Use of Cyanobacteria for Controlling Flax Seedling Blight Aida H. Afify¹ and A. Z. A. Ashour² ¹Dept. of Microbiology, Fac. of Agric., Mansoura Univ., Mansoura, Egypt ²Plant Pathology Research Institute, ARC, Giza, Egypt

ABSTRACT

Cyanobacteria are one of important groups of prokaryotes due to their effects on growth and development of plants and its role in biological control of phytopathogenic fungi such as : *Fusarium oxysporum* and *Rhizoctonia solani* on flax by producing various biologically active substances . In the present study , fourteen cyanobacterial strains were isolated from rice rhizosphere in kafr El-sheikh (k) (North Delta Region) and El-Dakahliya (D) (East Delta Region). Only five cyanobacterial strains showed antagonistic effects against the both pathogenic fungi and were indentified as *Nostoc muscorum* k , *Anabaena oryzae* D , *Anabaena oryzae* k , *Nostoc pruniforme* D and *Oscillatoria brevis* D. The strains were analysed for phosphate solubilization , production of IAA , ammonia , HCN , production of some enzymes , and effect of their filterates on seed germination of flax seeds . Flax seeds treated with cyanobacterial filtrates germinated faster and produced higher seedlings compared with the nontreated ones .

Keywords: Prokaryotes , Blue – green algae , Flax , Phosphate solubilization , IAA , Biological control substances , Cellulase , Chitnase , Catalase productions .

INTRODUCTION

The cyanobacteria are often the dominant microalgae in soils (Zimmerman, 1992). The use of cyanobacteria as Plant Growth Promoting Rhizobacteria (PGPR) can fulfill these criteria by carry out photosynthesis and can fix nitrogen , thus add the mass growth (algal blooms) and increase nitrogen to soils (Metting, 1981). In addition, although the cyanobacteria (blue - green algae), which constitute the largest, most diverse, and most widely distributed group of photosynthetic prokaryotes (Stanier and Cohen - Bazire 1977) make up most of the world's biomass (Cannel, 1993) they have received little attention as potential biocontrol agents of plant diseases. In the present study, F.oxysporum and R.solani which are important pathogens on flax, were inhibited in vitro by substances produced by various cyanobacteria . Many cyanobacteria produce a large number of antifungal materials, thus they are suitable candidtes for exploitation as biocontrol agents of plant pathogenic fungi (Martin, 1995). The cvanobacteria also produce auxins the most important and diverse group of plant hormone used by plant as in the regulation of diverse biological processes including cell division differentiation, root elongation. Sergeeva et al., 2002 reported that cyanobacteria have the capability to accumulate IAA, production of lytic enzymes, hydrogen cyanide and catalase to improve plant health (khan , 2006).

The objective of this study were to evaluate the the five cyanobacterial strains *N. muscorum* k, *A. oryzae* D, *A. oryzae* k, *N. pruniforme* D and *O. bervis* D for controlling flax seedling blight caused by *F.oxysporum* and *R.solani* and study the effects of their filtrates on seedling behavior of flax.

MATERIALS AND METHODS

Isolation and identification of cyanobacteria :

The five cyanobacterial strains "*Nostoc muscorum* k, *Anabaena oryzae* D, *Anabaena oryzae* k, *Nostoc pruniforme* D, and *Oscillatoria brevis* D "were isolated from rhizosphere of rice (*Oryzae sativum* L.) plant, cyanobacterial strains were identified morphologically, biochemically, and by cultural characters as described previously (Afify *et al.*, 2018). These five cyanobacterial strains are chosen from fourteen strains because they were the most antagonistic ones against the flax pathogenic fungi *F.oxysporum* and *R. solani*. All cyanobacterial strains were isolated from rhizosphere of rice plant in the governorates of El-Dakahliya (D) and kafr El - Sheikh (k).

Source of pathogenic fungi isolates:

Fusarium oxysporum and *Rhizoctonia solani* isolates used in this study were obtained from the Fungal Collection of Cotton and Fiber Crops Diseases Reseach Section, Agric. Res.Center (ARC) Giza, Egypt.

Host plant :

Flax (*Linum usitatissimum* L.) Sakhal cv. was supplied by Field crop Research Institute , ARC, Giza, Egypt.

