemic  preconditioning
(RIPC) is a technique in which a remote
organ as the limb is subjected to brief
cycles of limb ischemia and reperfusion in
order to confer protection of another target
organ during subsequent ischemia
(Herrmann, 2010, Cai et al., 2013, and
Gedik et al., 2017). This protection can be
provided in an early immediate phase that
vanishes within 4 h and late phase that

presents 24 h after the preconditioning
stimulus and lasts for at least 48 h
(Vasdekis et al., 2013). Herrmann (2010)
suggested that RIPC is clinically
appealing, being non-pharmacologic, non-
invasive, quickly administered and may
potentially protect multiple organs.

RIPC induction by left femoral artery
occlusion reduces myocardial infarct size
in the mice (Lim et al., 2010). In addition,
Thielmann et al. (2013) stated that
patients who underwent RIPC before
coronary artery bypass grafting (CABG)
surgery displayed marked reduction in all
cardiac causes of mortality. Similarly,
RIPC in the upper limb in patients of
acute myocardial infarction resulted in
27% reduction in infarct size (White et al.,
2014).

Meanwhile, Hausenloy et al (2015)
and Zaugg & Lucchinetti (2015); claimed
that remote ischemic preconditioning fails
to provide protection in patients
undergoing cardiac surgery. Zaugg and
Lucchinetti ~ (2015)  suggested that
anesthetics may interfere and inhibit the
protective effect of remote ischemia-
induced preconditioning.

Moreover, the underlying mechanisms
of this technique remain elusive. It has
been hypothesized that RIPC
predominantly involves systemic multi-
factorial anti-inflammatory, neuronal, and
humoral signaling pathways, that can be
transferred to the target organs to offer
their protection against ischemic injuries
(Ghani et al., 2017).Lee et al. (2009)
highlighted the importance of hypoxia
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inducible factor la (HIF-1a) molecule as
a major adaptive response to hypoxia.

In normoxia, HIF-1 a protein has a short
half-life (t1/2- 5 min) as it is rapidly
degraded (Masoud and Li, 2015).
Meanwhile, during ischemic insults or
hypoxia, the half life of HIF-1 o increases
up to 60 min (Xiong & Liu, 2017 and
Yang et al., 2018).

Therefore, this study was planned to
assess the effectiveness of remote
ischemic preconditioning in reducing
myocardial ischemia/reperfusion injury in
rats and to elucidate the possible role of
hypoxia inducible factor in this protection.

MATERIALS AND METHODS

This study was performed on 28 adult
female albino rats weighing 180-200 g at
the start of the study. Rats were purchased
from Helwan animal house and were kept
at the Medical Ain Shams Research
Institute (MSRI), Ain Shams University.
Animals were housed in animal cages
(50%30%20) cm each cage contain 5 rats,
with suitable ventilation, temperature of
22-25°C and normal dark/light cycle.
Food and water access were ad libitum.
All rats were treated in accordance with
the Guide for Care and Use of Laboratory
Animals, and the study protocol was
approved by the Research Ethical
Committee of Faculty of Medicine, Ain
Shams University.

Rats were initially weighed and
randomly distributed into three equal
groups:

Group | (Sham-operated control
group): Control rats that were subjected
to ischemic /reperfusion injury.

Group Il (Early RIPC group): Rats
were subjected to RIPC 2 hours prior to
ischemic /reperfusion injury (Tork et al.,
2015).

Group 11 (Acriflavine-treated early
RIPCgroup): Rats were injectedwith
Acriflavine, the HIF-1alpha inhibitor (IP,
2mg/kg/day) for 10 days prior to RIPC
and 2 hours prior to ischemic /reperfusion
injury (Lee et al., 2009).

