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Abstract 

Interleukin-18 (IL-18) is a relatively newly discovered immunostimulatory cytokine, which is struc-
turally similar to IL-1. IL-18 is produced mainly by activated macrophages, however; it may also be 
expressed by kupffer cells, T cells, B cells, keratinocytes, astrocytes, and osteoblasts.  IL-18 can 
regulate both innate and adaptive immune responses through its effects on natural killer (NK) 
cells, monocytes, dendritic cells, T cells, and B cells. IL-18 has multiple biological activities via its 
capacity to stimulate innate immunity and both Th1 and Th2 mediated responses. IL-18 acts syner-
gistically with other pro-inflammatory cytokines to promote interferon-γ (IFN-γ) production by 
NK cells, T cells, and possibly other cell types. It induces gene expression and synthesis of Tumor 
Necrosis Factor (TNF), IL-1, Fas Ligand, and several chemokines. It also exerts anti-tumor effects 
that are mediated by enhancement of Natural Killer (NK) cell activity, reduction of tumorigenesis, 
induction of apoptosis and inhibition of angiogenesis in tumor cells. IL-18 plays a critical role in 
the Th1 response required for host defense against viruses as well as plays a role in inflammatory 
liver disease. IL-18 was significantly upregulated in persons with chronic HCV infection compared 
to healthy persons or asymptomatic carriers. This upregulation correlated with hepatic injury, 
indicating a role for IL-18 in the pathogenesis of HCV infection. In addition, neutralization of IL-18 
by administration of anti-IL-18 monoclonal antibodies (mAb) results in total prevention of liver 
injury. Raised levels of serum IL-18 was demonstrated in chronic HCV-patients before antiviral 
therapy with Pegylated IFN (PEG-IFN). A marked decline in IL-18 was associated with remission of 
hepatic inflammatory activity in responders, while persistent raised levels of IL-18 were associat-
ed with PEG-IFN treatment failure. 
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Discovery of IL-18 

In 1989, Nakamura and co-workers(1) de-
scribed an endotoxin-induced serum activity 
that induced IFN-γ production from mouse 
spleen cells. This serum activity functioned 
not only as a direct inducer of IFN-γ but ra-
ther as a co-stimulant together with IL-2 or 
mitogens. An attempt to purify the activity 
from post-endotoxin mouse serum revealed 
an apparently homogeneous 50-55-kDa pro 
tein(2,3). Because other cytokines can act as  

co-stimulants for IFN-γ production, the fail 
ure of antibodies to IL-1, IL-4, IL-5, IL-6, or 
TNF to neutralize the serum activity sug-
gested that it was a distinct factor. In 1995, 
another report was published by Nakamura 
and co-workers demonstrating that the en-
dotoxin-induced co-stimulant for IFN-γ pro-
duction was present in extracts of livers 
from mice preconditioned with P. acnes(4). 
In this model, the hepatic macrophage 
population (Kupffer cells) expanded dra-
matically, and the low dose of bacterial lip-
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opolysaccharide (LPS), which is not lethal in 
non-preconditioned mice, becomes lethal. A 
factor was purified from mouse livers and 
named IFN-γ -inducing factor (IGIF)(4). IGIF 
purified from liver homogenates did not in-
duce IFN-γ by itself, but functioned primari-
ly as a co-stimulant with mitogens or IL-2. 
Neutralizing antibodies to mouse IGIF were 
shown to prevent liver damage induced by 
LPS in pre-conditioned mice. IFN-γ is an im-
portant mediator of LPS-induced toxicity in 
pre-conditioned mice(5). IGIF, also called IL-
18, is a cytokine which is synthesized by ac-
tivated macrophages, T-cells, NK cells, 
Kupffer cells, dendritic cells (DCs), adrenal 
cortex cells, osteoblasts, Langerhans cells 
and intestinal epithelial cells(5). 

Structure and production of IL-18 

IL-18 is a proinflammatory cytokine of 18 
kDa and 157 amino acids. It is synthesized as 
an inactive precursor (pro-IL-18) of a 24 kDa, 
which is cleaved by interleukin-1 β-
converting enzyme (ICE or caspase-1) pro-
ducing the mature, bioactive peptide that is 
readily released from the cells(6). 