Antagonism:

In vitro tests for antagonism of cyanobacterial filtrates against damping – off fungi *F. oxysporum* and *R.solani* were carried out by plate assays. The plates were incubated at 28 - 30 °C and observations were made up to 7 days on the inhibition of fungal growth (Sivamani and Gnanamanickam, 1988).

Phosphate solubilization :

For assay of phosphate solubilization, cyanobaterial strains were inoculated with 5% inoculums of P – straved, 15 day old actively growing culture of the algae for 35 days. The P-starved cultures were grown in presence of TCP at concentrations 20mg by replaing K2HPO4 in the usual BG11 medium. The method was described as Watanabe and Olsen (1965) and Jackson (1966).

IAA estimation :

Five cyanobacterial strains were inoculated in 250 ml conical flask containing 100 ml BG11 medium with different concentrations (10 to 100 μ g/ml) of tryptophan and incubated at 28 -30° C. IAA estimation was conducted in triplicate and OD was taken at 330 nm after 10, 20, 30 days according to Patten and Glick (2002).

Ammonia production :

Ammonia was evaluated by Dye (1962) the cynobacterial strains were grown in peptone water in 30 ml tubes and incubated at 28° C for 4 days. After that 1 ml of Nessler's reagent was added to each tube. Development of afaint yellow colour was indicative of weak reaction and deep yellow to brownish colour was indicative of strong reaction.

HCN production :

HCN production was evaluated by the qualitative method of kremer and Souissi (2001).

Detection of enzymes by antagonistic cyanobacteria :

Production of hydrolytic enzymes were detected on plate by adding cyanobaterial filterate individually on the medium containing enzyme substrate, Ngarajkumar *et al*., (2004).

Germination test :

Late phase (21days) of the cyanobacterial strains culture were centrifuged and the cell free filterate were used for seed germination studies . The healthy seeds of flax were surface sterilized using 0.01% HgCl₂ solution for 5 min followed by several washing with distilled water for about one h. selected number of seeds (20) was then distributed on water agarized Petri plates (0.5% agar) and 10 ml of the following different treatments were added, N_1 , A_2 , A_3 , N_4 , O_5 and control.

N₁: Nostoc muscorum K A2: Anabaena oryzae D

A₃: Anabaena oryzae K

N₄: Nostoc pruniforme D

O₅: Oscillatoria brevis D

In control Petri dishes cyanobacterial filrate were replaced by water for evaluation . Perentage radical emergence and seed germination speed was recorded at 25°C after every 24 h time interval .Time for initial signs of radical emergence and maximum emergence was recorded up to three days .

Germination Velocity Index :

The germination speed index (CVI) was calculated as described in the Association of Official Seed Analysis (1983) by following formula :

$$G = \frac{N1}{1} + \frac{N2}{2} + \frac{N3}{3} + \dots$$
 so on

Here N1 N2 N3 etc. are the no. of new germinate on day 1, 2, 3 etc. following the start of germination test . Since the no . of new germinate on a particular days divided by the serial number of that days the GVI is higher if more seeds geriminate in the fewest number of days.

Vigor Index :

Seedling vigor index was calculated following modified method of Abdul- Baki & Anderson (1973) :

VI = Seedling length (mm) x Germination %

Statistical Analysis :

The data were subjected to one way analysis of variance (ANOVA) . The treatment means were compared by LSD at a significance level of 0.05.

RESULTS AND DISCUSSION

Antagonism:

Of the fourteen cyanobacterial strains tested for in vitro antagonism against pathogenic fungal isolates of F.oxysporum and R. solani ; these cyanobacterial strains : N. muscorum K, A. oryzae D, A. oryzae k, N. pruniforme D, and O. brevis D. consistently showed levels of inhibition in vitro antagonism against the two tested fungi . Other cyanobacterial strains were no effective or showed no antagonism (Table 1), These results are in agreement with the previous reports, which indicated that bacterial isolates suppressed fungal growth in vitro Ashour and Afify (1999) and kumar and kaur (2014) by production of antifungal antibiotics .

Table 1. Antagonistic activity for fourteen cyanobacterial strains against two phytopathogenic fungi on flax.

