

Journal of International Society for Science and Engineering

Vol. 4, No. 4, 92-98 (2022)

--

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 92

JISSE

ISSN: 2636-4425

JISSE

E-ISSN:2682-3438

A Comparative Study between MATLAB HDL Coder and VHDL for FPGAs Design and implementation

Ghada ElSayed1,*, Somaya Kayed2,

1Assistan Professor, Electrical Department, MTI University, Egypt

2Associate Professor, Acting Dean, Obour Higher Institute of Engineering and technology, Egypt

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 30-04-2022

Accepted:22-09-2022

Online:22-09-2022

 Nowadays, FPGA has become a very useful platform for multiple digital applications. Initially, the

hardware programming languages like VHDL or Verilog were the only method for designing the

FPGA. In this method, the designer should be able to transform the algorithm of the application into

digital blocks. This consumes time and effort. Recently MATLAB realized the FPGA importance

and decided to introduce a new tool for FPGA Design; this tool is MATLAB HDL Coder. The idea

is to write a very easy MATLAB script and it will be converted to HDL using HDL Coder. Then

this HDL code will go through the FPGA regular implementation path. This paper studies and

compares, by example, the two methods. The comparison is done for Speed, FPGA utilization, and

time for design/implementation. The digital unit under test was AES. The choice of this unit is

based on having large input data, it makes many feedbacks, and It needs high speed. The test result

doesn't recommend MATLAB HDL Coder for implementation but it recommends it to fast-proof

ideas and fast prototypes. This is because the idea of just writing a simple script describing the

algorithm results in a very complicated combinational circuit, which has a very low frequency. The

recommended future research is to find a way to force the MATLAB script to be implemented in

pipeline architecture. The expected result is to improve the performance in two directions utilization

and frequency, but It'll lose the main advantage which is fast implementation.

Keywords:

FPGA

MATLAB HDL CODER

VHDL

1. Introduction

Field Programmable Gate Arrays (FPGAs) have played a very

high important role in designing customized digital circuits. They

introduce fast time to market, hardware security, and fast clock

frequency in comparison with the Application-specific integrated

circuit (ASIC) and software implemented using processors. Most

software developers find difficulties in using the hardware

description languages (HDL) in comparison with the software

programming languages. MATLAB, as a very easy programming

tool, decided to enter the FPGA field, by introducing an HDL

coder. HDL Coder™ generates portable, synthesizable VHDL®

and Verilog® code from MATLAB® functions, Simulink®

models, and Stateflow® charts. Regardless of the PC

specifications the generated HDL code can be used for FPGA

programming or ASIC prototyping and design without affecting

neither speed nor the utilization of the targeted hardware [1]. One

of these three input methods can be used to generate the

corresponding HDL code using an HDL coder. A very important

question arises then, what are we trade-offs if we got the

simplicity of designing the digital circuit? In another way, does

the HDL coder method give a good utilization of the target FPGA?

Does it give a good timing and frequency performance? To

answer such questions, a case study is chosen. We choose the

input to the HDL coder to be MATLAB functions, the target

platform to be Digilent Cmod S6™ FPGA Board [2]. It has

Xilinx Spartan 6 XC6SLX4-2CPG196 FPGA, and the digital

circuit unit under test is to be the Advanced Encryption Standards

(AES) [3]. This AES 128 was chosen as its VHDL code design

was already obtained and published before [4]. We just used the

Encryption part to use it in the VHDL path of comparison. The

other path of the comparison is the MATLAB function for the

same AES 128 encryption module; we just modified the tutorial

of MathWorks [5]. In general, away from the HDL Coder, the

AES implementation as MATLAB functions is available in [6].

We choose the AES not only because its VHDL code is ready

with us but also for some main reasons in the digital design.

Examples of these reasons are the required number of inputs and

outputs are big and it should be entered or extracted using serial * Ghada ElSayed, Obour Higher Institute of Engineering and technology, Cairo, Egypt,

+201002337149, ghada.farouk@eng.mti.edu.eg

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 93

to parallel and parallel to serial Registers, it will be enjoyable to

notice how MATLAB do it. Another reason is that AES needs to

substitute bytes by bytes and perform some shifts that should be

implemented either by block RAMS or Lookup tables (LUTs). In

VHDL the designer optimize the timing by controlling the

pipelines, especially in the feedback designs like AES, how can

MATLAB HDL coder do this? Does it leaves all the work to the

synthesizer?