Molecular structure and gene expression 
Human IL-18 genes are located on chromo-
some 11. Human IL-18 cDNAs encoding pre-
cursor IL-18 are composed of 193 amino ac-
ids. The genomic analysis of the promoter 
region demonstrated that for constitutive 
expression of IL-18 at least 92 base pairs of 
the promoter region are essential(7). 

IL-18 receptors 
The receptor for IL-18 (IL-18R) is a hetero-
dimer composed of two chains: 1) a ligand-
binding component (α chain) which is re-
sponsible for the extracellular binding of IL-
18 (was identified as IL-1 receptor-related 
protein, IL-1Rrp). 2) A signaling component 
(β chain) which is responsible for the intra-
cellular signal transduction (also termed ac-
cessory protein-like, AcPL) since it is related 

to the IL-1R accessory protein, both of 
which belong to the IL-1R family(8).  

Interleukin-18 binding protein (IL-18BP) 
IL-18BP is the natural inhibitor of IL-18, 
which negatively regulates its biologic ef-
fects. IL-18BP is a constitutively secreted 
protein with a high-affinity binding to IL-18 
(400 pmol/L). Once IL-18 is secreted, it is 
bound and inactivated by IL-18BP. The pro-
duction of IL-18BP is enhanced as a negative 
feedback mechanism in response to in-
creased IL-18 production, to ensure protec-
tion from tissue damage due to the uncon-
trolled pro-inflammatory activity. IL-18BP is 
highly expressed in spleen and the intestinal 
tract, both of which are immunologically 
active tissues(9). The promoter for IL-18BP 
contains two IFN-γ response elements, and 
constitutive gene expression for IL-18BP is 
dependent on IFN-γ, which suggests a com-
pensatory feedback mechanism. Thus, ele-
vated concentrations of IFN-γ stimulate 
more IL-18BP in an attempt to reduce IL-18-
mediated IFN-γ production(10). 

Processing of IL-18 
The molecular mechanism for the produc-
tion of IL-18 is mediated by TNF receptor 
associated factor 6 (TRAF-6). Interleukin 
receptor activates myeloid differentiation 
Factor-88 (MyD88) and IL-1 receptor-
associated kinase (IRAK). This activation 
leads to the synthesis of proinflammatory 
genes, such as inducible nitric oxide (iNOS) 
and IFN-γ. IL-18 also enhances the pro-
inflammatory activity by inducing matrix 
metalloproteinases, which are crucial for 
pathological chemotaxis of immune cells to 
target tissues (i.e. hepatic tissue)(11). IL-18 
binds to IL-18Rα and IL-18Rβ to form a high-
affinity complex that induces signaling 
pathways together with other IL-1R family 
members. This involves recruitment and ac-
tivation of MyD88 and IL-1R-associated ki-
nase (IRAK) to the receptor complex(12). IL-
18 is processed into active forms by at least 
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two recognized proteases. One pathway 
involves the same enzyme that typically ac-
tivates IL-1β, caspase-I, [also known as inter-
leukin-1 converting enzyme (ICE)]. Alterna-
tively, IL-18 is activated by the neutrophil-
derived serine proteinase, proteinase 3 
(PR3). These two activation pathways are 
differentially associated with cellular pro-
cesses and pathologies(13). 

Function and Biological Activity of IL-18 

IL-18 and inflammatory process 
IL-18 is evolving as a major pro-inflamm-
atory cytokine with implications for a role in 
inflammatory and infectious diseases. IL-18 
was first described as IGIF(14); however, the 
ability of IL-18 to induce IFN-γ production is 
primarily in the context of a second stimu-
lus in that it acts with IL-12, mitogens, or mi-
crobial agents to augment IFN-γ produc-
tion(15). Alone, IL-18 does not induce IFN-γ 
production from T lymphocytes. However, 
in vitro LPS and zymosan-induced IFN-γ 
production from murine spleen cells is 
strongly reduced using neutralizing antibod-
ies to murine IL-18, confirming similar find-
ings in vivo and suggesting that endoge-
nous IL-18 is an essential for IFN-γ produc-
tion by microbial agents. Because of its abil-
ity to induce tumor necrosis factor α, IL-1β, 
and both CXC and CC chemokines and be-
cause IL-18 induces Fas ligand as well as nu-
clear translocation of nuclear factor kB (NF-
kB), IL-18 ranks with other pro-inflammatory 
cytokines as a likely contributor to systemic 
and local inflammation(16). Consistent with 
stimulating TNF production, IL-18 upregu-
lates Fas ligand-mediated cytotoxic activity 
of natural killer (NK), T cells, and the myelo-
monocytic cell line KG-1. In addition to 
macrophagic cells, keratinocytes produce 
functional IL-18 after stimulation with con-
tact sensitizers and hence IL-18 may have a 
role in the inflammatory process after aller-
gen contact. During endotoxin-induced liver 

damage in mice, neutralizing antibodies to 
IL-18 reduced tissue damage(17). 

