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Abstract—Participatory sensing is an emerging paradigm in which citizens voluntarily use their mobile phones to 
capture and share sensed data from their surrounding environment in order to monitor and analyze some phenomena 
(e.g., weather, road traffic, pollution, etc.). Participating users can disrupt the system by contributing corrupted, 
fabricated, or erroneous data. Different reputation systems have been proposed to monitor participants' behavior and to 
estimate their honesty. There are some attacks that were not considered by the existing reputation systems in the context 
of participatory sensing applications including corruption, collusion, and on-off attack. In this paper, we propose a more 
robust and efficient reputation system designed for these applications. Our reputation system incorporates a mechanism 
to defend against those attacks. Experimental results indicate that our system can accurately estimate the quality of 
contributions even if collusion is committed. It can tolerate up to 60% of colluding adversaries involved in the sensing 
campaign. This enables our system to aggregate the data more accurately compared with the state-of-the art. Moreover, 
the system can detect adversaries even if they launch on-off attack and strategically contribute some good data with high 
probability (e.g. 0.8).

Keywords—Participatory sensing; malicious; collusion attack; On-Off attack; reputation;  trust

I. INTRODUCTION 

Everyday, millions of people move around carrying a variety of handheld devices equipped with sensing, 
computing, and networking capabilities (e.g., smartphones, tablets, music players, GPS watches, in-vehicle sensors, 
etc.). The advancement and widespread use of such devices have contributed toward the emergence of a new kind of 
application called participatory sensing [1]. These applications exploit both the mobility of the participants and the 
sensing capabilities of their devices to construct opportunistic mobile sensor networks [2].

In participatory sensing, participants capture sensed data from their surrounding environment using a variety of 
sensors (e.g., GPS, camera, microphone, accelerometer, gyroscope, digital compass, etc.) embedded in their devices. 
Then, they share their collected observations with a backend server, which processes the received data to monitor, 
map, or analyze some incidents or phenomena of common interest.

Participatory sensing systems can be applied to serve many of our daily life needs, including monitoring health 
[4], traffic [5], noise [3], weather, commerce, as well as many other applications [6].

In these applications, no restrictions are usually imposed about the participants' experience, concern, 
trustworthiness, and interest. In addition, they are not usually paid for their participation in the sensing campaign. 
Thus, they usually do not have strong motivations to comply with the tasks' requirements. That is, they are not 
concerned about some parameters which may improve the quality of their contributions (e.g. time, location and/or 
the position of the device during the sensing process). As a consequence, participatory sensing applications are 
vulnerable to erroneous and malicious participants. We define erroneous and malicious participants as those who 
mislead and disrupt the system measurements by reporting false, corrupted or fabricated contributions either 
intentionally or non-intentionally. Non-intentional (i.e. erroneous) corruption may originate from a malfunctioning 
sensor while intended (i.e. malicious) corruption is deliberately committed to alter the system measurements in a 
specific location. For instance, an adversary can put his device in a non-appropriate position. Alternatively, a
participant can modify a contribution before sharing it. Malicious participants may further launch various types of 
attacks such as Sybil, collusion, on-off attack, etc. Some of these attacks are discussed in Section III. Consequently, 
the need arises for approaches that try to detect erroneous participants and deter or mitigate malicious ones in order 
to evaluate the veracity and accuracy of participants' contributions and therefore to build robust and reliable 
application systems [7].

Among the classical solutions to deal with erroneous and malicious users is the notion of trust and reputation
systems [8]. Some of these systems depend on the reputation of entities for assessing the trust of their behaviors. 
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Reputation is defined as the probability that the past contributions of the participant were correct. Thus, assessing 
the trust and reputation of participants permits the system to evaluate their expected behavior for their future 
interactions.

Different reputation systems have been proposed for participatory sensing applications. We have studied, 
classified, and compared those systems in [9]. It is evident that, those systems are in their infancy, and have several 
limitations. One of these limitations is the estimation of the quality of contributions in the existence of collusion 
attack. A few researchers have addressed the estimation of the quality of contributions for example, Huang et al. 
[10], Wang et al. [11], and Manzoor et.al. [12]. However, such systems are not resistant against malicious colluding 
adversaries. These systems exploit some consensus and outlier detection algorithms (e.g. [13], [14]) to evaluate the 
consistency of each contribution. Subsequently, such systems are biased if a good participant is surrounded by a 
number of colluding adversaries. That is, it ends up getting a good participant defined as malicious and vice versa.

In this paper, we propose a novel and efficient reputation system to estimate the trustworthiness of participants' 
contributions. The system also adopts a methodology to detect adversaries even if there is a large number of 
colluding adversaries. It also incorporates other novel parameters, including a proximity factor and users' feedback, 
to assign a trust score to each contribution. These trust scores give the system the ability to aggregate more accurate 
data which may reflect the ground truth more precisely compared with the state-of-the-art. The parameters exploited 
by the system are collected by most existing participatory sensing applications (e.g. data, location, etc.). Thus, our 
system is applicable to most of typical participatory sensing applications (e.g. noise, pollution, weather, traffic, etc.).

