Physico-Chemical and Technological Properties of some New Durum Wheat Varieties. Abd El-Sattar, A. S.¹ and A. M. Mostafa² ¹ Food Tech. Res. Inst., ARC. Giza Egypt ² Wheat Res. Dept., Field Crops Res. Inst., ARC. Giza Egypt

ABSTRACT

This study was carried out to compare and evaluate different varieties of durum wheat physically, chemically and technologicaly as well as to investigate the possibility of using their semolina durum wheat varieties in preparing Pasta . The obtained results revealed that, physical properties of durum wheat varieties varied from one variety to another. It was found that Bane suif 1 had the highest weight among all wheat varieties that recorded 57.58 g/1000 grains. Whereas, hectoliter was higher in Sohaga 4 variety than those of all wheat varieties. Bane suif 4 contain the highest content of extraction percentage which was (65%) followed by Bane suif 5 which recorded (58.10%). However, semolina variety of Bane suif 5 contain the highest content of crud protein which was (14.30%) followed by Sohago 4 which recorded (13.95%) while the lowest value of crud protein was (12.50%) for Bane suif 1. Furthermore, the highest gluten content was found in Bane suif 5 (12.50%) compared with another semolina varieties. In addition, Pasta made from semolina variety of Bane suif 5 had the highest value of cooking time, cooking losses , cooking weight and swelling percentage among all of the tested Pasta samples. Furthermore, Pasta made from semolina variety of Sohaga4 had the highest value of cooking time, cooking losses , cooking weight and swelling percentage among all of the tested Pasta samples. Results of Organoleptic evaluation indicated that, overall acceptability scores of cooked Pasta made from semolina variety of Bane suif 1 gave the highest scores The Pasta made from semolina variety of Sohaga 4 gave approximately the lowest scores for all characteristics.

INTRODUCTION

Wheat is the most widely grown crop in the world and approximately one sixth of the total arable land in the world is cultivated with it (Abdul Sattar et al., 2003). Durum wheat (Triticumturgidum ssp. durum Desf. em.Husn.) accounts for around 6% of total wheat production (37.7 million tones in 2013; Guzmán et al. (2016). Durum grainis used for the preparation of diverse food products, including bread, couscous, frekeh, bulgur, and most importantly, pasta. Pastais generally recognized worldwide as beneficial to a nutritionally balanced diet (Ames etal., 1999), and consumer demand is reflected in the upward trend in pasta production. Although the environmental conditions and the geno-type, i.e. the choice of variety, are fundamental for the technological behaviour of the derived dough, the agricultural practices, and inparticular nitrogen nutrition, also influence the flour quality to agreater extent. Dough (Olanca et al., 2009). High levels of proteins as well as gluten quantity and strength are the predominant factors associated with superior bread- and pasta-making quality. Therefore, these traitsare desirable for the marketability of both common and durum wheat in several supply chains (Brown and Petrie, 2006 and Foca et al., 2007). Pasta is apopular worldwide and is used as a staple food in manycountries. Conventional pasta is manufactured using durum wheatsemolina as the primary ingredient. Compared to other starchy foodssuch as bread, pasta has beneficial physiological effects, inducing low postprandial glycaemic and insulinaemic responses (Aston, et al., 2008).

Pasta is a widely consumed food because of its low cost, easy preparation, and long shelf life. High quality pasta are manufacturedusing durum wheat semolina because of its very good cooking quality and high consumer acceptance (Kim, *et al.*, 2016). Pasta color depends both used raw materials but also from the parameters of processing, especially drying. Maillard reactions occur during pasta drying caused the color of pasta more darker than color of carob fiber (Anese, *et al.*, 1999). The present study was carried out to compare and evaluate some varieties of durum wheat physically,

chemically and technologicaly for selecting high quality varieties for pasta production

MATERIALS AND METHODS

Materials:

Five durum wheat varieties namely Bane suif 1, Bane suif 4, Bane suif 5, Bane suif 6 and Sohag 4 were obtained from fields crops Research Institute, Agric. Research Center, Giza. Egypt.