Remote ischemic

technique:

As described by Tork et al (2015), rats
were subjected to 3 cycles of
ischemia/reperfusion. Each cycle
consisted of 5 minutes of bilateral hind
limb ischemia, followed by 5 minutes of
reperfusion. RIPC was done using a
rubber band tourniquet that was wrapped
around both hind limbs to induce femoral
artery ischemia. Ischemia was assured by
the appearance of cold and cyanotic skin.
RIPC was done either 2 or 24 hours before
sacrifice according to the allocated group.

preconditioning

Rats were assigned to the different
groups then, on the sacrifice day,
overnight fasted rats were weighed,
injected with 5000 1U/Kg B.W. heparin
sodium (I.P.) (Nile Company, Egypt), and
then were anesthetized with 1.P. injection
of thiopental sodium (EIPICO, Egypt), in
a dose of 40 mg/kg B.W. ECG tracing was
recorded. Blood samples were collected
and stored at -800C for later
determination of serum hypoxia inducible
factor- 1 alpha (HIF-1a).In vitro study of
isolated hearts perfused in a Langendorff
preparation was performed to record the
intrinsic activity of heart under baseline
condition and its response after 5,15,30
minutes of reperfusion following 30
minutes of total global ischemia using
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isometric  force  transducer (UGO
BASILE) connected with a USB cable to
a recorder and to a computer provided
with | Worx LabScribe2 Data Recording
and Analysis Software. The MFR was
assessed by collecting the fluid for 3 min.
Cardiac tissues were weighed using 5-

Digit-Metler balance (AE 163), then
stored at -80 °C to  assess
Malondialdenyde (MDA) levels and

Glutathione peroxidase (Gpx) enzymatic
activity.
Biochemical analysis:

Serum HIF-1la was measured by
ELISA using kits supplied by YL Biont

company, according to Wu et al. (2017).
Both  myocardial perfusate Lactate

dehydrogenase and cardiac glutathione
peroxidase were measured by a UV
method described by Paglia and Valentine
(1967), using Kkits supplied by Linear
chemicals company and Bio-diagnostic,
Egypt respectively. Cardiac tissue MDA
was measured by Thiobarbituric Acid
(TBA) Testaccording to Esterbauer and
Cheeseman (1990) using kits provided by
Sigma Diagnostics, USA.

The results were expressed as mean +
one standard error and were statistically
analyzed .Used SPSS program version 20
P < 0.05 was considered significant , e.g :
one way ANOVA with posthoc test
(LSD), student-t test for paired data
,correlation studies and percent change.

RESULTS

Biochemical measures:

As shown in table 1, Early RIPC rats
showed significant increase in the serum
HIF la and significant decrease in MDA
level compared to the control group.
Acriflavine treatment caused a significant

decrease in serum HIF 1la, and a
significant increase in both MDA and
LDH levels compared to the control
group (Table 1).

Table (1): Serum HIF 1a (ng/ml), LDH (U/L), MDA (uM/g) and GPX (U/g) in all

studied groups

Groups Control group Early RIPC group reate dg‘g:;gg'gg group
Parameters (n=8) (n=11) (n=9)
HIF lo(ng/ml)
Mean + SEM 0.89+£0.13 1.44 +0.16 0.57+0.14
a <0.01 >0.05
b <0.001
LDH (U/L)
Mean + SEM 183.04 + 56.94 34.01 +7.252 243.43 +67.79
a >0.05 >0.05
b <0.01
MDA (uM/g)
Mean + SEM 1.26+0.15 0.84£0.12 1.25+0.16
a <0.05 >0.05
b <0.05
GPx (U/g)
Mean + SEM 16.33+4.11 24.66 £4.50 11.88 £2.78
a >0.05 >0.05
b <0.05
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a: Significance of difference from the
control group calculated by
LSD at P < 0.05.

b:  Significance of difference of
acriflavine- treated early RIPC group
from early RIPC group calculated by
LSD at P < 0.05.

HR and QTc interval significantly
increased in the early RIPC group
compared to the control group.
Meanwhile, they significantly reduced in
acriflavine-treated early RIPC compared
to the early RIPC group (Figure 1 a, b).
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Figure (1a): Electrocardiographic changes heart rate in the 3 studied groups.

a: Significance of difference of treated group from the control group calculated by LSD at

P <0.05.
b: Significance of acriflavine treated early RIPC group from early RIPC group calculated
by LSD at P < 0.05.
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Figure (1b): Electrocardiographic changes (heart rate, Q-To interval and Q-Tc
interval) in the 3 studied groups.
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a: Significance of difference of treated
group from the control group
calculated by LSD at P < 0.05.

b: Significance of acriflavine treated
early RIPC group from early RIPC
group calculated by LSD at P < 0.05.