IL-18 and immunity 
IL-18 plays roles equally in both the innate 
and the adaptive immune systems. It works 
together with IL-12 to induce cell-mediated 
immunity following infection with microbial 
products such as lipopolysaccharide (LPS). 
After stimulation with IL-18, NK cells and 
certain T-cells release IFN-γ or type II inter-
feron that plays an important role in activat-
ing macrophages and other cells(18). IL-18 
induces both TH1 and TH2 responses. Thus, it 
is involved in the development of protective 
immunity against intracellular microbes, in-
cluding viruses such as HCV(19). In addition, 
the combination of IL-18 and IL-12 has been 
shown to inhibit IL-4 dependent IgE and 
IgG1 production, and enhance IgG2a pro-
duction by B-cells(20). 

IL-18 and IFN 
IL-18 production is induced by stressful 
stimuli (i.e., bacterial or neurogenic signals). 
In this context, it has been proposed that a 
stress-induced release of IL-18 can lead to a 
reinforcing cycle of IFN-γ/IL-18 produc-
tion(21). Following an initial wave of IL-18-
induced IFN-γ production, newly secreted 
IFN-γ can now stimulate monocytes/ mac-
rophages to increase their interleukin-1 con-
verting enzyme (ICE) activity(15). In the pres-
ence of continued IL-18 production, in-
creased ICE activity probably results in more 
processed IL-18, which leads to more lym-
phocyte IFN-γ production, which leads to 
more macrophage ICE activity. Thus, IL-18 
promotes not only IFN-γ synthesis, but also 
participates in its overall activities(13). 

IL-18 and apoptosis 
IL-18 has also been implicated in killing me-
diated by the Fas ligand (FasL). FasL is a 
tightly regulated 40 kDa member of the TNF 
superfamily of molecules. The binding of  
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FasL to its widely expressed receptor, Fas, 
usually leads to activation of an apoptotic 
program in the cell expressing Fas. Cells 
that are believed to mediate such activities 
are CD4+ TH1 cells and NK cells (two cell 
populations that express FasL under the 
influence of IL-18). In this respect, IL-18 
again demonstrates a relationship to IFN-γ 
that appears as an upregulator of Fas anti-
gen expression(22). IL-18 upregulates both 
FasL and IFN-γ production in T-cells and the 
produced IFN-γ may induce Fas antigen on a 
variety of cell types. Thus IL-18, via IFN-γ in-
duction, could be considered a molecule 
that provides both the means (FasL) and 
the opportunity (Fas) for instigating apop-
totic cell death(22). 

IL-18 and Tumors 
IL-18 exerts anti-tumor effects, which are 
mediated by enhancement of NK cell activi-
ty, reduction of tumorigenesis, induction of 
apoptosis and inhibition of angiogenesis in 
tumor cells(5). 

Pathological role of IL-18 

Apart from its physiological role, IL-18 is also 
able to induce severe inflammatory reac-
tions, which suggests its role in certain in-
flammatory disorders and autoimmune dis-
eases. These include diseases that involve 
elevated IFN-γ such as graft-versus-host 
disease (GVHD); psoriasis, rheumatoid ar-
thritis and Crohn’s disease. IL-18 is also im-
plicated in pathologies resulting from is-
chemia such as myocardial infarction, renal 
failure and liver damage(13). 

IL-18 and Liver Diseases 
IL-18 has been shown to play a key role in 
the pathogenesis of acute liver injury in 
mice that have been challenged with endo-
toxin after priming with Propionibacterium 
acnes and lipopolysaccharide (LPS). Conc-
anavalin A (Con A)-induced hepatitis is an 
immune-mediated disease in which the in-

terplay of CD4+ T-cells and TH1 cytokines 
causes Fas-mediated liver cell death(6). In 
addition, FasL-activated macrophages cause 
liver damage in an IL-18-dependent, cas-
pase-1-independent process; whereas, is-
chemia reperfusion-induced myocardial dys-
function is IL-18 and caspase-1-dependent(13). 
In mice, IL-18 immuno-neutralization by ad-
ministration of anti-IL-18 monoclonal anti-
bodies (mAb) protects from liver injury in-
duced by Con A(23). In addition, IL-18 defi-
cient mice are resistant to LPS-induced liver 
injury(24). 

