In Vitro Antimicrobial and Antioxidant Activities of Monoterpenes against some Food-Borne Pathogens

Gehan I. Kh. Marei¹; Entsar I. Rabea¹ and M. E. I. Badawy²

¹ Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt

² Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545 El-Shatby, Alexandria University, Alexandria, Egypt

ABSTRACT

The present work describes the antimicrobial activity of twenty-five monoterpenes against Gram-negative *Escherichia coli* and Gram-positive *Staphylococcus aureus* and antifungal activity against *Aspergillus flavus*. The antibacterial activity was evaluated by broth microdilution technique as a minimum inhibitory concentration (MIC) and the antifungal activity was estimated by mycelia radial growth technique as (EC₅₀). The results showed that thymol and α -terpineol were the most potent against *E. coli* with MIC of 45 and 55 mg/L, 135 and 225 mg/L against *S. aureus*, respectively. The results also showed that thymol exhibited the highest antifungal activity against *A. flavus* with EC₅₀ 20 mg/L. Furthermore, the antioxidant properties were explored using *N,N*-dimethyl-1,4-phenylenediamine (DMPD) and the results showed that geraniol were the most potent compound (IC₅₀ = 19 mg/L).

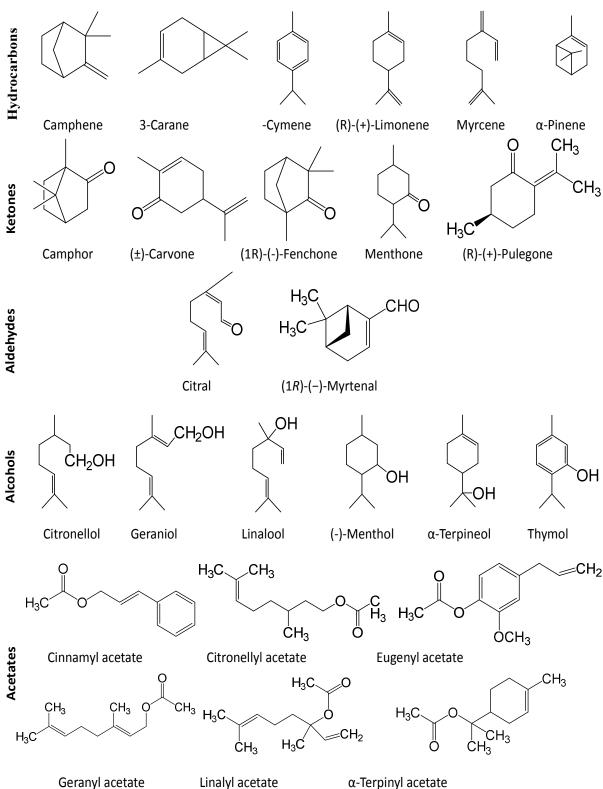
Keywords: Monoterpenes; Escherichia coli; Staphylococcus aureus; Aspergillus flavus; Antimicrobial activity; Antioxidant activity.

INTRODUCTION

There is main attention for the food producer, food integrity and consumers authorities to Foodborne diseases. Lately, there is a major attempt to detection the natural antimicrobials that can inhibit fungal and bacterial development in foods in order to improve quality and shelf life. Also, synthetic preservatives caused worried about the safeness food used by food consumers. As a result, natural products have become used increasing as alternative food preservatives (Gyawali and Ibrahim 2014; Smid and Gorris 1999; Tajkarimi et al. 2010). Due to that, there are continued in research about the antimicrobials derived from a variety of natural sources. Natural antimicrobials have obtained from diverse sources like animals, plants, algae, fungi, and bacteria. plant antimicrobials showed high efficiency in food applications like food safety and preservation (Gyawali and Ibrahim 2012; Myszka et al. 2019; Rafig et al. 2016; Tajkarimi et al. 2010). Polyphenolic compounds, from plant-derived compounds, have change and structural diversities in chemical composition, and thus they have antibacterial effectiveness (Stojković et al. 2013). The antimicrobial efficacy of plant extracts may be due to the presence of phenolic compounds or another hydrophobic component in the essential oils (Dorman and Deans 2000; Oyedeji-Amusa and Ashafa 2019). The monoterpenes secondary metabolites of plants first isolated by extraction and distillation procedures (Correa et al. 2019; Croteau et al. 2000). They are naturally formed from the condensation of two isoprene units. They have shown in a broad extent of pests such as bacteria, fungi, and insects, which make these compounds useful as potential alternatives to harmful synthetic pesticides (Garcia et al. 2008; Abdelgaleil et al. 2009; Badawy et al. 2010; Abdel Rasoul et al. 2012; Rabea and Badawy 2014; Herrera et al. 2015; Marchese et al. 2017; Ieri et al. 2019; Saad et al. 2019).

Pathogenic fungi cause diversity diseases in humans or plant organisms. *Aspergillus flavus* is responsible for aflatoxin contamination of crops before to harvest or during storage (Presterl *et al.* 2019; Yu *et al.* 2004). A. flavus causes disease in different ways like the production of mycotoxins , induction of allergenic responses and through systemic infections (Machida and Gomi 2010).

Escherichia coli is a notable pathogen that causes food borne illness (Karch *et al.* 2005; Mayton *et al.* 2019). illness Hemorrhagic colitis due to Infection to E. coli. Most illness has been connected with eating undercooked contaminated ground beef and drinking unpasteurized milke (Cody *et al.* 1999; Thompson and Darwish 2019) or drinking contaminated water (Sharma and Dean-Nystrom 2003). E. coli can occure the infection in various ways like asymptomatic fecal shedding of the organism. Staphylococcus aureus is a cause of hospital- and community-acquired infections. It is a Gram-positive round-shaped bacterium and It is a facultative anaerobe that can grow without the need for oxygen (Buchan *et al.* 2019; Masalha *et al.* 2001).


the purpose of this research was to study the comparative toxicities of different classes of monoterpenes as the major components of plant essential oils against Gram-negative (Escherichia Coli ATCC 8739), and Grampositive (Staphylococcus aureus ATCC 6538) bacteria and Aspergillus flavus fungus. All compounds were evaluated by the antibacterial, antifungal, and antioxidant activities *in vitro*.

