

Journal homepage: http://www.bsu.edu.eg/bsujournals/JVMR.aspx

Online ISSN: 2357-0520

Print ISSN: 2357-0512

Original Research Article

Vancomycin resistance among methicillin-resistant *Staphylococcus aureus* isolates from animal milk

Ismail A. Radwan¹, Wafaa K. Mahdy², Esraa Hegazy¹, Hala S. H. Salam¹

¹ Bacteriology, Mycology, and Immunology Department, Faculty of Veterinary Medicine Beni-SuefUniversity,Beni-Suef 62551, Egypt

²Microbiology and Immunology Department, Faculty of Medicine, El-MiniaUniversity, El Minia 61519, Egypt

ABSTRACT

Staphylococcus aureus(*S. aureus*) is a major cause of mastitis in dairy animals and a serious pathogen affecting human health. The current study was designed to investigate the extent of S.aureus in milk samples collected from dairy animals as well as human clinical samples, beside determination of its antimicrobial susceptibility pattern. Also, the prevalence of both mecA and vanA genes among some selected methicillin-resistant isolates was investigated. Out of 120 milk samples obtained from different animals (cows, buffaloes, sheep, and goats), 81 (67.5%) samples reacted positive for S. aureus, whereas 67 (74%) out of 90 human samples were found positive for S. aureus. Disk diffusion susceptibility testing revealed that S.aureus isolates of humans were more resistant than those of animals against all tested antimicrobials except for clindamycin. A high rate of multi-drug resistance (MDR) and mecA gene was recorded in S. aureusof both animals and humans. Surprisingly, van Agene, which is responsible for vancomycin resistance was detected only in S. aureus isolated from animal milk. To the best of ourknowledge, it is the first record of vanA gene in S. aureus recovered from animals.

Article history:		
Received 10/2017		
Accepted 11/2017		
Online 11/2017		
Kanwards		

ARTICLE INFO

Keywords:

Vancomycin,

Staphylococcus

aureus,

Animal milk

*Corresponding author: Hala S. H. Salam¹, Bacteriology, Mycology, and Immunology Department, Faculty of Veterinary Medicine Beni-SuefUniversity,Beni-Suef 62551, Egypt.

1. Introduction

Staphylococcusaureus(*S.aureus*)is considered as one of the bacterial commensals, however it may act as a virulent pathogen threatening both animals and humans (Thammavongsa et al., 2015,Carfora et al., 2016; Li et al., 2017).*S.aureus*isfrequently reported as a cause of mastitis in dairy animals (Aires-de-Sousa et al., 2007).As well asit causes a variety of hospital and community acquired clinical infections in humans, including skin, soft tissue, andpleuropulmonary infections(Tong et al., 2015).

The ability of *S. aureus* to outwit the immune system, above and beyond its multidrug resistance (MDR) phenotype makes it as one of the most intractable pathogenic bacteria in the history of antibiotic

chemotherapy(Hiramatsu et al.. 2014). Methicillin and vancomycin resistanceare the two most notablepatterns. The spread ofmethicillin-resistant S. aureus(MRSA) has become a significant concern for both animal and human health worldwide (Ba et al., 2014; García-Álvarez et al., 2011;van Rijen et al., 2014). Methicillin resistance in S. aureus is predominantly mediated by the expression of mecA gene, which is located on a mobile genetic element: the staphylococcal cassette chromosome mec (SCCmec), encoding an altered penicillin-binding protein (PBP2a) with an exceedingly low susceptibility to beta-lactam antibiotics. Thus, S. aureuswill bepractically resistanttomost beta-lactam antibiotics(Hiramatsuet al., 2001).On the other hand, resistanceto vancomycinisaccomplished by horizontal transfer of a plasmid-born transposon carryingvanAgene from vancomycin-resistant Enterococcus to S. aureuscrosswise the genus barrier(Hiramatsu et al., 2014).

Hence, the current study was designed to investigate the presence of *S. aureus* in milk samples collected from dairy animals as well as human clinical samples, beside determination of its antimicrobial susceptibility pattern. Also, the prevalence of both *mecA* and *vanA* genes among some selected methicillin-resistant isolates was investigated.

2. Materials and methods

Sample collection

The samples were obtained fromEl-Minia Governorate, Egypt,situated 241 km south to Cairo, Egypt.