The rest of this paper is organized as follows: Section II states the previous work and its limitations. We then 
give an overview about the participatory sensing and its threat model in Section III. We describe and discuss in 
details our proposal in Section IV. The experimental results of our reputation system are discussed in Section V. 
Finally, we conclude this paper in Section VI.

II. RELATED WORK

Different reputation systems have been proposed in literature for different participatory sensing applications. A 
reputation system for noise monitoring application system is presented by Huang et al. in [10]. This system adopts a 
robust average algorithm through a watchdog module to measure the quality of the recorded noise samples provided 
by each participant. In [12], Manzoor et al. measure the quality of participant contribution through a Gaussian 
membership function. Wang et al., in [I1], use a similarity factor to measure the consistency of each contribution 
compared with the others. All these systems adopt some outlier detection or consensus algorithms to measure the 
deviation of each contribution from the common consensus (e.g. [13], [14]). Thus, the results of these systems 
disrupt if a large number of malicious or colluding adversaries is involved in the sensing campaign.

Other reputation systems have been proposed earlier for social participatory sensing applications in [16], [17], 
and [18]. These systems mainly depend on some social parameters for estimating the trustworthiness of participants. 
These parameters include friendship duration, interaction time gap, familiarity, etc. However, these parameters are 
not usually available in all participatory sensing applications. Thus, these systems are not applicable with the wide 
range of participatory sensing application.

Complementary to reputation based trust systems, researchers suggest to equip smartphones' sensors with an 
embedded Trusted Platform Module TPM [19], [20] [21], and [22]. Such a module ensures the authenticity of 
participants' contributions. Furthermore, some TPM based systems can protect data from unauthorized access 
through applying some authentication and hardware cryptography mechanisms.  Although, TPM solutions have 
some merits, they also suffer from a number of limitations. A major limitation of TPM-based solutions is that they 
only consider data authenticity regardless of the participant's sincerity and honesty. TPM cannot detect contributions 
from malicious participants who deliberately initiate sensing actions that cause distortion of their contributions (e.g.
putting the device in non-appropriate position). In addition to erroneous contributions that originate from a 
malfunctioning sensor.

For more details about reputation systems in participatory sensing, its classification, their merits and limitations, 
and different research directions in this domain, please refer to our survey presented in [9].

III.SYSTEM MODEL

In this section, we establish a framework that allows us to analyze the reputation system presented in Section IV. 

A. Definitions

Trust and reputation have been defined earlier in the context of participatory sensing by Wang et al. in [11] as 
follows:
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Definition 1: Trust of a contribution: The trust of a contribution	ܥ, denoted as	ܶ(ܥ)ݐݏݑݎ, is the probability of ܥ
being correct, as perceived by the server.

Definition 2: Reputation of a Participant: The reputation of a participant	 , denoted as	 ܴ, is the synthesized 
probability that the past contributions sent by	 are correct, as perceived by the server.

Definition 3: Participant's Behavior: The participant	 is identified as a good participant if he is assigned a 
reputation score ܴ that exceeds a predefined minimum threshold	߬. Otherwise, he is identified as a malicious or 
adversary. The following equation describes this concept.

ܾ݁ℎܽݎ݅ݒ = ቊ݀ܩ																			݂݅	 ܴ ≥ ߬
	݂݅									ݏݑ݈݅ܿ݅ܽܯ ܴ < ߬																																																	(1) �

B. Threat Model

Participatory sensing applications are vulnerable to a number of attacks. We have defined these attacks in [9]. 
Below, we define the attacks that are mainly considered along this work (e.g. Corruption, collusion, on-off attacks). 
We treat them here in the context of participatory sensing applications for the first time.

 Corruption attack leads to an erroneous contribution. It may arise as a result of a malfunctioning sensor of a 
participant's device. In addition, the adversary can deliberately contribute corrupted or forged data. A local 
processing module can also be used by an adversary for modifying the sensed data before sharing it. An 
adversary can also initiate sensing actions which may corrupt the sensed data by putting his device in non-
appropriate positions. In air quality mapping system, the adversary may put his device beside a cigarette 
flame. The system should have strong capabilities to identify correct contributions in order to identify and 
exclude corrupted ones.

 In Collusion attack, malicious colluding participants coordinate their behavior in order to provide unified 
false, corrupted contributions, and/or false feedback. Multiple malicious participants acting together can 
cause more damage than each one acting independently. If the majority of participants collude they can 
mislead the system measurements and decisions. In order to attain robustness against such attack, systems 
should not rely on consensus algorithms to define good and bad contributions. Otherwise, the system 
measurements and decisions are biased.