Preparation of Durum wheat semolina:

The cleaned samples of wheat were soaked up to 16.5% humidity, conditioned for 24 h (AACC, 2000) and then milled to produce whole meal, another were used to produce semolina, .The yield of semolina is expressed relative to the total amount of durum wheat based on the moisture content of 16.5%. The determination of hectoliter index and the grain index , weight of 1000 grains from each variety of durum wheat were counted randomly in triplicate and weighted separately as described by (AACC, 2000),

Chemical analysis of samples:

Chemical analysis including moisture, ash, protein and ether extract were determined according to A.O.A.C. (2005). Carbohydrates content was calculated by difference. Gluten content (g/100g on dry weight basis) was determined by the hand washing method (AACC, 2000).

Rheological properties:

The rheological behavior of the dough obtained from durum semolina during kneading and heating was monitored by utilization of Mixolab (Chopin Technologies, France), with application of "Chopin" protocol for ICC 173, (ICC Standards, 2010).

processing of Pasta:

Pasta samples were prepared by the method of Matsuo *et al.* (1972) and dried by conventional low temperature (450 c) drying cycle oven for 20 hours as described by Dexter *et al.* (1981).

Cooking quality of pasta:

Cooking quality i .e . (water absorption (%), cooking time (min), cooking loss (%), cooking weight (%) and swelling (%) of all pasta samples were using the method describibed by Ficco *et al.* (2016).

Sensory evaluation of pasta:

Color, shiminess, Surface snoothness, firmness, chewiness, elasticity, taste and over all acceptability of cooked pasta were evaluated organoleptically as described by (Padalino *et al.*, 2013).

Statistical analysis:

Data evaluation were executed with SPSS Inc. software (model 19.0; SPSS Inc., Chicago, IL .(and statistically different groups were determined by the DUNCAN's Multiple Rage test (Steel and Torrie1980)

RESULTS AND DISCUSSION

Physical properties of some new durum wheat varieties :

The grain index (weight of 1000 grains) of some new durum wheat varieties is presented in Table (1). The results indicate that Bane suif 1 had the highest weight among for all samples that recorded 57.58 g/1000 grains. Bane suif 5 was the second (57.10g).while the lowest weight of The 1000 grains was (52.88%) for Bane suif 6. In addition the data in the same table revealed that, hectoliter index was higher in Sohaga 4 variety than those of all wheat varieties. It is noteworthy from the same table that, Bane suif 4 contain the highest content of extraction percentage which was (65%) followed by Bane suif 5 which recorded (58.10%) , while the lowest value of extraction percentage was (50%) for Sohag4. These results are in the same trend of those reported by (Boggini *et al.*, 1995 ; Aalami *et al.*, 2007 and Borrelli, *et al.*,2008)

 Table 1. physical properties of some new durum wheat varieties.

Varieties	The grain index=	hectoliter index	extraction percentage
Bane suif 1	57.58a	85.80b	57.80c
Bane suif 4	55.47c	83.20c	65.0a
Bane suif 5	57.10b	85.4ob	58.10b
Bane suif 6	52.88e	85.4ob	56.50d
Sohag 4	53.84d	86.60a	50.0e

The grain index: weight of 1000 grains-=

Means of values between samples having the same case letter in a Colum are not significantly different at p < 0.05

Chemical analysis of some semolina durum wheat varieties (g/100g on dry weight basis):

The results in Table (2) revealed that ,moisture content of some semolina durum wheat varieties were ranged from (11.51 to 13.40%). However ,Bane suif 5 contain the highest content of crud protein which was (14.30%) followed by sohago 4 which recorded (13.95%) while the lowest value of crud protein was (12 (%57.for Bane suif .1 High levels of proteins as well as gluten quantity and strength are the predominant factors associated with superior bread- and pasta-making quality. Therefore, these traits are desirable for the marketability of both common and durum wheat in several supply chains)Brown and Petrie, 2006 .Furthermore ,Besides ,as previously commented, the environment and the field management will influence quality traits, as protein content, which has a key role in processing and end-use quality .Magallanes-Lo_pez et al. (2017) .The highest gluten content was found in Bane suif (% 12.50) 5 followed by Sohago ,(% 11.31) 4 while the lowest content was detected in Bane suif .(% 8.32) 1 These results are in line with those of) Giannone et al 2016, and Ficco et al,. .(2016They reported that, good values for gluten quantity

and gluten index are expected to lead to excellent pasta in terms of consistency and cooking performances .Apparent also from the same table that, semolina durum wheat varieties contain (0.49 to 0.82%) crud fat, (1.41 to 1.65%) ash content and (83.26 to 84.96%) total carbohydrate .