Milk Samples

One hundred and twenty milk samples were collected fromdairy animals including cows, buffaloes, sheep, and goats (30 samples of each). The samples were obtained from animals suffering from clinical and subclinical mastitis and transferred to the laboratory in an ice-cooled container

Human samples

Ninety clinical swabs were collected from abscesses, wounds, nose, and ears of patients attending various departments inElMinia University hospital. An oral approval was taken from the individuals included in this study before collection. Both milk samples and swabs were transferred to laboratory inan ice-cooled container for processing.

Isolation and identification of S. aureus

An aliquot $(10 \ \mu l)$ from each milk sample was inoculated onto mannitol salt agar and incubated at 37°C for 24h. On the other hand, the swabs were inoculated overnight into trypticsoya broth to be further cultivated onto mannitol salt agar and incubated at 37°C for 24h.Isolated yellow colonies showedGram and catalase positive cocci were further identified according toCollee et al.(1996).

Antimicrobial susceptibility of S. aureus isolates

Susceptibility of S. aureus isolates to the antimicrobial agents was tested using disk diffusion method according to the Clinical and Laboratory Standards Institute(CLSI, 2014). Eight antimicrobial agents of both veterinary and public health significance were used; Imipenem ciprofloxacin(CIP (IMP 10µg), 5µg), amoxicillin/clavulanic acid (AMC $20/10\mu g$), cefotaxime (CTX30µg), clindamycin(DA

2μg),cefoxitin(FOX30μg),sulphamethoxazole/tri methoprim(SXT 1.25/23.75μg),and doxycycline (DO 30μg).Resistance to cefoxitin was used as an indicator of methicillin resistance(CLSI, 2014).

VancomycinSusceptibility testing

Resistance to vancomycin disk (30-µg) was determined to detect isolates containing the *van*Avancomycin resistance gene (VRSA)using disk diffusion method.Such isolates must show no zone of inhibition around the disk (zone=6 mm) following the criteria of the Clinical and Laboratory Standards Institute (CLSI, 2012).

Genomic DNA extraction

Genomic DNAs of *S. aureus*isolates were extracted using a Thermo Scientific Gene JET Genomic DNA Purification Kit, sigma, USAaccording to the manufacturer's protocol. *PCR detection of mecA and vanA genes*

The primers used for amplification of

mecA and *vanA* genes are listed with their sequence and references in table (1). *Amplification of mecA gene*

PCR was performed with initial denaturation step at 95°C for 5 min, followed by 40 cycles of amplification consisting of 1 min of denaturation at 95°C, annealing at 47°C for 30 s and extension at 72°C for 30 s with a final extension step at 72°C for 5 min. *Amplification of vanA gene*

PCR was performed with initial denaturation step at 94°C for 3 min, followed by 30 cycles of amplification consisting of 1 min of denaturation at 94°C, annealing at 54°C for 1 min and extension at 72°C for 1 min with a final extension step at 72°C for 7 min.

 Table 1. Types of genes, primers sequence and references

Target	Primer Design	Product	Reference
gene		size (bp)	
mecA	F: 5' TAG AAA TGA CTG AAC GTC CG 3' R: 3' TTG CGA TCA ATG TTA CCG TAG 5'	154	(Schuenck et al., 2006)
van A	F: 5' GGGAAAACGACAATTGC3' R: 3'GTACAATGCGGCCGTTA5'	732	(Depardieu et al.,2004)

3. Results

Isolation rate of S.aureus

Examination of milk samples from different animals revealed that *S. aureus* was recovered at a rate of 67.5% (81 out of 120 samples). The highest rate of isolation was from cow's milk (70%), while the other animals exhibited an equal rate of recovery (66.6%). Regarding humans, 74% (67 out of 90 samples) were found positive for *S. aureus*.

Antimicrobial susceptibility of S.aureus isolates

Disk diffusion susceptibility testing revealed that human isolates exhibited a higher resistance than animal ones against all the tested antimicrobials except for clindamycin. Concerning imipenem, the results indicated that all animal isolates were found susceptible for it (Table 2).Additionally, MDR (i.e. resistance to three or more antimicrobials of different tested classes) was recorded at a higher percentage among*S. aureus* recovered from humans (70%) than that of animals (34.6%).

Phenotypic characterization of methicillinresistant S. aureus among the tested isolates

A total of 56 (83.6%) and 49 (60.5%) isolates of human and animal origin respectively showed resistance against cefoxitin and consequentlywere categorized phenotypically as

MRSA (Table 2).