 In On-Off attack, an adversary alternates between normal and abnormal behaviors. Specifically, the 
adversary provides false data randomly and irregularly with a probability. The adversary can keep his trust 
above the required threshold by alternating his behavior as required. This makes it difficult to be detected. To 
defend against this attack, the system should keep the history of participants and should have a good 
capability to define their instantaneous trust. The behavior of an on-off attacker is usually unstable along 
time.

IV.DTSRS: A DYNAMIC TRUSTED SET BASED REPUTATION SYSTEM

A. Overview

In the context of participatory sensing, evaluating the quality of contributions provided by participants is a 
crucial task. By the term quality, we mean how much a contribution is close to the ground truth in the sensing area. 
In the state of the art, authors measure the consistency of a contribution with the other contributions provided by 
other participants. However, this measure is usually disrupted especially when there are a large number of 
adversaries involved in the sensing campaign. In different contexts, the systems rely on a trusted third party that can 
provide her with the ground truth. However, in the context of participatory sensing, this third party is not available. 
Thus, we try to propose a more efficient and robust mechanism for evaluating contribution quality depending on a 
Trusted Participant set (TP). We define this set such that it involves the participants with the higher reputation 
scores	 ܴ. Those participants are usually more trusted and have higher probabilities to submit good data. Relying 
on this set of reliable contributions to evaluate the rest of contributions gives our system better idea about which 
contribution is correct and which is false. Therefore, our system has better capabilities to detect adversaries who 
contribute bad data. The trusted set is dynamic such that it is updated after each campaign in order to base on the 
most recent reputation information. Thus, we refer to the proposed system as a Dynamic Trusted Set based 
Reputation System (DTSRS). In the following, we describe how this trusted set is constructed and updated. Then, 
we illustrate how this set is exploited to assess trust through the sensing campaign.
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B. Trusted Set Management

The trusted set management process is depicted in Fig
Initialization phase I and Main phase M
which is carried out for ݊ times when the application is started and there is no available reputation data concerning 
each participant (step 1I). Therefore, we adopt a methodology to use the most consistent contributions in order to 
evaluate the others (step 2I). Through this pha
identify them either as good or malicious participants (step 3I, 4I). The 
following subsection. After a number of iterations (e.g. 
update the trusted set according to the reputation scores of the participants (step 2M). Then, this set is used to 
evaluate the current contributions and subsequently calculate new trust and reputation scores (ste
we describe in more detail both the initialization and update of the trusted set.

1. The Initialization Phase

The Initialization Phase is illustrated in
of the trusted participants ܶܲ as an input. First, we measure the similarity between each two different contributions 
,ܥ)  ̀) using some similarity measures as the ones introduced in the field of data mining inܥ
measure ranges from -1 for completely conflicting contribution to +1 for contributions which are exactly the same. 
We then calculate the average consistency of each contribution (line 8). Hereafter, the available contributions are 
arranged according to this average (line 11). Finally, the first contributions that have higher average of consistency 
are selected and considered as the initial trusted contributions, (lines 12

2. Update the Trusted Set

In this phase, the trusted set is upda
is illustrated in the algorithm shown in 
depending on the system methodology (lines 1
participants is known), the reputation scores of those participants are retrieved either from a common database or 
reputation queries are sent to a reputation server. Otherwise, reputation scores are
anonymous demonstration (e.g. anonymous reputation certificate), if the sensing campaign is anonymous. That is 
reputation scores become accessible at the application server by some way. The contributions of the current task are 
then arranged according to the reputation scores of their providers (line 11). Finally, the first 
selected as the trusted set (lines 12-16).
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The trusted set management process is depicted in Fig. 1. This process is composed mainly of two phases, 
M. Sub-figures a and b depict both these phases. First, the 

times when the application is started and there is no available reputation data concerning 
each participant (step 1I). Therefore, we adopt a methodology to use the most consistent contributions in order to 
evaluate the others (step 2I). Through this phase, the involved participants are assigned reputation scores that 
identify them either as good or malicious participants (step 3I, 4I). The details of this phase are
following subsection. After a number of iterations (e.g. ݊), the system can move to the main phase
update the trusted set according to the reputation scores of the participants (step 2M). Then, this set is used to 
evaluate the current contributions and subsequently calculate new trust and reputation scores (ste
we describe in more detail both the initialization and update of the trusted set.

Fig. 1. Trusted Set Management Process

The Initialization Phase is illustrated in the algorithm depicted in Fig. 2. This phase starts by 
as an input. First, we measure the similarity between each two different contributions 

using some similarity measures as the ones introduced in the field of data mining in [15]
1 for completely conflicting contribution to +1 for contributions which are exactly the same. 

We then calculate the average consistency of each contribution (line 8). Hereafter, the available contributions are 
ged according to this average (line 11). Finally, the first contributions that have higher average of consistency 

are selected and considered as the initial trusted contributions, (lines 12-16).