MATERIALS AND METHODS

1. Chemical used

 β -cymene (99%), Camphene (95%), 3-carane (90%), (R)-(+)-limonene (97%), myrcene (95%), α-pinene (98%), camphor (98%), (±)-carvone (98%), (1R)-(-)fenchone (98%), menthone (90%), (R)-(+)-pulegone (97%), citral (96%), (1R)-(-)-myrtenal (98%), citronellol (95%), geraniol (98%), linalool (97%), (-)-menthol (99%), α -terpineol (96%), thymol (98%), cinnamyl acetate (98%), citronellyl acetate (95%), eugenyl acetate (98%), geranyl acetate (97%), linalyl acetate (97%), α-terpinyl acetate (95%) were obtained from Sigma-Aldrich Co. (USA). Triphenyltetrazolium chloride (TTC), N,N-dimethyl-1,4phenylenediamine (DMPD), a-tocopherol and ascorbic acid were purchased from Sigma Aldrich Co. (≥ 95% purity). The chemical structures of the tested monoterpenes are present in Figure 1. Potato Dextrose Agar (PDA) was purchased from Oxoid Ltd. (Basingstoke, Hampshire, UK). Ceftriaxone was purchased from Pharco Co. Carbendazim was purchased from Kafr Elzyat company, Egypt. All of the other reagents used were of high purity grade.

Geranyl acetate

Figure 1. Chemical structure of monoterpenes.

3. In vitro assay of antibacterial activity

(Escherichia Coli ATCC 8739) Gram-negative and (Staphylococcus aureus ATCC 6538) Gram-positive bacteria were obtained from the Faculty of Agriculture, Alexandria University, Department of Dairy Science, Microbiology Laboratory. The cultures were maintained on (NA: Peptone 5 g, Beef extract 3 g, NaCl 8 g) nutrient agar medium at 37°C. The antibacterial activities of the monoterpenes were evaluated out in 96-well microtiter plates according (Aruna Kumari et al. 2017; El-Kilany et al. 2015). It has been diluted with (NB) sterile Nutrient broth medium to a concentration of 5×105 CFU/mL calculated as a number of colonies× dilution factor/volume of culture plate using hemocytometer. The compounds were dissolved in dimethyl sulfoxide (DMSO) to obtain the main stock solution (5000 μ g/mL).

The solutions contain the compounds put in the wells, followed by the addition of NB medium and then 20 μ L of bacterial suspension. The final volume in each well was 200 μ L and the concentrations of 0.0, 37.5, 62.5, 75, 150, 250, 300, 500, 600, and 1000 µg/mL were tested for each compound. Negative and positive controls wells were performed without monoterpenes. The contents of each well were mixed on a microplate shaker at 200 rpm for 1 min prior to incubation for 24 h at 37°C. To indicate respiratory activity the presence of color was determined after adding 25 μ L/well of triphenvltetrazolium chloride (TTC, Sigma) dissolved in water (0.25%, w/v) as a chromogenic marker and incubated under appropriate cultivation conditions for 30 min in the dark (Badawy et al. 2016). The absorbance was measured at 492 nm in an Ultra Microplate Reader (Robonik, PVT, LTD). Ceftriaxone as a standard drug was also tested for comparison at the concentrations of 0.0, 3.75, 6.25, 7.5, 15, 25, 30, 50, 60, and 100 µg/mL. The (MIC) minimum inhibition concentration values have been calculated.

3. In vitro assay of antifungal activity

It determined the antifungal activity of the tested monoterpenes by (Bajpai *et al.* 2007). It was added suitable volumes of the stock solutions of monoterpenes in DMSO to the PDA medium immediately. The monoterpenes were examined at concentrations of 0.0, 1.0, 10, 50, 100, 150, 200, 250, 350, 500, 1000, and 2000 mg/L. A carbendazim as a standard fungicide was evaluated at concentrations of 1, 10, 25, 50, 100 and 200 mg/L. Each concentration was tested in triplicate. Growth inhibition was calculated as the following equation (Pandey *et al.* 1982):

Mycelial growth inhibition (%) =
$$\frac{DC - DT}{DC} \times 100$$

DC and DT are the diameters of growth at the control and treatment. The linear regression method was used to determine the concentration of monoterpenes that inhibits the colony growth of fungi by 50% (EC50).

4. In vitro assay of antioxidant activity

The free radical scavenging activity as antioxidant of the monoterpenes was evaluated using the stable radical *N*,*N*-dimethyl-1,4-phenylenediamine (DMPD) with concentrated 100 mM DMPD solution (Asghar *et al.* 2007; Badawy *et al.* 2016; Fogliano *et al.* 1999). Standard solution of ascorbic acid (50-1000 mM) was prepared in deionized water. 100 μ L of diluted samples were introduced into the sample and % inhibition of the radical cation was calculated for the standards and sample solutions as follows:

The concentration at which there is 50% fall in absorbance of DMPD radical solution was determined from the graph (IC_{50}). The IC_{50} value in μM was calculated from the above obtained concentration value. Ceftriaxone was used as antioxidant reference.

5. Statistical Analysis

Statistical analysis was did using the SPSS 25.0. The log dose-response curves to determine the IC50 and EC50 values for the antioxidant and antifungal bioassay, respectively depended on the probit analysis.