Detection of mecA and vanA genes among MRSA

A total of 25 MRSA isolates (5 isolates from each host species) were investigated for detection of *mecA* and *vanA* genes. These isolates were MDR, resistant tocefoxitin and showed no inhibition zone around vancomycin disk.

The highest prevalence for *mec*A gene was detected amongst the isolates of cows, buffaloes, and humans (80% each). However only one (20%) isolate obtained from sheep was found positive. On the contrary, none of the goat's found harboring this gene (Table 3).

Regarding *van*Agene, the highest prevalence was noticed among *S. aureus* isolated from sheep (100%) while isolates recovered from cows, buffalo's and goat's milk revealeda prevalence rate of 40% for each host species. On the opposite side, all the tested human samples were negative for *van*A gene.

In general, both *mecA* and *vanA* genes were coexisted in 5 isolates out of 25 tested ones (2, 2, and 1 from cows, buffaloes and sheep respectively). On the contrary, both genes were absent in 6 isolates (3 from goats and 1 from each of cows, buffaloes, and sheep). Fig (1) showed example of some isolates that harbored the expected band of *van*A genes.

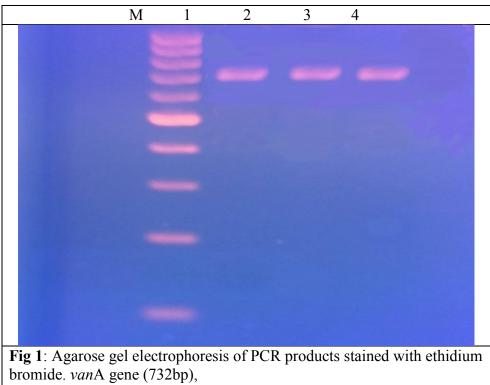
Detection of mecA and vanA genes among **MRSA**

A total of 25 MRSA isolates (5 isolates from each host species) were investigated for detection of mecA and vanA genes. These isolates were MDR, resistant tocefoxitin and showed no inhibition zone around vancomycin disk

The highest prevalence for mecA gene was detected amongst the isolates of cows, buffaloes, and humans (80% each). However only one (20%) isolate obtained from sheep was found positive. On the contrary, none of the goat's found harboring this gene (Table 3).

Regarding vanAgene, the highest prevalence was noticed among S. aureus isolated from sheep (100%) while isolates recovered from cows, buffalo's and goat's milk revealeda prevalence rate of 40% for each host species. On the opposite side, all the tested human samples were negative for vanA gene.

In general, both mecA and vanA genes were coexisted in 5 isolates out of 25 tested ones (2, 2, and 1 from cows, buffaloes and sheep respectively). On the contrary, both genes were absent in 6 isolates (3 from goats and 1 from each of cows, buffaloes, and sheep). Fig (1) showed example of some isolates that harbored the expected band of vanA genes.


Table 2. Percentage of antimicrobial resistant S. aureus of both animals and humans origin							
Antimicrobial	Cows	Buffaloes	Sheep	Goats	Total animal	Humans	
Agent	isolates	isolates	isolates	isolates	isolates	isolates	
	No(%*)	No (%)	No (%)	No (%)	No (%)	No (%)	
Imipenem	0 (0%)	0(0%)	0(0%)	0(0%)	0(0%)	18 (27.0)	
Cefoxitin	14(66.7)	8(40.0)	11(55.0)	16(80.0)	49(60.5)	56(84.0)	
Cefotaxime	4(19.0)	4(20.0)	0(0%)	10(50.0)	18(22.2)	55(82.1)	
Amoxicillin/	5(23.8)	7(35.0)	12 60.0)	17(85.0)	41(50.6)	56(84.0)	
clavulanic acid							
Trimethoprim	12(60.0)	3(15.0)	7(35.0)	11(55.0)	33(40.7)	54(80.6)	
sulfamethoxazole							
Ciprofloxacin	3(14.3)	2(10.0)	1(5.0)	0(0%)	6(7.4)	50(74.6)	
Clindamycin	17(81.0)	18(90.0)	14(70.0)	19(95.0)	68 (84.0)	59(88.1)	
Doxycycline	9(42.9)	5(25)	1(5)	4 (20)	19(23.5)	49(73.1)	
MDR	9(42.9)	10(50)	6(30)	12 (60)	37(45.7)	40 (59.7)	

f both animals

%: means percentage of resistant isolates in relation to the total tested isolates

Table 3. Distribution of mecA and vanA genes among the selected S.aureus isolates