<u> </u>	Fungi tested				
Cyanobacterial strains	F. oxysporum	R. solani			
Nostoc paludosum D	-	-			
Anabaena oryzae D	++	++			
Anabaena oryzae K	++	+			
Nostoc muscorum k	++	++			
Nostoc pruniforme k	-	-			
Nostoc pruniforme D	+	+			
Nostoc verrucosum k	-	-			
Nostoc verrucosum D	-	-			
Nostoc entophytum k	-	-			
Nostoc rivulari k	-	-			
Nostoc viride k	-	-			
Chroococcus minor k	-	-			
Oscillatoria brevis k	-	-			
Oscillatoria brevis D	-	+			
Control (only funges)	-	_			

Cyanobacterial strains isolated from two locations of : D= Dakahlia governorate ; K = Kafr El- Sheikh governorate

++ Inhibition of pathogen : by over growth

- no inhibition of pathogen + Inhibition of pathogen

Plant Growth promoting and protect substance:

In Table (2) when the determination of Psolubilization by the five cyanobacterial strains showed positive results for phosphate solubilization, IAA and all strains showed growth in nitrogen free media, All of the products improved plant growth by mounting up the availiability of phosphate and produce growth regulators such as auxin - like substances IAA (Hameeda et al., 2008) . Moreover, cyanobacterial strains may protect plants from phytopathogens due to ammonia, hydrogen cyanide and lytic enzymes production (kremer and Souissi, 2001). The results showed high amount of P-soluliblization and IAA production with the strain N. muscorum (4.20 and 6.50 µg/L) respectively. In case of producing substances for protect plants from phytopathogens, all strains produced ammonia and catalase, while only A.orvzae D produced HCN and chitinase . Production of cellulase was not shown by all the tested cyanobacteria. These results were in agreement with Castenholz (2005).

Table ? Detection of d	ifferent plant promotion on	d antagonistia	nuonautica h	. filton	ate of aver	abaatamial	atuaina
Table 2. Detection of u	merent plant promotion and	u antagomstic	properties b	y muer	ate of cyan	obacteriai	strams
Crown also at anial at mains	D solubilization (s/ml)	IAA (Ammonio	HCN	Callulaga	Chitimaga	Catalana

Cyanobacterial strains	P- solubilization (μ g/ml)	IAA (µg/ml)	Ammonia	HCN	Cellulase	Chitinase	Catalase
N.muscorum K	4.03	6.5	+	-	-	-	+
A.oryzae D	4.20	6.1	+	+	-	+	+
A.oryzae K	4.02	6.0	+	-	-	+	+
N. pruniforme D	3.85	4.5	+	-	-	-	+
O.brevis D	3.70	3.5	+	-	-	-	+
Control	3.58	3.5	+	-	-	-	+

Effect on seed Germination behavior of flax :

Culture filtrates of the tested cyanobacterial strains stimulated germination of flax seeds . A highly significant increase in percentage germination was 78.33 % with the N.muscorum K and A.oryzae D, respectively (Table 3) . These results are agreement with Martin (1995) who reported that culture filterate or cell extracts from cyanobacteria and algae applied to seeds protected them against damping -off fungi .

Data in Table 4&5 indicated that seeds treated with cyanobacterial filtrate faster , while in control seeds germinate slowly, so cyanobacterial filrate led to significantly higher value of the germination velocity index compared to seeds in under controlled treatment . Treatment of N. muscorum K shows higher value of mean difference in germination velocity index . Further the seedlings arised from cyanobacterial filtrate treated seeds also had significantly higher values of the viger index . Martin(1995) also showed that the seedlings arised from cyanobacterial filterate treated seeds had significantly higher values of the vigor index. The germ - ination percentage, germination velocity index, vigor index were notably enhanced.

Table 3. Effect of cyanobacterial filtrate on germination percentage

Treatments	Germination % of total seeds
N.muscorum K	78.33 ± 7.26
A.oryzae D	78.33 ± 1.67
A.oryzae K	78.00 ± 1.67
N. pruniforme D	70.00 ± 2.88
O.brevis D	70.00 ± 0.00
Control	58.33 ± 3.33
$LSD(p \le 0.05)$	9.50

4. Effect of cyanobacterial filtrate on Table Germination Velocity Index (GVI)

Treatments	GVI
N.muscorum K	9.50
A.oryzae D	9.25
A.oryzae K	8.00
N. pruniforme D	7.90
O.brevis D	6.50
Control	4.00

Table 5. Effect of cyanobacterial filtrate on Velocity Index (VI)

Treatments	VI	
N.muscorum K	8000	
A.oryzae D	7950	
A.oryzae K	6800	
N. pruniforme D	6000	
O.brevis D	6000	
Control	3000	

The result showed that cvanobacteria were effective in growth promotion and protection of flax from infection by soil born fungi.