RESULTS AND DISCUSSION

1. In vitro antibacterial activity

The hydrocarbon and oxygenated monoterpenes were assayed for in vitro antibacterial activity against (E. coli) and (S. aureus) in comparison with ceftriaxone as a standard antibacterial agent. The MIC values of the tested compounds are summarized in Table 1 and expressed as mg/L. The control showed no effect in the experiments. The results revealed that all the tested compounds exhibited remarkable in vitro antibacterial activity against tested bacterial strains. However, the activity was lower than the standard drug (MIC of ceftriaxone = 0.72 and 13.1mg/L against E. coli and S. aureus, respectively). The groups of compounds divided to five groups, hydrocarbons, ketones, aldehydes, alcohols and acetates as seen in Table 1. Among hydrocarbons group, myrcene and 3-carane were the most potent with MIC of 65 and 140 mg/L, against E. coli and with MIC of 260 and 275 mg/L against S. aureus, respectively. However, camphene and α pinene were less active compounds with MIC of 540 and 550 mg/L against E. coli and with MIC of 610 and 600 mg/L against S. aureus, respectively. From ketones group, (R)-(+)-pulegone and menthone were most effective compounds with MIC of 60 and 70 mg/L, against E. coli and with MIC of 385 and 400 mg/L against S. aureus, respectively. There was no significance deference between (±)-carvone and (1R)-(-)-fenchone against the two tested bacteria. Nevertheless, camphor exhibited the lowest activity with MIC of 560 and 800 mg/L against E. coli and S. aureus, respectively. In aldehydes group, citral displayed the highest inhibition with MIC of 180 and 290 mg/L against E. coli and S. aureus, respectively, while (1R)-(-)myrtenal was the lowest active (MIC = 275 and 550 mg/L against E. coli and S. aureus, respectively). Among alcohols group, thymol and α -terpineol were the most persuasive with MIC of 45 and 55 mg/L, against E. coli and with MIC of 135 and 225 mg/L against S. aureus, respectively. However, geraniol and (-)-menthol were the lowest active compounds with MIC of 250 and 275 mg/L against E. coli and with MIC of 300 and 400 mg/L against S. aureus, respectively. There was no significance deference between linalool and citronellol against the two tested bacteria. For acetates group, citronellyl acetate and geranyl acetate showed the greatest activity with MIC of 390 and 400 mg/L against E. coli and with MIC of 450 and 600 mg/L against S. aureus, respectively. There was no significance deference between eugenyl acetate, cinnamyl acetate and α -terpinyl acetate against the two tested bacteria. Conversely, linalyl acetate displayed the bottommost effective with MIC of 600 and 850 mg/L against E. coli and S. aureus, respectively. It can be concluded that alcoholic monoterpenes were the most antibacterial agents against the two tested bacteria compared with the other groups. When we consider the susceptibility of the microorganisms, another point deserves awareness; E. coli was more sensitive to the tested compounds than S. aureus.

Thymol, eugenol and carvacrol were highly inhibition against 16 Gram-negative bacteria and nine Gram-positive bacteria (Dorman and Deans 2000). The categories of this compounds have bactericidal or bacteriostatic agents, depending upon the concentration used. EOs containing phenols or aldehydes, such as citral, thymol, cinnamaldehyde, carvacrol, eugenol or carvacrol as the major components have the highest antibacterial activity, followed by EOs containing terpene alcohols. Other EOs, containing esters or ketones, such as α -thujone, geranyl acetate or β -myrcene had much weaker antibacterial activity. While volatile oils including terpene hydrocarbons were usually inactive (de Barros *et al.* 2009; Tajkarimi *et al.* 2010; Ait-Ouazzou *et al.* 2011; Rao *et al.* 2019).

High antimicrobial activity of Thymus and Origanum species has been attributed to their phenolic components such as thymol and carvacrol (Hazzit *et al.* 2009; Nabet *et al.* 2019; Soković *et al.* 2009). The presence of an oxygen function in the framework increases the antimicrobial properties of terpenoids (Naigre *et al.* 1996).

Table	1. Antibacterial activity of monoterpenes and
	ceftriaxone as a standard drug against E. coli
	(ATCC 8739) and S. <i>aurous</i> (ATCC 6538)

(ATCC 8739) and S. aureus (ATCC 6538) MIC (mg/L)					
Class	Compound				
	Camphene				
	3-Carane	140			
	β-Cymene	$\begin{tabular}{ c c c c c } \hline MIC (mg/L) \\ \hline E. Coli & S. aut \\ 540 & 611 \\ 140 & 27 \\ 275 & 300 \\ 275 & 300 \\ 65 & 266 \\ 550 & 600 \\ \hline 560 & 800 \\ 200 & 422 \\ 000 & 275 & 500 \\ 70 & 400 \\ 000 & 275 & 500 \\ 70 & 400 \\ 000 & 422 \\ 180 & 290 \\ 180 & 290 \\ 180 & 290 \\ 135 & 255 \\ 250 & 300 \\ 130 & 266 \\ 275 & 400 \\ 55 & 222 \\ 45 & 13 \\ 130 & 266 \\ 275 & 400 \\ 55 & 222 \\ 45 & 13 \\ 140 & 530 & 67 \\ 140 & 390 & 45 \\ 140 & 500 & 65 \\ 140 & 390 & 45 \\ 140 & 500 & 65 \\ 140 & 600 \\ \hline \end{tabular}$			
Hydrocarbons	(R)-(+)-Limonene	400	(mg/L) S. aureus 610 275 300 550 260 600 800 420 500 400 385 290 550 265 400 225 135 675 450 650 600 850 790		
	Myrcene	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	260		
	α-Pinene	550	MIC (mg/L) Coli S. aureus 40 610 40 275 75 300 00 550 55 260 50 600 60 800 00 420 75 500 70 400 50 385 80 290 75 550 35 250 50 300 30 265 75 400 55 225 15 135 30 675 90 450 00 650 00 650 00 650 00 850 50 790		
	Camphor	560	(mg/L) S. aureus 610 275 300 550 260 600 800 420 500 400 385 290 550 250 300 265 400 225 135 675 450 650 600 850 790		
	(±)-Carvone	200	420		
Ketone	(1R)-(-)-Fenchone	275	500		
	Menthone	70	400		
	(R)-(+)-Pulegone	mphene 540 610 Carane 140 275 Cymene 275 300 -Limonene 400 550 yrcene 65 260 Pinene 550 600 mphor 560 800 Carvone 200 420)-Fenchone 275 500 enthone 70 400)-Pulegone 60 385 Citral 180 290 -)-Myrtenal 275 550 ronellol 135 250 graniol 250 300 nalool 130 265 Menthol 275 400 erpineol 55 225 hymol 45 135 myl acetate 530 675 ellyl acetate 390 450 nyl acetate 500 650	385		
Aldaharda	Citral	E. Coli S. aureu 540 610 140 275 275 300 400 550 65 260 550 600 560 800 200 420 275 500 70 400 60 385 180 290 275 550 135 250 250 300 130 265 275 400 55 225 45 135 530 675 390 450 500 650 400 600 600 850			
Aldehyde	(1R)-(-)-Myrtenal	275	MIC (mg/L) Coli S. aureux 540 610 140 275 275 300 400 550 65 260 550 600 560 800 200 420 275 500 70 400 60 385 180 290 275 550 135 250 200 265 275 400 55 225 45 135 530 675 390 450 500 650 400 600 600 850 550 790		
	Citronellol	135	S. aureus 610 275 300 550 260 600 800 420 500 400 385 290 550 250 300 265 400 225 135 675 450 650 600 850 790		
	Geraniol	E. Coli S. aureus 540 610 140 275 275 300 65 260 550 600 550 600 550 600 560 800 200 420 ne 275 500 70 400 ne 60 385 180 290 nal 275 550 250 300 135 250 250 300 130 265 275 400 55 225 45 135 te 530 675 te 530 675 te 500 650 e 500 650 e 500 650 e 600 850 te 55	300		
Alcohol	Linalool		265		
Alcohol	(-)-Menthol		400		
	a-Terpineol				
	Thymol	45	135		
	Cinnamyl acetate	530	C (mg/L) S. aureu: 610 275 300 550 260 600 800 420 500 400 385 290 550 250 300 265 400 225 135 675 450 650 600 850 790		
	Citronellyl acetate	390	450		
Acetate	Eugenyl acetate	500	650		
	Geranyl acetate	400	600		
	Linalyl acetate		600 850		
	α-Terpinyl acetate	550	790		
	Ceftriaxone	0.727	13.10		