In this phase, the trusted set is updated according to the current reputation score of the participants. This process 
shown in Fig. 3. The current reputation scores of participants are reported in some way 

depending on the system methodology (lines 1-10). If the sensing campaign is non-anonymous (e.g. the identity of 
participants is known), the reputation scores of those participants are retrieved either from a common database or 
reputation queries are sent to a reputation server. Otherwise, reputation scores are demonstrated using some 
anonymous demonstration (e.g. anonymous reputation certificate), if the sensing campaign is anonymous. That is 
reputation scores become accessible at the application server by some way. The contributions of the current task are 

n arranged according to the reputation scores of their providers (line 11). Finally, the first ܶܲ
16).

d mainly of two phases, 
phases. First, the initialization phase

times when the application is started and there is no available reputation data concerning 
each participant (step 1I). Therefore, we adopt a methodology to use the most consistent contributions in order to 

the involved participants are assigned reputation scores that 
details of this phase are illustrated in the 

main phase (step 1M) and 
update the trusted set according to the reputation scores of the participants (step 2M). Then, this set is used to 
evaluate the current contributions and subsequently calculate new trust and reputation scores (step 3M, 4M). Below, 

. This phase starts by determining the size 
as an input. First, we measure the similarity between each two different contributions 

[15]. The output of this 
1 for completely conflicting contribution to +1 for contributions which are exactly the same. 

We then calculate the average consistency of each contribution (line 8). Hereafter, the available contributions are 
ged according to this average (line 11). Finally, the first contributions that have higher average of consistency 

ted according to the current reputation score of the participants. This process 
. The current reputation scores of participants are reported in some way 

anonymous (e.g. the identity of 
participants is known), the reputation scores of those participants are retrieved either from a common database or 

demonstrated using some 
anonymous demonstration (e.g. anonymous reputation certificate), if the sensing campaign is anonymous. That is 
reputation scores become accessible at the application server by some way. The contributions of the current task are ܶܲ contributions are 
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Fig. 2. Initialize Trusted Set Algorithm 

Fig. 3. Update Trusted Set Algorithm 
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C. Trust Assessment and Reputation Update

In this subsection, we provide an overview about the methodology exploited for trust assessment and reputation 
in our DTSRS system. Fig. 4 depicts the main trust parameters exploited in our system and identified as blue boxes 
in the figure. While white boxes are the information sources and the brown ones refer to the modules where these 
parameters are aggregated for assessing the trust and reputation of each contribution. We target to assess the trust of 
contributions in a way that the assigned trust scores reflect the consistency of the contributions with ground truth 
rather than the consistency of them with each other as considered in the state-of-the art. This provides our system 
with much more resistance against collusion. A brief definition of the function of each module is described as 
follows:

First, a contribution evaluation module evaluates the quality of a participant's current contribution. It measures 
the deviation of each contribution from the mean of the set of contributions which are provided by the most trusted 
participants. First, contributions that belong to the same task ܶܽ݇ݏ௧ are grouped together (step 1 and 2). The trusted 
set is defined according to the methodology described in the previous subsections. Then, the deviation of each 
contribution from the mean of those trusted contributions is calculated and assigned a score ߠ (Step 3).

Second, sensed data are published through a public server. Thus, end users query these data. Those users are 
themselves a subset of the participants who are involved in the sensing area. They are sometimes permitted to 
provide a feedback for the received contributions. An accurate feedback usually reflects how much the rated 
contribution agrees with ground truth as perceived by the user. User ݍ report a feedback about the contribution of a 
participant  noted as ܨ() (step 4). A user may report a feedback that does not reflect his genuine opinion about 
the target contribution. This is considered as unfair rating attack defined by Jqsang in [25]. Thus, the feedback is 
evaluated to mitigate the effect of such attack and aggregated to assign a feedback score ߙ to the target participant 
(step 5).

Third, participatory sensing is usually interested in a specific sensing area. Additionally, sensed data are affected 
by the distance from the sensing area. For instance, a noise sample recorded by a participant is significantly affected 
by a nearby sound source such as train station, crowd, etc. This noise is considered to attenuate by going away from 
its' source [26]. Subsequently, the closer a participant to the sensing area, the more accurate his contribution is 
considered. Here, we propose to define a proximity factor ߜ that measures the vicinity of a participant to the center 
of the sensing area. The contribution is subsequently assigned a score which reflects its possible decay according to 
the nature of the application (step 6).

Finally, the reputation score	 ܴ, which is previously assigned to the participant according to his previous 
contributions, is also considered (step 7). This score describes the historical behavior of the participant. Thus, it 
gives an indication of the participant expected behavior during the subsequent tasks. Incorporating the historical 
reputation score of the participant enables to trace the behavior of the participant and help to detect the ones who 
launch on-off attack.

In the trust mapping module, the collected measures including	ߠ ,ߜ	,ߙ	, and	 ܴ, concerning the contribution 
of the target participant  are integrated to assign a ܶݐݏݑݎ score to his current contribution (step 8). The reputation 
score 	 ܴ of the participant  is then updated to ܴ (step 9). In the following subsection, we discuss the details of 
these modules.