These results are in line with those) Raffo ,*et al* :2003,.Pasqualone .*et al* ; 2004,.Khan *et al* ; 2013 , Ficco , *et al* 2016 ,.and Giannone *et al* , 2016.

Table 2. Chemical composition (%) of some semolina
varieties (on dry weight basis) and Gluten%

Semolina Varieties	Moisture %	Protein %	Fat %	Ash %	Total Gluten carbohydrates %**	Gluten %
Bane suif 1	11.51 e	12.50 c	0.49 a	1.65 a	84.96 a	8.32 d
Bane suif 4	11.91 d	13.50 b	0.57 a	1.41 a	84.52 ab	11.11 b
Bane suif 5	12.10c	14.30 a	0.82 a	1.62 a	83.26 c	12.50 a
Bane suif 6	12.90 b	13.40 b	0.53 a	1.51 a	84.56 ab	9.61 c
Sohag 4	13.40 a	13.95a	0.61 a	1.44 a	84.0 b	11.31 b
Means of values between samples having the same case letter in a $C_{\rm clum}$ and $c_{\rm clum} = 0.05$						

Colum are not significantly different at p > 0.05**Total carbohydrates was calculated by difference.

Total carbonyuraces was calculated by uniterence.

Rheological properties of dough from some new semolina durum wheat varieties:

Rheological properties of dough from some new semolina durum wheat varieties were measured by Mixolab and the results are given in table. (3) The results revealed that ,water absorption, dough development time, stability time, dough weakening and CMAX of different semolina wheat varieties ranged from 65.7 to 75.3 (%), 2.0 to 5.0 (min), 1.5 to 4.0 (min60.0 ,(to 106.0)U.f (.and 502.73 to 516.36)U.f (.respectively. Water absorption was observed to be the highest for semolina Bane suif 1 variety (%75.3) and the lowest for semolina Bane suif 1 variety (65.7%). The present results are in accordance with those of) Cauvain and Young, 2000 and Rosell *et al.* (2002 ,. They reported that, the quality of gluten, as well as the quantity, has a clear impact on dough water absorption and development time .

 Table 3. Rhealogical properties of dough from some new semolina durum wheat varieties.

Parameters		Μ	lixolab		
1 al allictel s	Water	Dough	Stability	Dough	CMA
Samples	absorption	development	time	weakening	Х
Samples	(%)	(min)	(min)	(U.f.)	(U.f.)
Bane suif 1	65.7	2.0	1.5	94.0	510.00
Bane suif 4	466.	2.0	1.5	94.0	502.73
Bane suif 5	70.3	3.0	1.5	087.	512.27
Bane suif 6	74.0	5.0	1.5	106.0	512.27
Sohag4	5.37	5.0	4.0	60.0	516.36

Cooking quality of Pasta:

Cooking performances are concerned, good quality pasta is characterized by minimal cooking losses and stickiness, and high firmness and springiness (Sozer, et al., 2007), The values of water absorption for different Pasta samples are presented in Table (4). It should be noted from these table that, Pasta made from semolina variety of Bane suif 6 had relatively the highest water absorption value among all of the tested Pasta samples. Apparent also from the same table that, cooking time reflects the water absorption. Furthermore, faster rate of water absorption indicates a shorter cooking time. In addition, Pasta made from semolina variety of Bane suif 5 had the shorter cooking time value among all of the tested Pasta samples.

The results in Table (4) indicated that, cooking losses values was higher in Pasta made from semolina variety of Sohaga 4 among all of the tested Pasta samples. This parameter theoretically reflects the quantity of starch and other biochemical components that are released from the pastaprotein matrix, and are subsequently lost in the cooking medium. The swelling is an indicator of the water that is absorbed by the starch and protein during cooking, which is used for gelatinization of the starch and hydration of the protein. Pasta made from semolina variety of Sohaga 4 had the highest swelling value among all of the tested Pasta samples.Furthermore, Pasta made from semolina variety of Sohaga 4 had the highest value of cooking time, cooking losses, cooking weight and swelling percentage compared with all samples. Those results are in line with the ones found by using Ficco, et al., 2016: Pasqualone, et al., 2016 and Padalinoa et al., 2017).