MIC: Mininmum inhibitory concentration.

2. In vitro antifungal activity

The hydrocarbon and oxygenated monoterpenes compounds were assayed for *in vitro* antifungal activity against the aflatoxin-producing fungus *Aspergillus flavus* in comparison with carbendazim as a standard fungicide. The EC₅₀ values of the tested compounds are summarized in Table 2 and expressed as mg/L. DMSO was taken as a control, which showed no effect in the experiments. The results revealed that all the tested essential oils exhibited remarkable *in vitro* antifungal activity against tested fungus strain. However, the activity was lower than the standard fungicide (EC₅₀ of carbendazim = 19.0 mg/L against *A. flavus*). The groups of compounds divided to five groups, hydrocarbons, ketones, aldehydes, alcohols and acetates. Among hydrocarbons group, (R)-(+)-limonene, 3-carane and myrcene were the strongest antifungal agents with EC₅₀ of 238, 259 and 288 mg/L, respectively. Nonetheless, β-cymene was the lowest antifungal activity compound with EC₅₀ of 1051 mg/L. From ketone group, (R)-(+)pulegone was most effective compound with EC₅₀ of 255 mg/L. There was no significance deference between camphor and menthone against the tested fungus. On the other hand, (\pm) -carvone exhibited the lowest activity with EC_{50} of 550 mg/L. In aldehydes group, citral revealed effective action with EC50 of 212 mg/L while (1R)-(-)myrtenal was the lowest antifungal activity one in this group with EC_{50} of 501 mg/L. Among alcohols group, thymol was the most persuasive against A. flavus with EC_{50} of 20 mg/L followed in descending order by citronellol (EC₅₀ = 87 mg/L). However, α -terpineol was the lowest active compound with EC50 of 407 mg/L. There was no significance deference between linalool and geraniol against the tested fungus. For acetates group, geranyl acetate presented the greatest activity with EC₅₀ of 348 mg/L. There was no significance deference between eugenyl acetate and citronellyl acetate. Conversely, linalyl acetate and a-terpinyl acetate displayed the bottommost effective with EC₅₀ of 636 and 755 mg/L, respectively. It can be concluded that alcoholic monoterpenes were the most antifungal agents against the tested fungus compared with the other groups.

Aspergillus genus, which presents species infesting living plants (e.g. *A. flavus*) and stored food products, is responsible for food contamination all over the world (Kohiyama *et al.* 2015). The growth of in foodstuffs is toxicologically significant since some species are known to produce mycotoxins when exposed to suitable conditions (Moreira *et al.* 2010).

Several research studies reported that the monoterpenes exhibited antifungal activity against a wide range of microorganisms (Marchese et al. 2016; Santos et al. 2018; Teixeira et al. 2018; Zhou et al. 2019). Thymol, Trans-anethole, menthol, and zingiberene are the major element of essential oils of thyme, fennel, mint, and ginger, respectively. The effective concentrations for ginger, thyme, mint and fennel were 80, 50, 50 and 50% (oil/DMSO; v/v), respectively. Thymol, Trans-anethole, menthol, and zingiberene showed antifungal effect and the thyme essential oil highlighted in the inhibition of mycelial growth and sporulation of A. flavus (Silva et al. 2012). Nguefack et al. (2004) reported that the thyme essential oil at 200 mg/L reduced 81% of the radial growth of A. flavus. At 1000 mg thyme/L reduce 100% of the radial growth of A. flavus. Antifungal activity of thyme was assessed in culture medium and tomato paste against A. flavus. Results showed that 350 ppm of the thyme oil has strongest inhibition of A. flavus growth (Omidbeygi et al. 2007).

Carvacrol and thymol were tested *in vitro* against seven kinds of plant pathogenic fungi and the results showed both compounds exhibited broad spectrum of activity and strong antifungal activity has been attributed to their monoterpene and phenolic hydroxyl, and the position of phenolic hydroxyl showed less effect on antifungal activity. Ester derivatives of carvacrol and thymol were more antifungal activity than carvacrol and thymol (Wang *et al.* 2018).