In the following section, we discuss the previous work in the

scope of evaluating the MATLAB HDL coder given MATLAB

functions as input compared with the VHDL path. Section 3

highlights the VHDL path of designing the AES cipher unit, what

are the top-level diagram, the main block diagram, the clock

frequency, the critical paths, and the FPGA utilization. The

second path is described and discussed with the same headings in

Section 4. In section 5 we compare the results that we collected

before and analyze the causes behind them. Finally, we reached

the conclusion and the recommended research for the future.

2. Related Work

MathWorks has published HDL CoderTM Evaluation

Reference Guide [7]. In which they discussed: HDL-supported

blocks, Model setup, Design Under Test (DUT) and test bench

partitioning, Accessing HDL settings and operations, SIMULINK

modeling best practices for HDL designs, clock, sample rate and

data flow control, fixed-point and floating-point settings, using a

state-flow chart, code Generation tools, HDL Code Advisor, and

HDL workflow Advisor. In many fields, they conclude their

publications without comparing the default path, i.e. the hardware

description languages. In 2015, a rapid prototyping from

algorithm to FPGA prototype was studied in a master thesis by

the University of Oulu, Department of Electrical Engineering.

The thesis studied MathWorks High-Level Synthesis (HLS)

workflow usage for rapid prototyping of wireless communication

SoC Intellectual Property (IP) [8]. This thesis introduced the

design and FPGA prototyping flow of the application-specific

integrated circuit (ASIC). It presented targeted for HLS. It also

studies MathWorks Hardware Description Language (HDL)

generation flow with HDL Coder, This work concentrated on

evaluating the usage and benefits of MathWorks HLS workflow

targeted for rapid prototyping of System on Chips (SoCs). In

2018, the Evaluating Simulink HDL Coder as a framework for

flexible and modular hardware description was published. It was

found that the Simulink-generated hardware fell behind in

performance, but that there were very few parts of the

architecture that could not be replicated. Resets and enables are

automatically generated by the software and thus could not easily

be made to precisely match the functionality of the reference

VHDL design. However, this did not impact the ability of the

design to produce correct outputs, and the Simulink-generated

code otherwise behaved as desired [9]. The most related work is

the one that compares different design alternatives for hardware-

in-the-Loop for power converters electronics [10]. While their

conclusion was: that Automated MATLAB HDL code is not

recommended as it involves more tools than other approaches,

and also, it does not reach small latency and area. Many different

designs were performed using HDL Coder like [11], [12], [13],

[14], and [15].

In this paper, we compare based on the following hypothesis.

First, the FPGA board is Cmod S6™ FPGA Board [2].

Regardless to the board and its FPGA size, as long as it is the

same for the two paths then we compare the utilization

percentage. Second, we chose the input to the MATLAB HDL

Coder to be MATLAB function rather than SIMULINK, this is

much easier as our target is to have a substitution to a hardware

engineer with a software one achieving the same results with

some advantages such as decreasing time to market, decreasing

testing time and interfacing, decreasing the digital design

knowledge and so on. The last hypothesis is that the design under

test was chosen to be the encryption part of the advanced

encryption standard of course with the required key expansion

unit and the controlling.

In the following section, we discuss the VHDL design path.

In section 4 the MATLAB HDL Coder design and

implementation are discussed. After that in section 5, a

comparison analysis between the two paths is emphasized. In

section the testing and verification procedure is illustrated.

Finally, we conclude the study and give some recommendations.

3. AES DESIGN USING VHDL

The VHDL code was already written within a previous

publication [4]. Here we will focus on some important points to

summarize the previous design and recall the important

comparison axis.

3.1. Top-level and Interface

Figure 1 shows the top level of the unit under test, the AES

Encryption module. Here there are thirty-one inputs and outputs

pins. In AES 128 we expect a 128-bit key, 128 data input as plain

text and 128-bit data output as cypher text. Due to the limited

number of IOs in the used FPGA, we implement two serial to

parallel registers for the input data and key. We also implemented

one parallel to serial register for the output data, ciphertext. The

serial to parallel is 8 bit to 128 bit and the parallel to serial is 128

bit to 8 bit.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 94

Figure 1 Top Level Symbol of the AES Encryption unit with

VHDL implementation

This is illustrated in Figure 2, I1 is the serial to parallel for the

cypher input, I2 is serial to parallel for the key input and I3 is

parallel to serial for the output. We have seven other input pins

one for the clock signal, CLK, the second for the reset signal, rst,

and the third for the load signal if it is active I1 and I2 get the

data and store it. The fourth one is a reset for the key expansion

unit, krst, the fifth one is the output enable for the ciphertext

output, and the sixth one and the seventh one enable for the

encryption and decryption respectively. The other three

components in the block diagram are: U1 is the Cipher unit, U2 is

the Controller unit and U3 is the Key Expansion Unit. Here there

is an advantage for the digital designer; the components are

viewed in the RTL with a clear interconnection and routing.