Table 4. Cooking qua	ality (01 I	Pasta.
----------------------	---------	------	--------

semolina Varieties	(%)	cooking time (min)	cooking losses (%)	swelling (%)	cooking weight (%)
Bane suif 1	54.0e	9.0d	7.00a	164.0b	96. Ob
Bane suif 4	55.0d	11.0b	6.40b	151.0d	89. Od
Bane suif 5	59.0c	8.0e	6.10b	146.0e	86. 0e
Bane suif 6	68.0 a	10.0c	6.30b	160.0c	90. 0c
Sohag4	64.0b	13.0a	7.20a	175.0a	104.0a
Moone of vol	luce between	amples	having the	60m0 0060	latton in a

Means of values between samples having the same case letter in a Colum are not significantly different at p < 0.05

Organoleptic evaluation of pasta:

Evaluation of sensory characteristics of pasta by the panelist is depicted in Table (5). Obtained results indicate that, the highest value for color evaluation and lowest value for firmness were obtained, for Pasta made from semolina variety of Bane suif1 . Food color is an important attribute to food quality. Color of pasta without additives strongly depends on the properties flour or semolina such as carotenoids and composition of protein (Ohm, *et al.*, 2008). Pasta with a bright yellow color is the most acceptable (Debbouz, *et al.*, 1993).

 Table 5. Organoleptic evaluation of pasta produced from semolina varieties.

ii olii seliiolillu vui lettesi					
Characters	Bane suif 1	Bane suif 4	Bane suif 5	Bane suif 6	Sohag 4
Colour(7)	6.5a	6.00b	6.00b	6.50a	6.00b
Shininess (7)	6.50a	6.50a	6.00b	6.50a	6.00b
S.S(7)	7.00a	7.00a	6.50b	7.00a	6.00c
Firmness (7)	6.50b	7.00a	7.00a	6.50b	6.50b
Chewiness (7)	6.50a	6.00b	6.50a	6.50a	6.50a
Elasticity (7)	6.50a	6.50a	6.00b	6.00b	5.50c
Taste (7)	6.50a	6.50a	6.50a	6.00b	6.50a
O.A (7)	6.57a	6.50ab	6.36b	6.43b	6.14c

* Each value is an average of ten determinations.

+ Values followed by the same letter in row are not significantly different at $P \leq 0.05$

S.S :Surface Snoothness.

O.A: Overall acceptability .

Generally, Overall acceptability scores of cooked Pasta made from semolina variety of Bane suif 1 gave the highest scores The Pasta made from semolina variety of Sohaga 4 gave approximately the lowest scores for all characteristics.Our results are in agreement with those of Ficco *et al.*(2016).

REFERENCES

- A.A.C.C. (2000).American Association of Cereal Chemists (2000).Approved Methods of the AACC, 10th Ed. Methods 10-10B, 22-10, and 54-21.TheAssociation: St. Paul, MN.
- Aalami, M., PrasadaRao, U.J.S. and Leelavathi, K., (2007). Physicochemical and biochemical characteristics of Indian durum wheat varieties: relationship to semolina milling and spaghetti making quality. Food Chem. 102, 993-1005.
- Abdul Sattar, M.A. Chowdhry and M. Kashif (2003).Estimation of heritability and genetic gain of some metric traits in six hybrid population of spring wheat. Asian Journal of Plant Sciences 2 (6): 495-497.
- Ames, N.P., Clarke, J.M., Marchylo, B.A., Dexter, J.E., and Woods, S.M., (1999). Effect of environment and genotype on durum wheat gluten strength and pasta viscoelasticity. Cereal Chem. 76, 582–586.
- Anese, M., Nicoli, M. C., Massini, R., and Lerici, C. R. (1999).Effects of drying processing on the maillard reaction in pasta. Food Research International, 32, 193 - 199.
- A.O.A.C., Association of Official Analytical Chemists (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. 18th Ed. Washington, DC, USA
- Aston, L. M., Gambell, J. M., Lee, D. M., Bryant, S. P., and Jebb, S. A. (2008).Determination of the glycaemic index of various staple carbohydrate-rich foods in the UK diet. European Journal of Clinical Nutrition, 62(2), 279–285.
- Boggini, G., Tusa, P.andPogna, N., (1995). Bread making quality of durum wheatgenotypes with some novel glutenin subunit compositions. J. Cereal Sci. 22,105–113.
- Borrelli, G. M., De Leonardis, A. M., Platani, C., and Troccoli, A. (2008).Distribution along durum wheat kernel of the components involved in semolina colour. Journal of Cereal Science, 48, 494–502
- Brown, B.D.and Petrie, S., (2006). Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crop. Res. 96, 260–268.
- Cauvain, S.P. and Young, L.S., (2000). Bakery Food Manufacture and Quality: Water Controland Effects. Blackwell Science, Oxford, pp. 224.
- Debbouz, A., Pitz, W. J., Moore, W. R., &Dappolonia, B. L. (1993).Effect of bleaching on durum wheat and spaghetti quality.Cereal Chemistry, 72, 128e131.
- Dexter, J. E.; R. R.Matsvo, and B. C. Morgan (1981).High temperature drying effect on spaghetti properties .J . Food Sci., 46:1741- 1746
- Ficco, D. B. M., De Simone, V., De Leonardis, A. M., Giovanniello, V., and Nobile, D., (2016).Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chemistry, 205, 187-195.