1) Contribution Evaluation
Consider ݊ is the number of participants who joined the sensing campaign and  is one of them who submits a 

contribution ܥ such that	(݅	 ∈ {1,2,3, . . . ܲܶ First, the trusted set .({݊, is defined according to the methodology 
illustrated above. The mean of those trusted contributions (ܥ ∈ 	 ,ଷܥ,ଶܥ,ଵܥ} . . . ({	்ܥ, is calculated and is noted as ߤ(்ܥ) (Equation 2). The higher the similarity of a contribution ܥwith this mean, the more reliable it is considered. 
Thus, the deviation of each contribution, from this mean, is calculated and is noted as Contribution Deviation ݀ as 
depicted in Equation 3.

(்ܥ)ߤ = ∑ ୀ்ୀଵܶܲܥ 																																																																																													(2)
݀ = ݏܾܽ ቀܥ − 	ቁ(்ܥ)ߤ	 , ݅ ∈ {1, 2, 3, … (3)																																											{݊,
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Where ܾܽݏ(. ) is the absolute function, 
the considered task.

݀		(	∀	݅	 ∈ 	 {1,2,3, . . . , ({݊ is then normalize
shown in Equation 4. ݀ of 0 means that the contribution of 
contributions. Whereas, 1 means it completely 
assigned a score	ߠ which reflects its quality by feeding the normalized deviation as an input to an exponential 
distribution. The output of this distribution is depicted 
scores which commensurate with their normalized deviation. For example, a contribution with a normalized 
deviation of 0 is assigned the maximum score 1. The output of the distribution is defined
and depicted in Fig. 3.

݀ = 	 ݀ −max൛݀ൟ
ߠ = ݁ିௗ								

We also normalized the input (i.e. the deviation) to the 
the range[݁, ݁ିଵ]~ → [1,0.37]. We run the exper
normalization. Using the exponential distribution, we found that the normalization of the input to the range [0, 1] 
and getting an output in the range [1,
weighted sum of the available contributions according to these scores is more close to the ground truth.

is the absolute function, ݊ is the total number of contributions provided by 

is then normalized to the range [0,1]. The normalized deviation is noted as 
of 0 means that the contribution of  is exactly the same as the mean of the trusted 

contributions. Whereas, 1 means it completely contradicts with this mean. The participant's contribution 
which reflects its quality by feeding the normalized deviation as an input to an exponential 

distribution. The output of this distribution is depicted in Fig. 3. Using this distribution, participants are assigned 
scores which commensurate with their normalized deviation. For example, a contribution with a normalized 
deviation of 0 is assigned the maximum score 1. The output of the distribution is defined according to Equation 5 

−min	{݀}ୀଵ
ൟୀଵ − 	min	{݀}ୀଵ 																																																											(4)
																																																																																															(5)

We also normalized the input (i.e. the deviation) to the range	[0,1]. Thus, we have the quality score 
We run the experiments different times to determine the most suitable range for 

normalization. Using the exponential distribution, we found that the normalization of the input to the range [0, 1] 
and getting an output in the range [1, 0.37] allows for more accurate data aggregation. That is calculating the 
weighted sum of the available contributions according to these scores is more close to the ground truth.

Fig. 4. The Framework of our DTSRS system

is the total number of contributions provided by 	݊  participants for 

. The normalized deviation is noted as ݀ as 
is exactly the same as the mean of the trusted 

contradicts with this mean. The participant's contribution ܥ	is 
which reflects its quality by feeding the normalized deviation as an input to an exponential 

in Fig. 3. Using this distribution, participants are assigned 
scores which commensurate with their normalized deviation. For example, a contribution with a normalized 

according to Equation 5 

. Thus, we have the quality score 	ߠ output in 
iments different times to determine the most suitable range for 

normalization. Using the exponential distribution, we found that the normalization of the input to the range [0, 1] 
ggregation. That is calculating the 

weighted sum of the available contributions according to these scores is more close to the ground truth.
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Fig. 5. The output of both exponential and Inv. Gompertz

2) Feedback Processing
This module targets to evaluate the user's feedback ܨ() which lies in the range [0, 1]. For this, if the 

reputation score of the rater ݍ exceeds the reputation score of the target participant  (i.e.	 ܴ > 	 ܴ) the reputation 	 ܴ of the rater ݍ is used as a weight for his provided rating, as depicted in Equation 6. Otherwise, the rater's 
feedback is excluded. Consequently, the rate provided by a poor reputation user is less considered, and vice versa. 
Different feedback scores which assigned for the same contribution are aggregated. An average feedback 
score	ߙ	is then calculated according to Equation 7, where ܲܨ is total number of feedback providers. The 
aggregated feedback score lies also in the range [0, 1].