Class	Compound	EC ₅₀ (mg/L)	95% Confidence limits		Slong SE	Intervent CE	χ^2
			Lower	Upper	Slope ± SE	Intercept ±SE	χ
	Camphene	318	194	429	1.14 ± 0.20	-2.85±0.57	3.71
	3-Carane	259	203	309	2.47±0.30	-5.96±0.80	3.17
Hydrocarbons	β-Cymene	1051	881	1297	1.76 ± 0.21	-5.32±0.61	0.16
riyulocaloolis	(R)-(+)-Limonene	238	143	323	1.34±0.22	-3.19±0.61	3.54
	Myrcene	288	203	365	1.60 ± 0.22	-3.93±0.62	3.15
	α-Pinene	433	293	568	1.11 ± 0.20	-2.92±0.56	2.38
	Camphor	373	165	562	3.04±0.30	-7.82±0.81	4.82
	(±)-Carvone	550	244	1082	3.36±0.28	-9.20±0.79	8.80
Ketone	(1R)-(-)-Fenchone	412	90	715	1.91±0.22	-5.00±0.61	4.51
	Menthone	369	311	425	2.53±0.26	-6.50±0.71	3.5
	(R)-(+)-Pulegone	255	224	286	2.62±0.35	-6.31±0.86	0.40
Aldahada	Citral	212	141	275	1.79±0.25	-4.17±0.67	0.86
Aldehyde	(1R)-(-)-Myrtenal	501	305	741	3.26±0.29	-8.80±0.79	4.61
	Citronellol	87	66	121	1.07±0.15	-2.08±0.27	2.02
	Geraniol	287	163	396	1.10±0.20	-2.71±0.57	1.19
Alcohol	Linalool	201	114	280	1.39±0.23	-3.20±0.63	3.66
Alcohol	(-)-Menthol	304	183	412	1.15±0.20	-2.85±0.57	0.58
	a-Terpineol	407	335	478	2.08±0.23	-5.42±0.64	1.89
	Thymol	20	14	27	1.19±0.15	-1.57±0.25	2.98
	Cinnamyl acetate	514	265	810	2.44±0.24	-6.63±0.66	4.28
	Citronellyl acetate	493	430	559	2.65±0.25	-7.13±0.69	3.77
Apototo	Eugenyl acetate	401	49	759	2.53±0.25	-6.59±0.69	7.80
Acetate	Geranyl acetate	348	217	466	1.11±0.20	-2.83±0.57	1.17
	Linalyl acetate	636	562	718	2.72±0.24	-7.62±0.69	2.94
	α-Terpinyl acetate	755	671	850	2.82±0.25	-8.12±0.71	2.38
	Carbendazim	19	9.0	34	1.08±0.09	-1.40±0.14	11.27

Table 2. Antifungal activity of monoterpenes and carbendazim as a standard fungicide

EC₅₀: Half maximal effective concentration.

 χ^2 : Chi-squared.

3. In vitro antioxidant activity

The hydrocarbon and oxygenated monoterpenes compounds were assayed for in vitro antioxidant activity in comparison with α -tocopherol as a standard antioxidant agent. The IC₅₀ values of the tested compounds are summarized in Table 3 and expressed as mg/L. DMSO was taken as a control, which showed no effect in the experiments. The results revealed that all the tested compounds exhibited remarkable in vitro antioxidant activity. Among hydrocarbons group, myrcene was the strongest antioxidant agent with IC50 of 22.13 mg/L followed by (R)-(+)-limonene and 3-carane (IC₅₀ = 291.8and 297.7 mg/L, respectively). Nevertheless, camphene, α pinene and β -cymene were the lowest active compounds with IC₅₀ of 868, 880 and 916 mg/L, respectively. For ketones, (R)-(+)-pulegone was the most effective compound with IC50 of 218 mg/L. There was no significance deference between (±)-carvone and (1R)-(-)fenchone. On the other hand, camphor and menthone exhibited the lowest activity with IC₅₀ of 1101 and 1217 mg/L, respectively. In aldehydes group, (1R)-(-)-myrtenal revealed effective action with IC₅₀ of 285 mg/L, while citral was the lowest active one with IC₅₀ of 1052 mg/L. Among alcoholic monoterpenes, geraniol was the most persuasive antioxidant with IC₅₀ of 19 mg/L followed in descending order by thymol (IC₅₀ = 31 mg/L). However, (-)-menthol was the lowermost active compound with IC₅₀ of 1047 mg/L. For acetates group, geranyl acetate presented the greatest activity with IC50 of 534 mg/L followed in descending order by eugenyl acetate and aterpinyl acetate (IC₅₀ = 606 and 646 mg/L, respectively). In contrast, cinnamyl acetate displayed less action with IC_{50} of 1067 mg/L. It is clear from the results that the antioxidant potential of compounds is associated with the chemical structure and its efficiency against pests where alcoholic monoterpenes were the most antioxidant agents compared with the other groups.

Terpenes, one of the most extensive and diverse structural compounds happening in nature, exhibition a inclusive range of biological activity and antioxidant properties (Gonzalez-Burgos and Gomez-Serranillos 2012). Due to their antioxidant behavior terpenes have been shown to provide appropriate protection under oxidative stress conditions in different diseases. The main classes of terpenes, namely monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, benzene derivatives, and non-isoprenoid components including alcohols, aldehydes, ketones have been tested for their antioxidant efficiency in comparison with α -tocopherol as a reference compound (Ruberto and Baratta 2000).

phenols have the highest antioxidant activity. In specific, some monoterpene hydrocarbons, namely, terpinolene, α - and γ -terpinene showed a significant protective action. Sesquiterpene hydrocarbons and nonisoprenoid components showed a low or no antioxidant effect. The antioxidant activities of eucalyptol, Linalool, α terpineol, and α -pinene with both the ferric reducing ability of plasma (FRAP) and 1,1'-diphenyl-2-picrylhydrazyl (DPPH) methods were determined (Zengin and Baysal 2014).

Gehan I. Kh. Marei et al.