- Foca, G., Ulrici, A., Corbellini, M., Pagani, M. A., Lucisano, M., Franchini, G. C. And Tassi, L., (2007). Reproducibility of the Italian ISQ method for quality classification of breadwheats: an evaluation by expert assessors. J. Sci. Food Agric. 87, 839–846.
- Giannone V., Lauro, M., Spina A., Pasqualone, A., Auditore, L., Puglisi, I., and Puglisi, G. (2016) A novel aamylase-lipase formulation as anti-staling agent in durumwheat bread Food Science and Tech., 65 (2016) 381-389.
- Guzmán, C., Autrique, J., Mondal, S., Singh, R., Govindan, V., Morales-Dorantes, A., Posadas-Romano, G., Crossa, J., Ammar, K., and Javier Peⁿa, R. (2016). Response to drought and heat stress on wheat quality, with specialemphasis on bread-making quality, in durum wheat, Field Crops Research 186, 157–165.
- ICC, (2010).. Cereal Standard Methods of the International Association for Chemistry 173. International Association for Cereal Science and Technology, Vienna.Khan, I., Yousif, A., Johnson, S. K., and Gamlath, S. (2013). Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Research International, 54(1), 578–586.
- Kim, S., Lee, J. W., Heo, Y., and Moon, B. (2016).Effect of pleurotuseryngii mushroom b-glucan on quality characteristics of common wheat pasta.Journal of Food Science, 81, C835eC840.
- Magallanes-L_opez, A.M., Ammar, k., Morales-Dorantes, A., alez-Santoyo, H., Crossa, I. and Guzm_an, C. (2017). Grain quality traits of commercial durum wheat varieties and theirrelationships with drought stress and gluteninscomposition Journal of Cereal Science 75, 1-9.
- Matsuo, R.R.; J.W. Bradley and G.N. Irvine (1972).Effect of protein content on cooking quality of spaghetti .Cereal Chem.,49: 707.
- Ohm, J. B., Ross, A. S., Peterson, C. J., &Ong, Y. L. (2008).Relationship of high molecular weight glutenin subunits composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough.Cereal Chemistry, 85, 123e131.

- Olanca, B., Ozay, D.S., and Koksel, H., (2009). Effects of suni-bug (Eurygaster spp.) damageon size distribution of durum wheat (Triticum durum L.) proteins. Eur. Food Res. Technol. 229, 813–820
- Padalinoa,C.C., Amalia,C., Maria G. M., Carla S.,b,Rosaria B., Salvatore A. R. and Matteo A. D., (2017) The quality of functional whole-meal durum wheat spaghetti asaffected by inulin polymerization degreeLucia .Carbohydrate Polymers 173 . 84–90.
- Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Contò, F., and Del Nobile, M. A.(2013). Chemical composition: sensory and cooking quality evaluation of durum wheat spaghetti enriched with pea flour. International Journal of Food Science and Technology, 49, 1544–1556.
- Pasqualone, A., Caponio, F. and Simeone, R., (2004). Quality evaluation of re-milleddurum wheat semolinas used for bread-making in Southern Italy. Eur. Food Res. Technol. 219, 630–634
- Pasqualone ,A., Gambacorta, G., Summo,C., Caponio,F., Di Miceli,G. , Flagella,Z., Marrese, p., Piro, G., Perrotta, C., De Bellis,L,and Lenucci ,M. (2016). .Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chemistry 213 , 545–553.
- Raffo, A., Pasqualone, A., Sinesio, F., Paoletti, F., Quaglia, G., and Simeone, R. (2003). Influence of durum wheat cultivar on the sensory profile and staling rate of Altamura bread. European Food Research and Technology, 218, 49-55.
- Rosell, C.M., Aja, S., and Sadowska, J., (2002). Amylase activities in insect (AeliaandEurygaster)-damaged wheat. J. Sci. Food Agric. 82, 977–982.
- Steel, R.G. and J.H. Torrie (1980).Principles and Procedures of Statistics. McGraw-Hill (Publ.). New York, NY.
- Sozer, N., Dalgıç, A. C., and Kaya, A. (2007). Thermal, textural and cooking properties of spaghetti enriched with resistant starch. Journal of Food Engineering, 81, 476–484.