Figure 2: AES Encryption Module Block Diagram

4. AES DESIGN USING MATLAB HDL CODER

Figure 3 shows the top level of the unit under test (AES

Encryption module). Like the one implemented by the VHDL,

there are 3 eight-bit for key, plain text and ciphertext. In Figure 4,

the head of the function of the AES Encryption module is focused

on. Here we can see that the inputs are Plaintext, Cipherkey, We

(write enable), and reset.

Figure 3: Top Level Symbol of the AES Encryption unit with

MATLAB HDL Coder implementation

On the other hand, the outputs are the ciphertext, OutE (output

enable to start to receive the output 8 bit by 8 bit) and out address;

address to facilitate writing the output in an array. The sum of

these input-output pins (IOs) is thirty-two bins the last four pins

are added by the MATLAB HDL coder. There are: clock signal

(clk), clock enable (clkenable), Reset1, ceout. This means that the

developer has no access or control over the clock. This is a very

important note; this means that controlling simultaneous action is

only done using clock enables. Sometimes this method reduces

the actual frequency to the frequency of the clock enables.

Figure 4: MATLAB function illustrates the inputs and the outputs

In Figure 5 level one of the Register-transfer levels (RTL) is

illustrated. As we notice, the function is just implemented without

any ability to understand its visualization. In addition, by seeing

the consumed LUTs (410%), we can understand that every count

in for loops is implemented again without reuse. Generally, in

FPGAs, we implement a module and control it by a counter. But

here every count of the counter has a module that connects to the

next module. It is similar to collecting on-shelf modules over a

test board. This is more relative to the idea of hardware

programming. Besides miss utilizing the area of the FPGA, it

increases the propagation delay.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 95

Figure 5: the RTL level 1 of the AES Encryption module

implementation using MATLAB HDL Coder

On the other hand, MATLAB HDL Coder facilitates the data

exchange between the PC and the FPGA. It's not the designer's

responsibility to make this interface because MATLAB is in

charge. This makes the importance of the handshaking protocol

reduced. As a result, the signal required to do this task is not

highlighted.

As a hardware engineer, there were some important questions for

example: how do we determine the number of bits in inputs and

outputs? How do we store new data in the same variable while it's

well known in the software it will be overwritten? The answer

was given by MathWorks [1]. They introduce the sentence

"persistent" to work like the sentence "signal" in the VHDL code.

Figure 6 shows how we could write the parts of serial to parallel

and parallel to serial in MATLAB. We must first write the

persistent sentence.

Figure 6: Using the persistent variables

Figure 7: How to store the data in a serial to parallel and vice

versa in MATLAB HDL Coder

As it is well known in software programming, the variable is

updated on every line without any memory. So by adding the

persistent keyword, the variable is kept memorized without

updating till the next call to be reused with the last value, figure 8

illustrates this idea by flow chart.

By knowing the code of serializing the inputs and outputs besides

the given HDL coder project [5] anyone can continue the

recommended future research.

Figure 8: Flow chart for variables defined by “persistent”

keyword.

5. TESTING AND VERIFICATION

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 96

The VHDL part was already tested and verified before in another

publication [4]. In this section, we focus on MATLAB HDL

Coder testing and verification because it is the most interesting

part of this path. We invoked the MATLAB HDL Coder app and

created a new project. It was asked to supply two files: MATLAB

function and MATLAB test bench. The required MATLAB

function is only the top-level, other functions that this file call

should exist in the project directory. In the test bench file, we

generate random plain text and cypher key. We call the

MATLAB function based on these random inputs. The generated

output is decrypted using the same key. The generated decrypted

output is compared with the input. If they were identical then the

design is working probably and prints "Decrypted plain text

matches the original text." Otherwise, it prints "The decrypted

plain text does not match the original plain text." As shown in

Figure 9.

Figure 9: MATLAB test bench file

Figure 10 illustrates the code by a flow chart.

Figure 10: Flow chart illustrating the test bench procedural.