Class	Compound	IC ₅₀ (mg/L) -	95% Confidence limits			L () (F	2
Class			Lower	Upper	Slope ± SE	Intercept ±SE	χ^2
I I. due eerk en e	Camphene	868.40	738.69	1056.41	1.63±0.23	-4.79±0.66	3.40
	3-Carane	291.80	222.55	351.88	2.02±0.25	-4.97±0.69	0.97
	β-Cymene	916.89	762.66	1166.16	1.43±0.23	-4.24±0.64	4.46
Hydrocarbons	(R)-(+)-Limonene	297.74	233.15	354.21	2.17±0.25	-5.36±0.7	0.95
	Myrcene	22.136	13.512	32.243	0.91±0.08	-1.22 ± 0.18	2.95
	α-Pinene	880.74	598.39	1743.27	1.82 ± 0.22	-5.35 ± 0.67	7.32
	Camphor	1101.33	932.24	1385.43	1.75±0.24	-5.31±0.69	5.17
	(±)-Carvone	644.18	547.16	752.89	1.71±0.23	-4.80±0.64	4.11
Ketone	(1R)-(-)-Fenchone	877.64	558.92	2223.41	1.41±0.22	-4.15±0.64	5.97
	Menthone	1217.47	816.08	4762.26	1.99±0.25	-6.14±0.73	9.34
	(R)-(+)-Pulegone	218.38	163.18	266.58	2.43±0.28	-5.82±0.76	0.87
Aldeberde	Citral	1052.36	698.45	3360.74	1.82±0.24	-5.51±0.69	8.75
Aldehyde	(1R)- $(-)$ -Myrtenal	285.39	105.19	416.53	1.93±0.25	-4.74±0.68	5.57
	Citronellol	289.67	217.73	351.8	1.94±0.24	-4.77±0.68	2.77
	Geraniol	19.153	12.038	27.406	1.01 ± 0.09	-1.30±0.19	2.94
Alcohol	Linalool	530.68	422.44	637.06	1.43±0.22	-3.89±0.63	4.5
Alcohol	(-)-Menthol	1047.71	879.20	1334.16	1.60±0.23	-4.83±0.67	4.26
	a-Terpineol	480.56	383.03	571.7	1.55±0.22	-4.16±0.63	4.85
	Thymol	31.426	19.152	45.738	0.80 ± 0.08	-1.20 ± 0.18	5.62
	Cinnamyl acetate	1067.29	699.56	3853.62	1.64±0.23	-4.95±0.67	7.65
	Citronellyl acetate	685.04	586.38	800.62	1.75±0.23	-4.95±0.65	4.86
Acetate	Eugenyl acetate	606.66	513.99	705.79	1.74 ± 0.23	-4.85±0.65	2.72
	Geranyl acetate	534.83	471.32	596.72	2.57±0.25	-7.13 ± 0.70	0.37
	Linalyl acetate	721.779	449.174	1245.916	1.79±0.23	-5.13±0.65	7.77
	α-Terpinyl acetate	647.08	551.15	754.72	1.74±0.23	-4.88±0.65	3.87
	α-Tocopherol	5.02	1.88	8.71	1.86±0.14	-1.30±0.14	28.21

Table 3. Antioxidant activity of monoterpenes and α-tocopherol as a standard antioxidant

IC50: Half maximal inhibition concentration.

 χ^2 : Chi-squared.

CONCLUSION

The hydrocarbon and oxygenated pure monoterpenes exhibited in vitro antimicrobial and antioxidant effects against selected food-borne pathogens. The results showed that thymol and α -terpineol were the most potent against E. coli and S. aureus. The results also showed that thymol exhibited the highest antifungal activity against A. flavus. Furthermore, Geraniol showed it the most effective compound as the antioxidant. These monoterpenes can use as natural alternatives for application in food preservation to inhibit or retard the bacterial, fungal growth, and safety the shelf life of the food products.

REFERENCES

- Abdel Rasoul, M; Marei, G and Abdelgaleil, S. (2012). Evaluation of antibacterial properties and biochemical effects of monoterpenes on plant pathogenic bacteria. African Journal of Microbiology Research, 6 (15) :3667-3672.
- Abdelgaleil, SA; Mohamed, MI; Badawy ME and Elarami, SA. (2009). Fumigant and contact toxicities of monoterpenes to *Sitophilus oryzae* (L.) and *Tribolium castaneum* (Herbst) and their inhibitory effects on acetylcholinesterase activity. Journal of chemical ecology, 35(5):518-525.
- Ait-Ouazzou, A; Cherrat, L; Espina, L; Lorán, S; Rota, C and Pagán, R. (2011). The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innovative Food Science & Emerging Technologies, 12(3):320-329.

- Aruna Kumari, M; Triloknadh, S; Harikrishna, N; Vijjulatha, M and Venkata Rao, C. (2017). Synthesis, Antibacterial Activity, and Docking Studies of 1, 2, 3-triazole-tagged Thieno [2, 3-d] pyrimidinone Derivatives. Journal of Heterocyclic Chemistry, 54(6):3672-3681.
- Asghar, MN; Khan, IU; Arshad, MN and Sherin, L. (2007). Evaluation of Antioxidant Activity Using an Improved DMPD Radical Cation Decolorization Assay. Acta Chimica Slovenica, 54(2):295-300.
- Badawy, ME; El-Arami, SA and Abdelgaleil, SA. (2010). Acaricidal and quantitative structure activity relationship of monoterpenes against the twospotted spider mite, Tetranychus urticae. Experimental and Applied Acarology, 52(3):261-274.
- Badawy, ME; Rabea, EI; Taktak, NE and El-Nouby, MA. (2016). The antibacterial activity of chitosan products blended with monoterpenes and their biofilms against plant pathogenic bacteria. Scientifica 2016.
- Bajpai, VK; Rahman, A and Kang, SC. (2007). Chemical composition and anti-fungal properties of the essential oil and crude extracts of *Metasequoia glyptostroboides* Miki ex Hu. Industrial Crops and Products, 26(1):28-35.
- Barros, JC; Conceição, ML; Gomes-Neto, NJ; Costa, ACV; Si-queira-Júnior, JP; Basílio- Júnior, ID; Souza, EL. (2009). Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of *Staphylococcus aureus* strains isolated from foods. LWT-Food Science and Technology, 42(6):1139-1143.