IL-18 and viral infections 
Many reports suggest that IL-18 might play 
a role in viral infections. A positive effect of 
IL-18 has been shown in mouse models of 
herpes simplex and vaccinia virus infection, 
demonstrating that IL-18 inhibits human 
immunodeficiency virus (HIV) production in 
peripheral blood mononuclear cells (PBMC) 
(25). However, the mechanism of this antivi-
ral effect and its relationship to viral repli-
cation has not been determined. IL-18 has 
been shown to inhibit hepatitis B virus 
(HBV) replication in the livers of transgenic 
mice(26).  

IL-18 and HCV infection 
Immune response, essentially conducted by 
cytokines, plays an important role in the 
pathogenesis of HCV infection. A significant 
correlation between both intra-hepatic and 
circulating TH1-type cytokines and the de-
gree of liver injury has been reported(27). 
The pathogenic role of IL-18 in liver disease 
is suggested by: (i) the up-regulation of IL-
18 mRNA in CHC infection(28); (ii) the elevat-
ed serum levels of IL-18 in patients with 
CHC, biliary atresia, primary biliary cirrhosis 
and autoimmune hepatitis(29); and (c) the 
association between raised serum IL-18 and 
acute rejection in patients with liver trans-
plantation(30). Previous studies have shown 
an increased expression of proinflammatory 
cytokines, in particular IL-18, which corre-
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lates with IFN-γ production in CHC and cir-
rhosis(28). Abbate et al. revealed an up-
regulated expression of the IFN-related 
genes (IFN-γ, IFN-α receptor-1, IFN regulato-
ry factor-1, and IL-18), together with down-
regulated expression of IFN-α and IFN-β in 
patients with HCV infection compared with 
non-alcoholic steatohepatitis(31). Previous 
studies provided significant evidence indi-
cating that IL-18 plays a prominent role in 
liver injury. In 2002, Ludwiczek and co-
workers(32) reported elevated levels of 
plasma IL-18 and IL-18 binding protein (IL-
18BP) in patients with chronic liver disease 
compared with healthy controls, which 
supports a possible role for IL-18 in the in 
the chronic cellular immune response 
against hepatocytes(33). In CHC, the admin-
istration of IFN-γ exerts an anti-inflamm-
atory action in vivo by induction of IL-18 
binding protein and late suppression of IL-
18(29). 

IL-18 and IFN therapy 
IFN-α exerts its anti-inflammatory action by 
induction of IL-18-binding protein produc-
tion. In HCV infection, the increased IL-18 
production is neutralized by IL-18BP. This 
neutralization is crucial for the regulation of 
inflammation and development of fibro-
sis(34). IFN therapy increases plasma IL-18BP 
levels by 3- to 24-fold within 24 h following 
the institution of therapy(29). Elevated se-
rum IL-18 was demonstrated in chronic HCV-
patients before the start of PEG-IFN thera-
py. A marked decline in IL-18 was associated 
with remission of hepatic inflammatory ac-
tivity in responders, while persistent raised 
levels of IL-18 were associated with treat-
ment failure. Effective IFN-α therapy reduc-
es the IL-18 concentration(35) while, elevated 
level of IL-18 receptors was a significant 
predictor of poor outcome of IFN therapy in 
HCC(36).  

IL-18 polymorphisms and HCV 
Two single nucleotide polymorphisms (-607 

C/A and -137 G/C) in the promoter region of 
the IL-18 gene have repeatedly been found 
to be associated with the IL-18 promoter 
transcription activity. Both SNPs disrupt 
transcription factors binding sites, and at 
least decrease the level of IL-18 mRNA(37). 
Lower promoter activity was observed for 
the minor alleles -607A and -137C compared 
to the more common alleles -607C and -
137G, respectively. Haplotypes carrying the-
se alleles also correlated with IL-18 levels in 
peripheral blood mononuclear cells (PBMC) 
or plasma. Moreover, these haplotypes cap-
ture the majority of genetic variation of IL-
18, due to the presence of strong linkage 
disequilibrium among polymorphisms in the 
gene(38). The carriage of at least one allele C 
at position -607 or G at position -137 seems 
to be a risk factor for developing more se-
vere forms of chronic hepatitis. IL-18 haplo-
type (AC) may play a protective role against 
chronic hepatitis progression. Patients who 
are homozygous for C at position - 607 and 
G at position -137 have higher levels of IL-18 
mRNA compared to other genotypes(39).  