REFERENCES

- Abdul Baki A . A . and Anderson J.D. (1973) . Vigor determinations in soybean seed multiple criteria. Crop Sci . 13 : 630-633. Afify, Aida H. ; Hauka, F.I.A. ; Gaballah, M.M. and Abou
- Afify, Aida H.; Hauka, F.I.A.; Gaballan, M.M. and Abou Elatta, A.E. (2018) . Isolation and identification of dominant N₂ fixing cyanobacterial strains from different locations . J. Agric.Chem. and Biotechn . , Mansoura Univ.Vol 9 (6) 141- 146.
 Ashour A.Z. A. and Afify, Aida H. (1999). Biological control
- of cotton seedling disease by rhizobacteria .2 rd , Int. Conf .of Pest Control , Mansoura , Egypt , 357-370.

- Association of Official Seed Analysis (1983) . Seed vigor testing handbook, Contribution . 32 Handbook on Seed Testing, AOSA, lincoln, NE, USA. Cannel R.J.P.(1993). Algae as a source of biologically active
- products .pest Sci , 39 : 147-153.
- Castenholz, Richard W. (2015). Bergey's Manual of Systemic Bacteriology. Phylum BX. Cyanobacteria Oxygenic Photosynthetic bacteria. Pp. 478.
- D. W. (1962). The inedequancy of the usual determinative tests for identification of *Xanthomonas* Dye spp., NZT Sci., 35: 393 – 416. Hameeda B. ; Harini G. ; Rupela O.; Wani S. and Reddy G.
- (2008) . Growth promotion of maize by phosphate Solubilizing bacteria isolated from composts and macrofuna. Microbiol. Res. 163 : 234 – 242.
 Jackson M.L.(1966). Soil chemical analysis. Prentice Hall of India (Pvt) Ltd, New Delhi 239-241.
- Khan, M.S. (2006). Screening of free living rhizospheric bacteria for their multiple plant growth promotion .
- Biotechnol., 17: 319–339. Kremer, R.J. and Souissi T.(2001). Cyande production by rhizobacteria and potential for suppression of weed
- seedling growth. Curr, Microbiol. 43: 182-186.
 Kumar A. and kaur R. (2014). Impact of cyanobacterial filtrate on seed germination behavior of wheat. Int. J. Basic and Appl. Biol. Vol. 1: 11-15.
 Martin M. Kulik (1995). The potential for using cyanobacteria (blue, green alrea) and algee in the biological control.
- (blue- green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European J. of plant pathogenic bacteria and fungi.
- Metting B. (1981). The systematics and ecology of soil algae Bot. Rev. 47: 195-311.
- Nagarajkumar M.; Bhaskavan R. and Vaiezhahan R. (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by *Pseudomonas fluorescens* in inhibition of *Rhizoctonia solani*, the rice sheath blight pathogen . Microbial Res.: 159: 73-
- Patten C. and Glick B. (2002) . Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl .and Environ .Microbiol . 68 : 3795-3801.
- Sergeeva E.; Liaimer A. and Bergman B. (2002). Evidence for production of the Phytohormone indole 3 acetic acid by cyanobacteria. Planta 215: 229-238.
- Sivamani E , and Gnanamanickam S.S. (1988) . Biological control of Fusarium oxysporum f. sp, cubense in banana by inoculation with pseudomonas fluorescens. Plant and Soil 107 : 3-9 Stanier R. Y. and Cohen – Bazire G. (1977) . Phototrophic
- prokaryotes : The cyanobacteria. Ann. Rev. Microbiol .31: 225-274. Watanabe F. S. and Olsen S.R. (1965) .Test of an ascorbic
- acid method for determining phosphorus in water and NaHCO₃, extracts from soil. Soil Sci. Soc. Am. Proc. 29: 677- 678.
 Zimmerman, W.J. (1992). Microalgal biotechnology and multi-trips in complexity in Microalgal biotechnology and
- applications in agriculture. In : Metting FB Jr (ed), Soil Microbial Ecology (pp 457- 479). Marcel Dekker , Inc , New York , USA .