الصغات الطبيعية والكيماوية والتكنولوجية لبعض أصناف قمح الديورم الجديدة. عدلى سمير عبد الستار سعد¹ و احمد محمد مصطفى ² ¹ معهد بحوث تكنولوجيا الاغذية ـ مركز البحوث الزراعية ـ مصر ² قسم بحوث القمح – معهد بحوث المحاصيل الحقلية ـ مركز البحوث الزراعية ـ مصر

تهدف هذة الدراسة مقارنة و تقييم بعض اصناف قمح الديورم الجديدة من حيث الصفات الطبيعية والكيماوية والتكنولوجية وامكانية الاستفادة من دقيق السيمولينا فى صناعة المكرونة واظهرت النتائج ما يلى: وجد ان هناك اختلاف فى الخواص الطبيعية لأصناف قمح الديورم وذلك تبعا للصنف ووجد ان صنف بنى سويف 1 اكثر الاصناف فى وزن الالف حبة 57.58 جم / 1000 حبة فى حين كان مؤشر الهكتوليتر أعلى في سوهاج 4 ، علاوة على ذلك يحتوي سوهاج 4 على أعلى نسبة استخلاص بلغت (65%) يليها بنى سويف 5 (0.58%) مقارنة بأصناف القمح المختلفة ومع ذلك، فإن السيمولينا صنف بنى سويف 1 كثر الاصناف فى وزن الالف حبة 57.58 جم / 1000 حبة فى حين كان مؤشر الهكتوليتر أعلى في سوهاج 4 ، علاوة على ذلك يحتوي سوهاج 4 على أعلى نسبة استخلاص بلغت (65%) يليها بنى سويف 5 (0.58%) مقارنة بأصناف القمح المختلفة ومع السيمولينا صنف بنى سويف 5 يحتوي على أعلى محتوى من البروتين(14.30%)، يليه سوهاج 4 الذي يحتوى (13.95%)، بينما كانت أقل قيمة للبروتين (12.5%) لصنفينى سويف 1. وعلاوة على ذلك، وجد ان أعلى نسبة من الجلوتين على اساس وزن جاف لصنف بنى سويف 5 (12.5%) مقارنة مع أصناف السيمولينا الاخرى. بالإضافة إلى ذلك الهرت المكرونة المطبوخة المصنوعة من السيمولينا صنف بنى سويف 5 أعلى قيمة متصاص الماء بين جميع عينات المكرونة المختبرة بينما اظهرت ، المكرونة المطبوخة المصنوعة من السيمولينا صنف سوهاج 4 أعلى قيمة فى وقت المتصاص الماء بين جميع عينات المكرونة المختبرة بينما اظهرت ، المكرونة المطبوخة المصنوعة من السيمولينا صنف بنى سويف 5 أعلى قيمة وقت مقارنة مع أصناف السيمولينا الاخرى. بالإضافة إلى ذلك اظهرت ، المكرونة المطبوخة المصنوعة من السيمولينا صنف بنى المصاص الماء بين جميع عينات المكرونة المطبوخة ونسبة التشرب بين جميع عينات المكرونة التي تم اختبارها. اظهرت نتائج الخواص الحسية الطهي، والفاقد اثناء الطهي، ووزن المكرونة المطبوخة المصنوعة من السيمولينا صنف سوهاج 4 أعلى قيمة أل المصوية أن درجات القبول الكلية كانت اعلى المكرونة المطبوخة مامصنوعة من السيمولينا صنف بين أطرونة المطبوخة المصنوعة من السيمولينا صنف سوهاج 4 اقل درجات الخواص الحسية.