- Buchan, KD; Foster, SJ and Renshaw, SA. (2019). Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology, 24;28(2):135.
- Cody, SH; Glynn, MK; Farrar, JA; Cairns, KL; Griffin, PM; Kobayashi, J; Fyfe, M; Hoffman, R; King, AS; Lewis, JH; Swaminathan, B; Bryant, RG and Vugia, D J. (1999). An outbreak of *Escherichia coli* O157: H7 infection from unpasteurized commercial apple juice. Annals of Internal Medicine, 130(3):202-209
- Correa, MS; Schwambach, J; Mann, MB; Frazzon, J and Frazzon, APG. (2019). Antimicrobial and antibiofilm activity of the essential oil from dried leaves of *Eucalyptus staigeriana*. Arquivos do Instituto Biológico 86.
- Croteau, R; Kutchan, TM and Lewis, NG. (2000). Natural products (secondary metabolites). Biochemistry and molecular biology of plants, 24:1250-1319.
 Dorman, H and Deans, SG. (2000). Antimicrobial agents
- Dorman, H and Deans, SG. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of applied microbiology, 88(2):308-316.
- El-Kilany, Y; Nahas, NM; Al-Ghamdi, MA; Badawy, ME and El Sayed, H. (2015). Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl) acetohydrazones as potential antibacterial agents. World Journal of Microbiology and Biotechnology, 31(1):145-152.
- Finney, D. (1971). Probit analysis. 1971. New York, Ny 10022:32.
- Fogliano, V; Verde, V; Randazzo, G and Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem, 47(3):1035-1040.
- Gallucci, GO; Doughtie, CB; Hwang, JW; Fiorellini, JP and Weber, HP. (2009). Five-year results of fixed implant-supported rehabilitations with distal cantilevers for the edentulous mandible. Clinical oral implants research, 20(6):601-607.
- Garcia, R; Alves, ESS; Viégas Aquije, MPS; Glória, MF; Fernandes, AAR; dos Santos, RB; Ventura, JA and Fernandes, PMB. (2008). Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Brazilian Journal of Microbiology, 39(1):163-168.
- Gonzalez-Burgos, E and Gomez-Serranillos, M. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current medicinal chemistry, 19(31):5319-5341.
- Gyawali, R and Ibrahim, SA. (2012). Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Applied Microbiology and Biotechnology, 95(1):29-45.
- Gyawali, R and Ibrahim, SA. (2014). Natural products as antimicrobial agents. Food control, 46:412-429.
- Hazzit, M; Baaliouamer, A; Veríssimo, A; Faleiro, M and Miguel, MG. (2009). Chemical composition and biological activities of Algerian Thymus oils. Food chemistry, 116(3):714-721.
- Herrera, J M; Zunino, MP; Dambolena, JS; Pizzolitto, RP; Gañan, NA; Lucini, EL, *et al.* (2015). Terpene ketones as natural insecticides against *Sitophilus zeamais.* Industrial Crops and Products, 70:435-442.

- Ieri, F; Cecchi, L; Giannini, E; Clemente, C and Romani, A. (2019). GC-MS and HS-SPME-GC× GC-TOFMS Determination of the Volatile Composition of Essential Oils and Hydrosols (By-Products) from Four Eucalyptus Species Cultivated in Tuscany. Molecules, 24(2):226.
- Karch, H; Tar,r PI and Bielaszewska, M. (2005). Enterohaemorrhagic *Escherichia coli* in human medicine. International Journal of Medical Microbiology, 295(6-7):405-418.
- Kohiyama, C Y; Ribeiro, M M Y; Mossini, SAG; Bando, E; Bomfim, NdS; Nerilo, S B; Rocha, GHO; Grespan, R; Mikcha, JMG and Jr, MM. (2015). Antifungal properties and inhibitory effects upon aflatoxin production of *Thymus vulgaris L*. by *Aspergillus flavus Link*. Food Chemistry, 173:1006-1010.
- Machida, M and Gomi, K. (2010). Aspergillus: molecular biology and genomics. Horizon Scientific Press.
- Marchese A, *et al.* (2017) Update on monoterpenes as antimicrobial agents: A particular focus on pcymene. Materials 10(8):947
- Marchese, A; Arciola, CR; Barbieri, R; Silva, AS; Nabavi, SF; Tsetegho Sokeng, AJ; Izadi, M; Jafari, NJ; Suntar, I; Daglia, M and Nabavi, SM. (2016). Antibacterial and antifungal activities of thymol: a brief review of the literature. Food chemistry, 210:402-414.
- Masalha, M; Borovok, I; Schreiber, R; Aharonowitz, Y and Cohen, G. (2001). Analysis of Transcription of theStaphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen. Journal of bacteriology, 183(24):7260-7272.
 Mayton, HM; Marcus, IM and Walker, SL. (2019). Escherichia coli O157: H7 and Salmonella
- Mayton, HM; Marcus, IM and Walker, SL. (2019). *Escherichia coli* O157: H7 and *Salmonella Typhimurium* adhesion to spinach leaf surfaces: Sensitivity to water chemistry and nutrient availability. Food microbiology, 78:134-142.
- Moreira, ACP; Lima, EdO; Wanderley, PA; Carmo, ES and Souza, ELd. (2010). Chemical composition and antifungal activity of Hyptis suaveolens (L.) poit leaves essential oil against Aspergillus species. Brazilian Journal of Microbiology, 41(1):28-33.
- Myszka, K; Leja, K and Majcher, M. (2019). A current opinion on the antimicrobial importance of popular pepper essential oil and its application in food industry. Journal of Essential Oil Research, 31(1):1-18.
- Nabet, N; Gilbert-López, B; Madani, K; Herrero, M; Ibáñez, E and Mendiola, JA. (2019). Optimization of microwave-assisted extraction recovery of bioactive compounds from *Origanum glandulosum* and *Thymus fontanesii*. Industrial Crops and Products, 129:395-404.
- Naigre, R; Kalck, P; Roques, C; Roux, I and Michel, G. (1996). Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Planta medica, 62(03):275-277.
- Nguefack, J; Leth, V; Zollo, PA and Mathur, S. (2004). Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. International Journal of Food Microbiology, 94(3):329-334.