استخدام السبيانوبكتيريا لمقاومة لفحة بادرات الكتان عايدة حافظ عفيفي¹ و عبد الودود زكي عاشور² ¹قسم الميكروبيولوجي –كلية الزراعة – جامعة المنصورة – المنصورة – مصر ²معهد بحوث أمراض النباتات – مركز البحوث الزراعية – الجيزة – مصر

تعتبر الطحالب الخضراء المزرقة (السيانوبكيتريا) من اهم مجموعات البروكاريوتات (بدائيات النواة) التي لها تأثير على تطور ونمو النباتات وذلك من خلال دور ها كمشجعة لنمو النباتات وفي المقاومة الحيوية لعديد من الفطريات الممرضة للنباتات عن طريق إنتاج مواد نشطة حيويا . في خلال هذه الدراسة تم احتيار خمسة سلالات سيانوبكيتريا من ضمن مجموعة سلالت السيانويكتيريا المعرفة و المعروك الشرطت سبنات على طريق المتعلمة يوبي في عمل هذه الشرعة ما معيور كمسة سمر تسيطورين (k) وانابينا أوريزا (b) وانابينا أوريزا (k) وانابينا أوريز ونوستوك بيرينيورم (b) واوسلاوتوريا بريفس (b) هذه السلالات أظهرت معمليا قدرة عالية على تصد إثنان من فطريات التربة التي تسبب أمراض بادرات الكتان هما فيوزاريوم أكسوسيورم وريزوكتونيا سولاتي وذلك بتقدير قدرتها على إنتاج بعض المواد المشجعة لنمو النبات مثل إذابتها لعصر الفوسفور وانتاج إندول حمض الخليك بالإضافة للمواد المصادة لنمو الفطريات الممرضة مثل إنتاج الأمريني وسيانيد الهيدروجين وبعض الإنزيمات حيث اطهرت جميع السلالات قدرتها على إذاب الالالة البلائي المواد المشجعة لنمو النبات مثل إذابتها لعاس الرابية التي تسبب أمراض بادرات الكتان هما فيوزاريوم المصادة لنمو الفطريات الممرضة مثل إنتاج الأمرينيا وسيانيد الهيدروجين وبعض الإنزيمات حيث اظهرت جميع السلالات قدرتها على إذابة الموسفور حيث سجلت السلالة أنابين المصادة لمو الفطريات الممرضة مثل إنتاج الامونيا وسيانية الهيدروجين وبعض الإنزيمات حيث اظهرت جميع السلالات فتربها علي إذابه الفوسفور حيث سجلت السلالة التبييا أوريزا (D) أعلي إنتاج (2.0, μg/ml) بينما سجلت السلالة نوستوك مسكورم (k) أعلي قيمة في إنتاج إندول حمض الخليك (5, μg/ml) ولكن جميع السلالات كان لها القدرة علي إنتاج الأمونيا وإنزيم الكتاليز بينما فشلت في إنتاج إنزيم السليلوليز وبالنسبة لإنتاج سوليد الهيدروجين كان مع السلالة أنابيا السلالتين انابينا أوريزا (D&K) نتيجة موجبة بينما فشلت بقي السلالات في إنتاجه وبإستخدام راشح سلالات السيالية ال الكتان المعاملة براشح السيانويكتيريا عن البنور الغير معاملة (الكنترول) بالإضافة إلى أن البلدرات المعاملة براشح السلالات كانت أطول من البادرات الغير معاملة وكناك زيادة نسبة وسرعة الإنبات في بذور الكتان كانت مع البنور المعاملة أعلى من البدور الغير معاملة إلى المعاملة براشح السلاليت كانت معاملة وكناك زيادة إلى أنها العربة الكنينيز سجلت نسبة وسرعة الإنبات المعاملة المعاملة والكنترول) بالإضافة إلى أن البلدرات المعاملة براشح السلالات كانت أطول من البادرات الغير معاملة وكنتر