Species	Number of examined isolates	mecA positive	vanA positive		
		Number	%	Number	%
Cows	5	4	80	2	40
Buffaloes	5	4	80	2	40
Goats	5	0	0	2	40
Sheep	5	1	20	5	100
Humans	5	4	80	0	0
Total	25	13	52	11	44

bromide. *van*A gene (732bp), M: 100 bp plus ladder (Size range: 100-1000 bp) positive samples: lane 1, 2, 3 negative control: lane 4

4. Discussion

In the currentstudy, S. aureus was detected in 67.5% of the examined milk samples. There wasn't notable difference in the prevalence in relation to the animal host. Theobtainableprevalence is much higher than that previously reported byElhaig and Selim(2015)in Egypt (40%) andLiet al.(2015) in China (56.5%), however, a higher rate(90%) was obtained in a study carried on goats with subclinical mastitis in Brazil (Martins et al., 2015).On the other hand, a prevalence of 74% was recorded from human clinical samples whichisnearer to previous studies in Egypt (Sobhy et al., 2012; Ahmed et al., 2014). The high isolation rates in the present work reflect the predominance of S.aureusin both animal milk and human clinical samples in the investigated area.

Testing the antimicrobial susceptibility of the recovered isolatesagainst drugs of both veterinary and human medicine exhibited worrisome findings. Alongside the high rate of methicillin resistance and MDR, vancomycin resistance was confirmed inS. aureus isolates of animals. The multiple resistance attitudes must be of concern since antibiotic resistance is carried on plasmids that can be transferred from staphylococcal species to another one (Werckenthi et al., 2001). Several reports worldwide have described MDR among S. aureus of both human and animal sources(Kumar et al., 2010; Shi et al., 2010; Hiramatsu et al., 2014).

MRSA was first appeared in the 1960s, soon after methicillin was introduced into clinical therapeutics.Thereafter, it was responsiblefor hospital outbreaks in Western Europe, Australia, and the United States (Barber, 1961;Jevons and Parker, 1964). Phenotypically, the present work revealed a total of 56 (83.6%) and 49 (60.5%) isolates of humans and animals respectively as MRSA.In Egypt, it was recorded that the prevalence was as high as 52% during the period between 2003 and 2005 (Falagas et al., 2013).

A total of 25 MRSA isolates were selected for the detection of *mec*Agene. The highest prevalence of *mec*A gene was detected among the selected isolates of cows, buffaloes and humans (80% each).Although all the tested isolates were phenotypically positive MRSA, 13 (52%) harbored *mec*A gene. This phenomenon coincided with that obtained by several literatures (Turutoglu et al., 2009; Kumar et al., 2010; Li et al., 2015).This might be attributed to the existence of *mec*A homologue known as*mec*C(García-Álvarez et al., 2011)or due to the occurrence of some mutations in the penicillinbinding protein genes (Turutoglu et al., 2010; Ba et al., 2014).

For periods, vancomycin long was considered as the drug of choice for treating S.aureusinfections, particularly MRSA (Holmes et al., 2012). However, a reduced susceptibility against it was observed for the first time in Japan(Hiramatsu et al., 1997).Vancomycinaureus (VRSA) strains whose resistantS. resistance is due to acquisition of vanA resistance gene from enterococci was first emerged in the United Statesin 2002. Later, VRSA wasdetected in Iran and India, even though it remains rare cases worldwide (Howden al.. 2010; Holmes et al.. 2012).A et previousliterature in Egypt has recorded resistance against vancomycin in S.aureus of

References

Ahmed. E.F., G.F., Abdalla, Gad. A.M., Hasaneen, A.M., Abdelwahab, S.F.(2014).Prevalence of methicillin-resistant Staphylococcus aureus among Egyptian patients after surgical interventions.Surgicalinfections15,404-411. Aires-de-Sousa, M., Parente, C.E., Vieira-da-Motta, O., Bonna, I.C., Silva, D.A., de Lencastre, H.(2007). Characterization of Staphylococcus aureus isolates from buffalo, bovine, ovine, and caprine milk samples collected in Rio de Janeiro State, Brazil. Applied

animal origin, but it was not accompanied by genetic characterization (Radwan et al., 2015).In the current study, the same MRSA isolates (n=25) which were selected for the detection of mecA gene were simultaneously investigated for vanA gene. The highest prevalence among the tested isolates was noticed in S.aureus isolated from sheep (100%), while those originated from cows, buffalos, and goats revealed a prevalence of 40% each. On the contrary, all tested isolatesrecovered from human samples were negative for vanAgene. The emergence of resistance against vancomycin, not commonly used in livestock, could be as referred to the fact that livestock act as a reservoir of vancomycinresistant Enterococcusfaecalispossessed the van Agene(Bates et al., 1994).Furthermore,S. aureushas the ability to secrete an E. faecalisspecific sex pheromone that trigger genes transfer, including vancomcyin resistance gene, which was previously proved in the laboratory byNoble et al. (1992).