EBRAHIM etal.

Regarding heart chronotropic activity,
the percent of decrease in HR was
insignificantly different in the early RIPC
compared to the control group and
significantly increased in acriflavine-
treated early RIPC group after 30 min
compared to the early RIPC group

All reperfusion values significantly (Figure 2).
decreased after 5, 15 and 30 min of
reperfusion compared to their baseline
values in all groups (Figures2-6).
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Figure (2): Heart rate preischemia baseline value and responses following ischemia
and 30 minutes of reperfusion of hearts isolated from the control,early
RIPC and acriflavine treated early RIPC groups.

a: Significance of difference of percent
change from the control group
calculated by LSD at P < 0.05.

b: Significance of difference from early
RIPC group calculated by LSD at P <
0.05.

Compared to the control group, the
percent of decrease in PT and PT/LV
were significantly decreased in early
RIPC group, meanwhile, they were
significantly increased in the acriflavine
treated early RIPC group compared to the
early RIPC groups after 5, 15 and at 30
min in (Figure 3).
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Figure (3): Peak developed tension per left ventricular weight (PT/LV, g/100 mg)
preischemia baseline value and responses following ischemia and 30
minutes of reperfusion of hearts isolated from the control, early RIPC
and acriflavine treated early RIPC groups.

a: Significance of difference of percent
change of non treated group from the
control group calculated by LSD at P <
0.05.

b: Significance of difference of
acriflavine treated early RIPC group
from early RIPCgroup calculated by
LSD at P < 0.05.

The percent of prolongation in TPT
significantly decreased in early RIPC
group compared to the control group after
15 and 30 min following acriflavine
treatment in the early RIPC, the percent
of prolongation in TPT significantly
increased after 15 and 30 min (Figure 4).
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Figure (4): Time to peak tension preischemia baseline value and responses following
ischemia and 30 minutes of reperfusion of hearts isolated from the
control, early RIPC and acriflavine treated early RIPC groups.

a: Significance of difference of percent
change of non treated group from the
control group calculated by LSD at P <
0.05.

b: Significance of difference of
acriflavine treated early RIPC group

from early RIPC group calculated by
LSD at P < 0.05.

The percent of HRT prolongation
significantly increased in acriflavine-
treated early RIPC group after 5min and
at 15 min compared to early RIPC group
(Figure 5).
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Figure (5): Half relaxation time preischemia baseline value and responses following
ischemia and 30 minutes of reperfusion of hearts isolated from the
control, early RIPC and acriflavine treated early RIPC groups.

a: Significance of difference of percent from early RIPCgroup calculated by
change of non treated group from the LSD at P < 0.05.
goon;rol group calculated by LSD at P < No significant changes were recorded in
e MFR or MFR/LV (Figure 6)

b: Significance of difference of
acriflavine treated early RIPC group
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Figure (6): Myocardial flow rate per left ventricular weight (ml/min/100mg)
preischemia baseline value and responses following ischemia and 30
minutes of reperfusion of hearts isolated from the control, early RIPC
and acriflavine treated early RIPC groups.

a: Significance of difference of percent
change of non treated group from the
control group calculated by LSD at P <
0.05.

b: Significance of difference of
acriflavine treated early RIPC group
from early RIPCgroup calculated by
LSD at P < 0.05.
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PT/LV was significantly positively correlated to serum HIF level (A) and GPX level (B).
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Figure (7): Correlation studies

DISCUSSION

The present study illustrated the effect
of remote ischemia preconditioning
(RIPC) performed by wrapping a
tourniquet around both hind limbs (Hu et
al., 2016 andGhani et al., 2017) on
ischemia reperfusion injury in isolated
hearts of rats. Also, the study highlighted
the involvement of hypoxia inducible
factor in these effects using the HIF-1a
inhibitor (Acriflavine), a drug that binds
directly to HIF-1 a and HIF-2 o and

inhibits HIF-1a dimerization (Lee et al.,
2009).

Early RIPC group showed significant
increase in the heart rate (HR) and the
QTc interval in the ECG records, which
can be explained by the in-vivo neural
effects of RIPC, as it can activate [
adrenergic  receptors and  enhance
sympathetic activity, which was claimed
to be mediated by local mediators (Aimo
et al, 2015). In-vitro denervation
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abolished RIPC beneficial effects on heart
rate supporting RIPC neural effects.