After passing the two files to the MATLAB HDL Coder project,

we go through its own workflow as shown in Figure 11.

Figure 11: MATLAB HDL Coder Project

For the workflows, till the verifications step, we chose FPGA in

the loop. We created our board specifications based on its manual

[2] as shown in Figure 12 and Figure 13. We selected the

General-Purpose Input/output (GPIO) for inputs and led for

output.

Figure 12: How to Specify the FPGA board Information

Figure 13: User-defined IO interfaces of Spartan 6 FPGA
board

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 97

6. COMPARISON BETWEEN MATLAB HDL CODER

AND VHDL IMPLEMENTATION

Utilization summary tables for target device xc6slx4-
2cpg196 FPGA are illustrated in Table 1 for VHDL-based
implementation and Table 2 for MATLAB HDL Coder-
based implementation.

Table 1: Estimated Utilization Summary for VHDL-based
implementation of AES encryption module

Number of Used Available Utilization

Slice Registers 2395 4800 49%

Slice Look Up Tables (LUTs) 1886 2400 78%

Fully used LUT-FF pairs 1224 3057 40%

Bonded input-output blocks
(IOBs)

31 106 29%

Block RAM/First In First Out
(FIFO)

3 12 25%

Table 2 Estimated Utilization Summary for MATLAB

HDL Coder-based implementation to AES encryption

module

Number of Used Available Utilization

Slice Registers 410 4800 8%

Slice Look Up Tables (LUTs) 9851 2400 410%

Fully used LUT-FF pairs 176 3057 6%

Bonded input-output blocks
(IOBs)

36 106 33%

We can easily compare the two tables and then analyze
the difference. As the bonded inputs/ outputs are
considered the interface of the module then it will be a
good starting point for comparison. We have 31 IOBs
versus 36 IOBs. The number of Slice Registers in the VHDL
path is 49% versus 8% in MATLAB coder which is much
higher because of using the pipeline method. But the
Number of Slice LUTs is 40% in VHDL while it exceeds the
maximum in MATLAB which is 410 per cent and this was
discussed in the previous section. This indicates an area
problem; this is illustrated by figure 14.

According to timing, the Clock frequency in VHDL was
Minimum period: 8.314ns (Maximum Frequency:
120.279MHz) while in MATLAB Coder Minimum period:
41.063ns (Maximum Frequency: 24.353MHz) and this is
much important point that the speed using VHDL is
almost five times faster than that using MATLAB Coder.

Figure 14: A column chart compares the FPGA utilization
using VHDL and MATLAB HDL coder.

7. Conclusion and recommendations

The results of our studies indicate that the cost of speed
and area utilization can't be paid for the ease of design
and implementation. We recommend MATLAB Coder for
fast proof of an idea but not for competition in a digital
market.
8. FUTURE WORK

We recommend a research project that writes code to
make the combinatorial circuits pipelined. This will both
utilize the area and increase the speed.

On the other hand, this work to be completed should test
all passes like Simulink as input. It should compare
different designs under test with different FPGA boards.

References

[1] MathWorks “HDL Coder™ User's Guide©”, [Online] available:
https://www.mathworks.com/help/hdlcoder/index.html

[2] Cmod S6™ FPGA Board Reference Manual, Revised June 13, 2017. 1300
Henley CourtPullman, WA 99163 509.334.6306 [Online]. Available:
www.digilentinc.com

[3] FIPS 197, “Advanced Encryption Standard (AES)”, Nvlpubs.NIST.gov,
[Online]. Available: https://nvlpubs.nist.gov › nist.PDF

[4] Ghada Farouk Naiem, Salwa Elramly, Bahaa Eldeen Hasan, Kaled Shehata,"
An efficient implementation of CBC mode Rijndael AES on an FPGA”,
IEEE 25th National Radio Science Conference (IEEE NRSC 2008), Tanta,
D09, pp. 18, March 18-20, 2008. [Online]. Available:
https://ieeexplore.ieee.org/document/454237

[5] Advanced Encryption Standard (AES)-HDL CODER Example [Online].
Available: https://www.mathworks.com/matlabcentral/mlc-
downloads/downloads/submissions/50098/versions/3/previews/mlhdlc_tutor
ial_comms_aes.m/index.html. [Accessed: 30- Apr- 2022].