- Omidbeygi, M; Barzegar, M; Hamidi, Z and Naghdibadi, H. (2007). Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food control, 18(12):1518-1523.
- Oyedeji-Amusa, M and Ashafa, A. (2019). Medicinal properties of whole fruit extracts of Nauclea latifolia Smith .: Antimicrobial, antioxidant and hypoglycemic assessments. South African Journal of Botany, 121:105-113
- Pandey, D; Tripathi, N; Tripathi, R and Dixit, S. (1982). Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens/Fungitoxische und phytotoxische Eigenschaften des ätherischen Öis von Hyptis suaveolens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 89(6):344-349.
- Presterl, E; Diab-El Schahawi, M; Lusignani, LS; Paula, H and Reilly, JS. (2019). Medical Mycology: Fungal Infections Basic Microbiology and Infection Control for Midwives. Springer, p 155-159
- Rabea, EI and Badawy, ME. (2014). Antimicrobial Activity of Biopolymer Chitosans and Monoterpenes Against the Honeybee Pathogens Paenibacillus larvae and Ascosphaera apis. Journal of Chitin and Chitosan Science, 2(4):306-310.
- Rafiq, R; Hayek, SA; Anyanwu, U; Hardy, BI; Giddings, VL; Ibrahim, SA; Tahergorabi, R and Kang, HW. (2016). Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum× radens and Laurus nobilis L. Foods, 5(2):28.
- Rao, J;Chen, B and McClements, DJ. (2019). Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action.
- Ruberto, G and Baratta, MT. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food chemistry, 69(2):167-174.
- Saad, MM; El-Deeb, DA and Abdelgaleil, SA. (2019). Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst. Environmental Science and Pollution Research, :1-10.
- Santos, PL; Matos, JPS; Picot, L; Almeida, JR; Quintans, JS and Quintans-Júnior, LJ. (2018). Citronellol, a monoterpene alcohol with promising pharmacological activities-A systematic review. Food and Chemical Toxicology.
- Sharma, VK and Dean-Nystrom, EA. (2003). Detection of enterohemorrhagic Escherichia coli O157: H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins. Veterinary microbiology, 93(3):247-260.

- Silva, FCd; Chalfoun, SM; Siqueira, VMd; Botelho, DMdS; Lima, N and Batista, LR. (2012). Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus. Revista Brasileira de Farmacognosia, 22(5):1002-1010.
- Smid, EJ and Gorris, LG. (1999). Natural antimicrobials for food preservation. Food Science and Technology-New York-Marcel Dekker, 4(4):285-308
- Soković, MD; Vukojević, J; Marin, PD; Brkić, DD; Vajs, V and Van Griensven, LJ. (2009). Chemical composition of essential oilsof thymus and mentha species and their antifungal activities. Molecules, 14(1):238-249
- Stojković, D; Petrović, J; Soković, M; Glamočlija, J; Kukić-Marković, J and Petrović, S. (2013). In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. Journal of the Science of Food and Agriculture, 93(13):3205-3208.
- Tajkarimi, M; Ibrahim, SA and Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9):1199-1218.
- Teixeira, APdC; Nóbrega, RdO; Lima, EdO; Araújo, WdO and Lima, IdO. (2018). Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans. Natural product research:1-4
- Thompson, LA and Darwish, WS. (2019). Environmental Chemical Contaminants in Food: Review of a Global Problem. Journal of Toxicology, (6): 1-14.
- Wang, K; Jiang, S; Pu, T; Fan, L; Su, F and Ye, M. (2018). Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Natural product research, 15: 1-8.
- Yu, J-K; La Rota, M; Kantety, R and Sorrells, M. (2004). EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, 271(6):742-751.
- Zengin, H and Baysal, AH. (2014). Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 19(11):17773-17798
- Zhou, L; Zhang, Z; Wei, MI; Xie, Y; He, S; Shi, H and Lin, Z. (2019). Evaluation of the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea. Environmental Science and Pollution Research, 1-6

الأنشطة المضادة للأكسدة و الميكروبات من التربينات الاحادية ضد بعض مسببات الأمراض التي تنتقل عن طريق الأغذية

جيهانَّ ابراهيم خليل مرعى¹ ، انتصار ابراهيم ربيع¹ و محمد الطاهر ابراهيم بدوى² ¹قسم وقاية النبات – كلية الزراعة- جامعة دمنهور ²قسم الكيمياء و تقنية المبيدات- كلية الزراعة بالشاطبي- جامعة الاسكندرية

تم دراسة النشاط المضاد للميكروبات من خمسة وعشرين مركب من التربينات الاحادية ضد بكتريا ايريشريشيا كولاى السالبة لصبغة جرام و الايستافيلوكوكس ايوريوس الموجب لصبغة جرام والنشاط المضاد للفطريات ضد فطر الاسبر جلس فلافس (التي تصيب الاغذية). وتم تقييم النشاط المضاد للبكتريا بتقنية (broth microdilution) ايوريوس الموجب لصبغة جرام والنشاط المضاد للفطريات ضد فطر الاسبر جلس فلافس (التي تصيب الاغذية). وتم تقييم النشاط المضاد للبكتريا بتقنية (EC50) من خلال حساب أدني تركيز مثبط (MIC) وايضا تم تقييم النشاط المضاد للفطريات عن طريق (ر Community من حرف حسب عن ترجر حبب (Community) ويستام عليم المعلم المعلم علم عن عربي (E coll) عام علم المحاري (E coll) عام علم التركي للعال الذي يسبب تثبيط 50% من النمو الهيفي أظهرت النتائج أن الثيمول و α-terpine كانا الأكثر فاعلية ضد (E coll) بكتريا ايريشريشيا كولاى بقيمة (E coll) عام التركي العربي التركيز الفعال الذي يسبب تثبيط 50% من النمو الهيفي أظهرت النتائج أن الثيمول أعلى نشاط ابادى لفطر (E coll) عام المحاري و عام التركيز الفعال الذي يسبب تثبيط 50% من النمو الهيفي أظهرت النتائج أن الثيمول أعلى نشاط ابادى لفطر (E coll) عام التركيز الفعال الذي يسبب تثبيط 50% مناجر التركيز البعان التيمول أعلى نشاط ابادى لفطر (S caureus) عام الذي الذي و و 250 ملجم / لتر ضد الايستانيلوكوكس اليوريوس (S caureus) ، على التوالي أظهرت النتائج أيضا أن الثيمول أعلى نشاط ابادى لفطر الاسبرجلس فلافس و EC ملجم / لتر و علاوة على ذلك ، تم اكتشاف الخصائص المضادة للأكسدة لهذه المركبات باستخدام - N,N-dimethyl - N,N-dimethyl الاسبرجلس فلافس phenylenediamine (DMPD) وأظهرت النتائج أن geraniol كان المركب الأكثر فاعلية كمضادات اكسدة بقيمة ID=IC ملجم / لتر.