In all groups, heart rate, peak
developed tension and myocardial flow
rate values significantly reduced together
with the significant prolongation in time
to peak tension and half relaxation time at
the end of reperfusion compared to their
basal values, but at different degrees and
variable percent of changes. These results
were consistent with Elkafoury et al.
(2003).

The reduction in heart rate following
ischemia  might  reflect  depressed
automaticity  or  conductivity  with
occurrence of various degrees of heart
block owing to hypoxia or extracellular
potassium  excessor may followthe
disruption of cardiovascular sympathetic
neural responsiveness (Pomblum et al.,
2010). This bradycardia might be
protective in the context of decreasing
cardiac muscle metabolic activity and its
oxygen needs which would limit ROS
generation (Barret et al., 2013a).

In addition, the significant decrease in
PT and PT/LV could be attributed to the
decrease in intracellular ATP, and the
increase in  mitochondrial ROS thus
compromising  mitochondrial  function
with lactic acid accumulation and
intracellular Ca?* overload which leads to
activation of the calcium-activated
protease calpain and caspase-3 (Garcia et
al., 2012). Also, hypoxia encountered
during ischemia  induces  anerobic
metabolism and mitochondrial electron
transport  chain  dysfunction  with
subsequent  ion  exchange channel
dysfunction , leading to retention of Na",
H*, Ca?" and cell swelling (Wu et al.,
2018).

Following reperfusion injury,
myocardial stunning, which can be
defined as dysfunctional myocardium
despite normal or near normal blood flow,
ensues leading to post ischemic release of
cardio depressant factors and negative
inotropic mediators (Pomblum et al.,
2010) and to post-ischemic inflammation
that can cause cardiotoxicity and disrupt
the excitation contraction coupling
reducing Ca?* induced Ca?" release (Canty
and Suzuki, 2012).

Moreover, oxidative injury with lower
activities of antioxidants such as
superoxide dismutase and glutathione
peroxidase (Vichova and Motovska,
2013), and increased levels of lipid
peroxidation end products (MDA) (Adam,
2014) could explain deterioration of
cardiac functions following I/R injury.
Wu et al. (2018) stated that, during
reperfusion NADPH, NOS and xanthine
oxidase systems activate aggregating cell
damage and death. ROS directly depresses
cardiac contraction and maximal velocity
of contraction and relaxation (Folden et
al., 2003), inhibits the cell membrane
calcium pump, and oxidizes the
sarcoplasmic reticulum ryanodine causing
intracellular Ca2+overloadand mediates
vascular inflammation and atherogenesis
(Cheng et al., 2017). Moreover, oxidants
can induce cardiac cell apoptosis owing to
the disruption of electron transport chain,
upregulation of death receptors (Fas) and
the loss of mitochondrial membrane pore
(MMP) (Tan et al., 2016).

The prolonged TPT or HRT denotes
systolic and diastolic dysfunction and so
the myocardium takes a longer time to
reach the peak of contraction and to
become full relaxed, owing to cardiac
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remodeling, interstitial edema and fibrosis
(Thune and Solomon, 2006).

Post-ischemic endothelial injury with
increased endothelin and decreased NO
together with neutrophil plugging explain
the post-ischemic no-reflow phenomenon
and the decrease in the coronary blood
flow (Pomblum et al., 2010). This may
explain the decrease in cardiac function or
at least may participate in their
occurrence.

Regarding early remote ischemic
preconditioning group, it was unable to
improve the heart chronotropic activity,
which highlights the neural effect of RIPC
that is lost following the in-vitro
denervation (Aimo et al., 2015).

Early RIPC was able to improve
cardiac systolic functions evidenced by
the significant reduction in the percent of
decrease in PT, PT/LV, percent of
prolongation in time to peak tension
(TPT) and the perfusate lactate
dehydrogenase level compared to the
control group, with no significant changes
in the percent of half relaxation time
(HRT) prolongation or in MFR/LV. These
results agreed with Albrecht et al. (2013)
and Samanta and Dawn (2016) who
detected lower cardiac cellular damage
markers troponin |, troponin T, creatinine
kinase-MB, and LDH following RIPC,
and so assuring its cardioprotection.