IL-18 and Fungal infections 
IL-18 in synergy with IL-12 promotes the an-
tifungal response to C. neoformans by in-
ducing IFN-γ from NK cells and NO from 
macrophages with a down-regulation of IL-
4 production(40). Thus, IL-18 administration 
during C. neoformans infection promotes 
the antifungal response. IL-18 appears ef-
fective even in the absence of IL-12. In a 
chronic fungal asthma model, IL-18 pro-
motes innate responses, preventing the 
development of severe fungus-induced 
asthmatic disease(41). In caspase-1-deficient 
mice, IL-18 restores defective Th1 respons-
es during Candida albicans infection(42). 

IL-18 and Bacterial infections 
The intracellular pathogen Mycobacterium 
avium has been widely studied using a vari-
ety of murine strains including IL-18 and IL-
18R-deficient mice. These studies showed 
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the requirement for a strong Th1 response 
and a critical role for IL-18 in expulsion of 
the pathogen. The contribution of IL-18 
during a protective Th1 response is further 
demonstrated in human studies on pa-
tients with M. tuberculosis infection who 
displayed a decreased ability to produce IL-
18 and IFN-γ in response to antigen com-
pared with healthy PPD-responsive con-
trols(43). Similarly, Kinjo and colleagues(44). 
have demonstrated an impaired IFN-γ pro-
duction in IL-18-deficient mice following 
infection. However, patients with advanced 
disease appear to have raised plasma IL-18 
levels(45). In leprosy, the Th1/Th2 balance is 
key to disease outcome, but currently data 
on IL-18 are conflicting. In resistant 
tuberculoid leprosy (TL), protective IFN-γ 
production is associated with increased IL-
18 mRNA expression within lesions, and 
monocytes from TL patients show in-
creased IL-18 mRNA expression following in 
vitro challenge with bacterial antigen. Fur-
thermore, such in vitro challenge of T and 
NK cells of TL patients resulted in increased 
IFN-γ production compared with cells from 
patients with susceptible lepromatous lep-
rosy (LL). However, Yoshimoto et al(46) 

have shown that serum IL-18 levels were 
much higher in an LL cohort. IL-18 could 
therefore promote the development of the 
Th2 response, characteristic of LL. Further 
in vivo studies have shown the importance 
of IL-18 in the protective immune response 
to a number of bacterial infections includ-
ing salmonella, yersinia, chlamydiae, and 
shigella(47,48). 

IL-18 and Protozoan infections 
A  protective role of IL-18 during Leishma-
nia major infection was reported. Wei and 
colleagues(49) reported increased suscepti-
bility to Protozoan infections  in IL-18-
deficient mice. In severe combined immu-
nodeficiency (SCID) mice, IL-18 augments 
NK cell-mediated immunity to Toxoplasma 

gondii(50). Moreover, resistance to T. cruzi 
required the development of a successful 
IFN-γ response, which correlated with in-
creased expression of IL-12 and IL-18. Final-
ly, high levels of IL-18 were detected in 
mice infected with P. berghei, and neutral-
izing anti-IL-18 antibodies shortened sur-
vival times. Serum IL-18 rises in patients 
with uncomplicated Plasmodium falcipa-
rum malaria who mount an effective Th1 
response(51).  

IL-18 and immunotherapy 
Systemic administration of IL-18 showed a 
significant antitumor activity in animal 
models. Phase I clinical trials of recombi-
nant human IL-18 have established that it 
can be securely administered to patients 
with advanced cancer. Biologic effects of 
IL-18 therapy include activation of mono-
cytes, NK cells, T cells and an increased 
production of IFN-γ. IL-18 acts mostly as a 
costimulatory cytokine, thus its best use 
for cancer immunotherapy is in combina-
tion with other immunostimulatory cyto-
kines, vaccines, or monoclonal antibod-
ies(52). 
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