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%

Utilization using
MATLAB HDL
Coder

Utilization using
VHDL

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed, S.Kayed / Journal of International Society for Science and Engineering Vol. 4, No. 4, 92-98 (2022)

S

--
www.jisse.journals.ekb.eg www.isse.org.eg 98

[6] David Hill (2022).” Advanced Encryption Standard (AES) 128,192, 256
“(https://www.mathworks.com/MATLABcentral/fileexchange/73412-
advanced-encryption-standard-aes-128-192-256), MATLAB Central File
Exchange. Retrieved January 19, 2022.

[7] HDL CoderTM Evaluation Reference Guide (R2020a-R2020b) © Copyright
2015-2020 by MathWorks, Inc.

[8] Oriol Font-Bach, Antonio Pascual-Iserte, Nikolaos Bartzoudis, and David
López Bueno “MATLAB as a Design and Verification Tool for the
Hardware Prototyping of Wireless Communication Systems”, [Online].
Available: https://www.researchgate.net/publication/228075597

[9] Valerie Youngmi Sarge, S.B., “Evaluating Simulink HDL Coder as a
Framework for Flexible and Modular Hardware Description”, Master of
Engineering in Electrical Engineering and Computer Science, 2018
Massachusetts of Technology. All rights reserved.

[10] Zamiri, E. Sanchez, A. Yushkova, M. Martínez-García, M.S.; de Castro, “A.
Comparison of Different Design Alternatives for Hardware in- the-Loop of
Power Converters. Electronics”, 2021,
https://doi.org/10.3390/electronics10080926.

[11] Järviluoma J., “Rapid Prototyping from Algorithm to FPGA Prototype”, the
University of Oulu, Department of Electrical Engineering, Degree Program
in Electrical Engineering. Master’s Thesis, 59 p, (2015).

[12] Richard Carbone," A flexible hardware architecture for 2-D discrete wavelet
transform: design and FPGA implementation” [Online]. Available:
https://scholarworks.rit.edu/

[13] Po-Cheng Wu and Liang-Gee Chen, Fellow," An Efficient Architecture for
Two-Dimensional Discrete Wavelet Transform", IEEE transactions on
circuits and systems for video technology, vol. 11, no. 4, April 2001

[14] Donald G. Bailey, "Image Processing Using FPGAs", Department of
Mechanical and Electrical Engineering, School of Food and Advanced
Technology, Massey University, Palmerstone North 4442, New Zealand;
D.G.Bailey@massey.ac.nz, Received: 6 May 2019; Accepted: 7 May 2019;
Published: 10 May 2019

[15] Mohamed Ali Hajjaji ,1 Mohamed Gafsi, Abdessalem Ben Abdelali ,1 and
AbdellatifMtibaa, "FPGA Implementation of Digital Images Watermarking
System Based on Discrete Haar Wavelet Transform", Received 14 August
2018; Revised 11 November 2018; Accepted 9 December 2018; Published 3
January 2019

Acknowledgment

Authors would like acknowledge Electronics Research

Institute (ERI), Egypt for supporting us with the simulation

tool (MATLAB).

Bibliography

GHADA ELSAYED has received her BSc, MSc, and PhD

degrees in electronic and communication engineering,

2001, 2005, and 2008 respectively. She worked for the

Egyptian Space Program for the first seven years then she

shifted to an academic career, in which she worked for

more than five years for MSA University then she

travelled as a visiting researcher to Japan, Kyushu

Institute of Technology. After that, she continued on the

same path at MTI University. In 2014, Ghada published a

book about securing satellites control link. She also

published many scientific papers.

SOMAYA ISMAIL KAYED is an Associate Professor and

head of Electrical Dept. (Electronics, communication,

computer and control Engineering) at Obour Higher

Institute for Engineering and technology. She graduated in

1987 from Ain Shams University with a BSc. in Electronics

and Communications department, with a general grade

(very Good) 80% her order of merit 13 of the successful

students totaling (75). Her graduation project tackled

Distinction and she was top-ranked as the 13th in her

class. In 1997, she finished her Masters of Science (MSc.)

in the same department. Afterwards, in 2000, she was

awarded her PhD also from Ain Shams University under

the supervision of Prof. Hani Fikry Ragaie.

She was an acting dean for the 2019 first term at Obour

Higher Institute for Engineering and technology, she has

published in local and international conferences many

scientific papers as well as multiple books related to her

research interests (Analog and digital VLSI design, current

conveyor, Nano electronics).

At the same time, her passion for development is not

limited to academia. She is also a volunteer member of an

NGO. On one side, these diverse experiences enriched not

only her teamwork skills but also her leadership

competencies.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