In this study, the early RIPC rats were
subjected to RIPC 2 hours prior to
ischemic /reperfusion injury according to
Tork et al. (2015), and this early RIPC
phase is activated immediately after
preconditioning and vanishes within 4 h
and it can mediate cardioprotection by
rapid  release  or  posttranslational

modification of preexisting proteins
Vanezis et al. (2016).

This protective effect could be
attributed to their anti-oxidant effects
supported in this study by the significant
reduction in MDA and elevation in Gpx
levels in the RIPC group compared to the
control group. Similarly,Lotfollahi et al.
(2016) suggested that RIPC prevented the
enhancement of MDA and increased GPX
levels significantly.

Moreover, serum level of HIF 1o was
significantly higher in RIPC group than
the control group, and was significantly
positively correlated to PT/LV, while
being negatively correlated to the
perfusate LDH enzyme level. Added to
this, following acriflavine treatment, the
effects of RIPC were abolished
highlighting the role of HIF-1-alpha in
mediating RIPC protective effects.

Following acriflavine treatment, a
significant bradycardia was detected after
5 minutes of reperfusion followed by the
occurrence of tachyarrhythmia after 30
min, owing to post ischemic electrical
stunning and  electrolyte  channels
dysfunction with the absence of HIF la
protective effects (Pomblum et al., 2010).

In the acriflavine treated group, a
significant increase in the percent of
decrease in PT and PT/LV, percent of
TPT, HRT prolongation, percent of
decrease of MFR and MFR/LV, perfusate
lactate dehydrogenase (LDH) and MDA
levels were detected together with
significantly lower Gpx and HIF la levels
compared to early RIPC group.

In agreement with these postulations,
Yang et al. (2018) assured the role of HIF-
1 evidenced by the deterioration of the
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ischemia/reperfusion  insult in rats
following acriflavine administration (2
mg/kg/day) for 10 days.

Albrecht et al. (2013) stated that
increased HIF-1a following RIPC was
accompanied by decrease in the apoptotic
and inflammatory cardiac events.

Weber et al. (2015) proved that human
plasma retrieved directly after remote
ischemic preconditioning (RIPC) was able
to reduce hypoxia—induced damage of
human endothelial cells cultured in vitro,
assuring the release of anti-inflammatory
and anti-apoptotic humoral factors into the
blood stream after RIPC, from where they
reach the remote target organs conferring
the RIPC-protection.

Similarly, intraperitoneal injection of
HIF activator had a synergistic effect with
RIPC on reducing infarction with an
increase in IL-4 and IL-10 protein levels
in both the peripheral blood and ischemic
tissue, while the injection of the HIF
inhibitor ~ (acriflavine  hydrochloride)
abolished the protective effects of RIPC
on infarction, and reduced IL-4 and IL-10
protein levels in both the peripheral blood
and ischemic tissue (Yang et al., 2018).

HIF-1 a was proved to have an anti-
apoptotic role by increasing MCL-1
expression, a Bcl-2 related anti-apoptotic
gene, and by suppressing cytochrome C
release from mitochondria via
heterodimerization and neutralization of
pro-apoptotic proteins such as Bim or Bax
(Flamant et al., 2010). Moreover, HIF-1 a
also can inhibit mitochondrial oxidative
metabolism,  thereby reducing the
generation of reactive oxygen species
under conditions of hypoxia or hypoxia-
reoxygenation (Semenza, 2014).

This was supported in our study by the
positive correlation between the HIF-1 a
and the cardiac tissue antioxidant capacity
(Gpx), while being negatively correlated
to the cardiac tissue (MDA).

Finally, on the contrary, some studies
failed to show any significant difference
between RIPC and control groups,
regarding the level of troponin release
(Meybohm et al., 2015). Also, Hausenloy
et al. (2015) reportedno improvement in
CABG patients that had RIPC. Both
Candilio & Hausenloy (2017) and Pierce
et al. (2017) denied any clinical benefit
from RIPC procedure suggesting that
propofol (used during anesthesia) may
interact with the protective effects of
RIPC pointing to the neural factors that
can also mediate RIPC effects.
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