()ಶೡܨ = ()ܨ × ܴ							݂݅							 ܴ > 	 ܴ		∀	ݍ ∈ {1,2,3, … (6)											{ܨ,
ߙ = 	 ∑ ୀிୀଵ()ಶೡܨ ܲܨ 																																																																																							(7)

3) A Proximity Factor
The proximity factor, as we mentioned earlier, measures the vicinity of a participant to the sensing area. As a 

first step towards the calculation of this measure, the distance between the center of the Target Sensing Area TSA
and the Sensing Location  where the contribution is captured by the participant (ܮܵ) is calculated. Here, we 
adopt the Euclidean distance as a simple and common distance measure (Equation 8).

ߚ = 	ට(ܶܵܣ௫ − ଶ(()௫ܮܵ 	+ 	 ൫ܶܵܣ௬ − (8)																																	൯ଶ()௬ܮܵ
Where ܶܵܣ௫	and  ܶܵܣ௬ and (ܵܮ௫(), ܣܵܶ are the coordinates of the (()௬ܮܵ and ܵܮ() respectively

The proximity score depends on the considered phenomenon and its dispersion rate. Some phenomena are 
location sensitive such as noise, pollution, traffic, etc. Other phenomena are more stable in the sensing area such as 
temperature and precipitation. Thus, for this measure, the administrator of the application server has to classify the 
application according to its sensitivity to the sensing location (i.e. sensitive or stable). The class of the considered 
phenomena defines the way in which the proximity factor is calculated.

The calculated distance is used to assign a proximity score according to the class of the application. Firstly, we 
consider a stable phenomenon which is steady in different locations in the sensing area. The same weight is assigned 
to all contributions which are captured inside the sensing area. Subsequently, a participant is assigned a proximity 
score ߜ which is either 1 or 0 to indicate his existence either inside or outside the sensing area respectively, as 
depicted in Equation 9 where ݎ is the radius length of the sensing area.

ߜ = 	 ቊ0															ݓℎ݁݁ݎ		ߚ ≥ ߚ		݁ݎℎ݁ݓ														1	ݎ < ݎ � 																																																																		(9)
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Alternatively, for location sensitive applications, we use the calculated distance ߚ as an input to the inverse 
Gompertz function to calculate the proximity factor	ߜ, as depicted in Equation 10. The output of this function is 
depicted in Fig. 3. Through this function, participants are assigned maximum proximity scores when they are at the 
center of the sensing area. These scores decrease gradually as they go away from the center. For instance, a 
participant of distance zero	(ߚ = 0) is exactly in the center of the sensing area. Such participant is assigned the 
upper proximity score which is 1. Thus, this score allows the application server to trust more the contributions which 
originate nearby the center of the sensing area.

ߜ = 1 − ܽ × ݁ିషഁ																																																																																							(10)
Where, ܽ is the upper asymptote. ܾ controls the displacement of the output along the ݔ axis and ܿ adjusts the 

growth rate of the function. ܽ,	ܾ, and ܿ is selected such that the function output matches the radius of the sensing 
area.

4) Trust Mapping
The calculated parameters are aggregated to calculate ܶݐݏݑݎ of the considered contribution according to the 

definition of trust presented earlier. These parameters include the current contribution evaluation ߠ evaluated by 
the contribution evaluation module, the aggregated feedback	ߙ , the proximity factor	ߜ, and the reputation score 	 ܴ assigned to the participant through the previous campaign, see Equation 11.

(ܥ)ݐݏݑݎܶ = ଵܹ × ߙ + 	 ଶܹ 	× ߙ	 + 	 ଷܹ 	× ߜ + 	 ସܹ 	× 	 ܴ											(11)
Where	∑ ܹ = 1ସ , 	 ܴ	of a new participant is set to 0 in order not to give a new participant the ability to inject 

bad data to the system unless he behaves correctly for a period of time.

5) Reputation
The value of the reputation score 	 ܴ of the participant  is update to a new value	ܴ. The reputation update 

process depends on the quality score assigned to the participant contribution	ߠ . If this score is greater than a 
predefined threshold	߬, the participant is rewarded by increasing his reputation score with ߝ such that the output 
reputation does not exceed 1. Oppositely, if the contribution quality score is below this threshold, the participant is 
penalized by decreasing his reputation score with ߝ such that the reputation score is not less than 0. We set	ߝ ,  ,ߝ
this makes adversaries aggressively penalized while reputation is built gradually. The reputation update process is 
formulated in the following equation.

ܴ = ቊ݉݅݊൛	 ܴ + ߝ �, ߠ		݂݅												{�1 ≥ ߬
	൛ݔܽ݉ ܴ − ,�ߝ ߠ		݂݅											{�0 ≥ ߬� 																																																			(12)

The reason behind the exploitation of the contribution score ߠ to calculate the reputation of participants and not 
the trust score of his contribution is apparent for different reasons. Firstly, the trust score incorporates the proximity 
factor. Whereas, the calculation of this factor depends on the location of the participant which is constrained by the 
participant's habits and his daily activities. Thus, this factor only affects the reliability of the contribution but not the
honesty of the participant. Thus, it should not affect the participant's reputation score. Secondly, using the score of 
the current contribution allows us to update the reputation score of the participant such that it reflects the most recent 
behavior of the participant.