This study concluded the predominance of *S. aureus* in human clinical samples as well as milk samples of dairy animalssuffered from either clinical or subclinical mastitis, a high rate of methicillin resistance, and MDR. Vancomycin resistance was confirmed by detection of *van*A gene in *S. aureus* of animals. Consequently, effective measures are needed to identify causes of emerging vancomycin-resistant *S. aureus* in animals to avoid the potential of its transfer to humans.

and Environmental Microbiology 73, 3845-3849.

Ba, X., Harrison, E.M., Edwards, G.F., Holden, M.T., Larsen, A.R., Petersen, A., Skov, R.L., Peacock, Parkhill, J., Paterson, S.J., G.K., Holmes, M.A. (2014). Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing but lack the mec gene. Journal of Antimicrobial Chemotherapy 69, 594-597.

Banerjee, R., Gretes, M., Harlem, C., Basuino, L., Chambers, H.F.(2010). A *mecA*-Negative

Strain of methicillin-resistant *Staphylococcus aureus* with high-level beta-Lactam resistance contains mutations in three genes. Antimicrobial Agents and Chemotherapy 54, 4900-4902.

Barber, M.(1961).Methicillin-resistant staphylococci.Journal of Clinical Pathology 14, 385-393.

Bates, J., Jordens, J.Z., Griffiths, D.T.(1994).Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man.Journal of Antimicrobial Chemotherapy 34,507-514.

Carfora, V., Giacinti, G., Sagrafoli, D., Marri, N., Giangolini, G., Alba, P., Feltrin, F., Sorbara, L., Amoruso, R., Caprioli, A., Amatiste, S., Battisti, A. (2016). Methicillin-resistant and methicillin-susceptible *Staphylococcus aureus* in dairy sheep and in-contact humans: An intra-farm study. Journal of Dairy Science 99, 4251-4258.

CLSI.Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement.(2014). CLSI document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI.Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement.(2012). CLSI document M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute.

Collee, J.G., Fraser, A.G., Marmion, B.P, Simmons, A.(1996).Bacteria and related organisms. In: Mackie and McCartney's Practical Medical Microbiology,14th ^{Ed}. Churchill living stone, Edinburgh and New York, pp. 131-149.

Depardieu, F., Perichon, B., Courvalin, P. (2004).Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR.Journal of Clinical Microbiology 42, 5857-5860.

Elhaig, M.M., Selim, A.(2015).Molecular and bacteriological investigation of subclinical mastitis caused by *Staphylococcus aureus* and *Streptococcus agalactiae* in domestic bovids from Ismailia, Egypt.Tropical Animal Health and Production 47,271-276. Falagas, M.E., Karageorgopoulos, D.E., Leptidis, J., Korbila, I.P.(2013). MRSA in Africa: filling the global map of antimicrobial resistance. PLoS One 8, e68024.

García-Álvarez, L., Holden, M.T., Lindsay, H., Webb, C.R., Brown, D.F., Curran, M.D., Walpole, E., Brooks, K., Pickard, D.J., Teale, C., Parkhill, J., Bentley, S.D., Edwards, G.F., Girvan, E.K., Kearns, A.M, Pichon, B., Hill, R.L., Larsen, A.R., Skov, R.L., Peacock, S.J., Maskell. D.J., Holmes, M.A. (2011). Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine population in the UK and Denmark: a descriptive The study. Lancet Infectious Diseases 11, 595-603.

Holmes, N.E., Johnson, P.D., Howden, B.P. (2012).Relationship between vancomycinresistant *Staphylococcus aureus*, vancomycinintermediate *S. aureus*, high vancomycin MIC, and outcome in serious *S. aureus* infections. Journal of Clinical Microbiology 50,2548-2552. Howden, B.P., Davies, J.K., Johnson, P.D., Stinear, T.P., Grayson, M.L.(2010). Reduced

vancomycin susceptibility in *Staphylococcus aureus*, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical Microbiology Reviews 23, 99-139.

Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Hosoda, Y., Hori, S., Fukuchi, Y., Kobayashi, I.(1997).Dissemination in Japanese hospitals of strains of *Staphylococcus aureus* heterogeneously resistant to vancomycin. Lancet 350, 1670-1673.

Hiramatsu, K., Cui, L.Z., Kuroda, M., Ito, T.(2001).The emergence and evolution of methicillin-resistant *Staphylococcus aureus*. Trends in Microbiology 9, 486-493.

Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., Baba, T. (2014).Multi-drug-resistant *Staphylococcus aureus* and future chemotherapy. Journal of Infection and Chemotherapy 20,593-601.

Jevons, M.P., Parker, M.T.(1964). The evolution of new hospital strains of *Staphylococcus*

aureus. Journal ofClinical Pathology 17: 243-50.

Kumar, R., Yadav, B.R., Singh, R.S.(2010). Genetic determinants of antibiotic resistance in *Staphylococcus aureus* isolates from milk of mastitic crossbred cattle. Current Microbiology 60,379-386.

Li, L., Zhou, L., Wang, L., Xue, H., Zhao, X.(2015).Characterization of methicillinresistant and-susceptible staphylococcal isolates from bovine milk in Northwestern China.PLoS One 10, e0116699.

Li, T, Lu, H., Wang, X., Gao, Q., Dai, Y., Shang, J., Li, M. (2017). Molecular Characteristics of *Staphylococcus aureus* Causing Bovine Mastitis between 2014 and 2015. Frontiers in Cellular and Infection Microbiology 7,127

Martins, K.B., Faccioli-Martins, P.Y., Riboli, D.F., Pereira, V.C., Fernandes, S., Oliveira, A.A., Dantas, A., Zafalon, L.F, da Cunha Mde, L. (2015). Clonal profile, virulence and resistance of *Staphylococcus aureus* isolated from sheep milk Brazalian Journal of Microbiology 46,535-543.

Noble, W.C., Virani, Z., Cree, R.G., (1992). Cotransfer of vancomycin and other resistance genes from *Enterococcus faecalis* NCTC 12201 to *Staphylococcus aureus*. FEMS Microbiology Letters 93,195-198.

Radwan, I.A.H., Shehata, A.A.E., Abdel-Ghani, A.E., Abdullah, M.M., Abdraboh, A.A.M.(2015).Phenotypic and genotypic diversity of *Staphylococcus aureus* isolated from livestock and human.GlobalVeterinaria 14, 274-281.

Schuenck, R.P., Lourenco, M.C., Iório, N.L., Ferreira. A.L., Nouér, S.A., Santos. K.R.(2006).Improved and rapid detection of methicillin-resistant Staphylococcus aureus nasal carriage using selective broth and multiplex PCR.Research Microbiology in 157,971-975.

Shi, D., Hao, Y., Zhang, A., Wulan, B., Fan, X.(2010). Antimicrobial resistance of *Staphylococcus aureus* isolated from bovine mastitis in China. Transboundaryand Emerging Diseases 57, 221-224.

Sobhy, N., Aly, F., Abd El Kader, O., Ghazal, A., Elbaradei, A.(2012). Community-acquired methicillin-resistant *Staphylococcus aureus* from skin and soft tissue infections (in a sample of Egyptian population): analysis of *mec* gene and staphylococcal cassette chromosome.The Brazilian journal of infectious diseases 16,426-431.

Thammavongsa, V., Kim, H.K., Missiakas, D., Schneewind, O.(2015).Staphylococcal manipulation of host immune responses.Nature reviews. Microbiology 13,529-543.

Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G. Jr.(2015).*Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews 28,603-661.

vanRijen, M.M., Bosch, T., Verkade, E.J., Schouls, L., Kluytmans, J.A., CAM Study Group.(2014).Livestock-associated MRSA carriage in patients without direct contact with livestock.PLoS One 9, e100294.

Turutoglu, H., Hasoksuz, M., Ozturk, D., Yildirim, M., Sagnak, S.(2009). Methicillin and aminoglycoside resistance in *Staphylococcus aureus* isolates from bovine mastitis and sequence analysis of their *mecA* genes. Veterinary research communications 33, 945-956.

Werckenthin, C., Cardoso, M., Martel, J.L., Schwarz, S.(2001).Antimicrobial resistance in staphylococci from animals with particular reference to bovine *Staphylococcus aureus*, porcine *Staphylococcushyicus*, and canine *Staphylococcus intermedius*.Veterinary Research 32,341-362.