V. EXPERIMENTAL EVALUATION

We implemented our scheme with a MATLAB simulation to measure the accuracy of our reputation and trust 
assessment method. Since the communication is not our concern, we implemented both the server and participants 
on the same machine.

A. The application

In this simulation, we consider a noise monitoring application. Thus, we generated the data in accordance with a 
real noise levels described in [27]. We consider a sensing area where the mean ߤ of the noise data at the center of 
this area is 60 db. The noise waves are considered to attenuate due to scattering and absorption. The amplitude of the 
attenuated wave is calculated according to Equation 13.

ܣ = .ܣ ݁ିఙ																																																																																																									(13)
Where ܣ is the unattenuated noise wave at the center of the sensing area, ܣ is the reduced amplitude after the 

wave has traveled a distance	ܼ, while ߪ is the attenuation coefficient of the signal traveling in the ܼ direction. We 
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consider	ߪ = 0.0023. The term ݁ is the exponential (or Napier's constant). The units of the attenuation value in 
Napier per meter can be converted to decibel/meter by dividing by 0.1151. We also consider a sensing area of radius 
300m.

Good participant always send correct sensing data which commensurate with their location. However, we 
assume that, adversaries launch on-off attack. They send correct data to gain a high reputation scores, then they 
randomly send false sensing data. The probability by which an adversary sends correct data is referred to as its 
nature. We set the mean of false data to deviate from the correct data such that this mean corresponds to a different 
level of noise ߤ + 3/ߤ (i.e. 80 db). This means that an adversary contributes data which correspond to a completely 
different level of noise. Thus, only one false report has an impact on the measurements. Furthermore, we assume 
that, all false reports support each other. Hence, we consider the worst case when all adversaries collude to cause the 
biggest possible disturbance to the system. However, this case can be hardly met in realistic systems, but it enables 
us to evaluate our system under the most difficult circumstances. We generated a random sensing location for each 
participant such that they are uniformly distributed along the sensing area. Table 1 lists our default parameter 
settings.

B. The System Parameters

In this test, we measure the effect of using different values of the trust parameters' weights exploited in Equation 
11, to see how they affect the calculated trust of contributions. In this test, we set the weights of both the feedback 
and the proximity factor to 0. We test different values of ଵܹ versus ସܹ which correspond to the weight of the 
contribution quality and the weight of the reputation of the contribution provider respectively.

TABLE I. TABLE I: DEFAULT PARAMETER SETTINGS

Parameter Value
Number of participant for each task NP 100
The correct noise amplitude at the center 60db
The value of adversary noise amplitude ߤ + 3/ߤ 80db

ଵܹ 0.4
ଶܹ 0.0
ଷܹ 0.2
ସܹ ݎ0.4 300m

a; b; c 1, 10, 0.3߳ 0.02߳ 0.5

We run the experiment and measure the effect of the weight parameter on the trust score assigned to good 
participants' contributions as depicted in Fig. 6. It is observed that good contributions are not trusted for a number of 
tasks while the weight of the reputation score has much more strength compared with the weight of the contribution 
quality ( ସܹ 	> ଵܹ). This is because the trust score is affected by the historical reputation which is just initialized to 
0. This effect is released when ଵܹ increases and ସܹ decreased. Thus, good contributions are trusted from the first 
task even if the reputation score of their provider is not so high. That is ଵܹ increases the effect of the instantaneous 
behavior over the historical behavior. Whereas, the increase of ସܹ supports the effect of the participants' historical 
behavior on the calculated trust. To this end, we set the weights of both reputation and the quality of contribution 
( ଵܹ and	 ସܹ) to equal values in the other experiments in order for the trust to reflect the behavior of the participant 
through previous campaigns and to indicate also the quality of his current contribution as well.
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Fig. 6. Impact of using trust weights on trust of good contributions

C. On-off Attack

In this experiment, we test the system robustness against on-off attack. We measure how the reputation and trust 
scores of an on-off attacker are affected by his nature. We study the behavior of five adversaries with different 
values of nature 0, 0.2, 0.5, 0.8. The nature represents the probability by which an on-off attacker sends correct data. 
To test the worst case, we assume that the five adversaries behaved in good manner until their reputation scores have 
reached 1 before the test. We then run this experiment for 100 tasks.

In Fig. 7 (a), we can see that the reputation score of an adversary degrades. The reputation scores of adversaries 
with nature 0, 0.2, and 0.5, drop down very quickly until it reaches 0. While the reputation scores of adversaries with 
higher nature (e.g. 0.8) still drop down more slowly. These scores drop to a very low level even if the adversary 
sends correct data with a very high probability (i.e. 0.8 in this case). An adversary is severely punished for each bad 
transaction but rewarded gradually for good ones. Thus, bad transactions have larger influence on the reputation 
score.

We examine the computed trust scores assigned to reports sent by those adversaries. Fig. 7 (b) depicts these 
results. It is obvious that, the trust score of reports received from adversary with nature 0 are usually assigned a 
score around 0.2 the minimum possible value of trust. This value result when the reputation score is 0 and 
contribution quality is very bad ݀ = −1 → (i.e. 	ݐݏݑݎܶ	,~0.37). Thusߠ → 	 (0.4	 × 	0.37 + 	0.4	 × 	0 + 	0.2	 ߜ ), whereߜ	× ∈ 	 ݐݏݑݎܶ .[0,1] → [0.15,0.25] . While the trust of reports from adversaries with nature 0.2, 0.5, and 
0.8 fluctuates much more since they sometimes send correct data. However, their trust scores do not usually exceed 
0.5. That is the system does not trust an adversary even if he sends correct reports with high probability (e.g. 0.5 and 
0.8).
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(a) Reputation

(b) Trust

Fig. 7. Impact of the adversaries’ nature on the reputation and trust in the proposed DTSRS system

D. Collusion attack

In the following experiment, we measure the resistance of our system under collusion attack. So, we need to 
define the number of adversaries ܰܣ with which the system fails to detect the adversaries under the predefined test 
setup. In this test, we set the nature of all adversaries to be 0.

Intuitively, the system perfectly detects adversaries as long as the total number of adversaries is less than the size 
of the trusted set. In this case, there is no intersection between the trusted set and adversaries. We need to test to 
which extent the trusted set can involve some adversaries and still properly detect adversaries. Thus, we vary the 
number of adversaries ܰܣ in the campaign as 50, 55, 58, 59 and 60 where the trusted set size is 60. That is the 
trusted set involves 10, 15, 18, 19, and 20 adversaries respectively.

Fig. 8 (a) depicts the results of this test. It is evident that, the reputation scores of adversaries rapidly drop down 
to reach zero. However, this drop becomes slow with the increase in the number of adversaries from 58, 59, and 60. 
However, the system fails to identify adversaries while the number of adversaries ܰܣ surpasses 60 adversaries.
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Fig. 8 (b) shows the trust of the contributions of those participants. It is clear that, adversaries' contributions are 
usually assigned low trust scores (i.e. [0.2, 0.4]) even if the number of adversaries reaches 60% of the total number 
of participants. However, when the number of adversaries reaches 60% of the total number of participants, the trust 
of adversary's contribution fluctuates. This means that the DTSRS proposed system does not trust adversaries' 
contributions (i.e.  ܶݐݏݑݎ < 0.5), where the number of adversaries reaches 60% of the total number of the 
participants under the current test setup. This reflects that our system is resistant under collusion attack.

(a) Reputation

(b) Trust

Fig. 8. Impact of the number of adversaries on reputation and trust of an adversary in the proposed DTSRS system

E. Comparison

We measure the accuracy of the aggregated data and how much it agrees with the ground truth. In this 
experiment, we evaluate the usage of the exponential distribution as a mapping function compared with the 
functions used in the state-of-the-art such as Gompertz in [10], and Gaussian function in [12]. We compute the 
scores ܶݐݏݑݎ assigned to each contribution ܥ according to each function	݂. These scores are then used to calculate 
the average of the collected contribution of each task as shown in Equation 14. We run the experiment for 100 tasks.
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,௧ݒ = 	∑ (ܥ)ݐݏݑݎܶ) × )ேୀଵܥ	 ܥܰ 																																																																				(14)
Where ݂ is the reputation function (e.g. ݂ can be exponential, Gompertz, or Gaussian), ݅ is the contribution 

number and ܰܥ is the total number of contributions available for the task	ݐ.
We also include the raw average; it is calculated by averaging the collected contributions for the same task 

without incorporating any additional scores. We run the experiment while the number of adversaries is 30/100 with 
nature 0. We consider false data with four different mean values 80, 100, 120, and 150 dBA, each one is considered 
in a separate run. The large values of false data cause more disruption for the aggregated data. We run the 
experiment four times while each run contains 100 tasks and there are 100 contributions for each task. We measure 
the deviation, of the average calculated according to Equation 14 in each task, from the correct ground truth which 
has a mean of 60 dBA.

The results of this experiment are shown in Fig. 9 subfigues(a, b, c, and d). The closeness of the calculated 
average to the ground truth' plot indicates the accuracy of the mapping function for assigning appropriate trust score 
to each contribution. As it can be observed, the raw average is significantly different from the ground truth since all 
contributions are equally considered. By looking at the raw average data in the different sub-figures, it becomes 
worse with the increase of the mean value of false data in sub-figures a, b, c, and d. Both Gompertz and Gaussian 
averages also deviate significantly from the ground truth. By looking at the sub-figures a, b, c, and d, the Gompertz 
and Gaussian based averages nearly achieve the same deviation from the ground truth whatever the mean of false 
data. On the other hand, the average calculated based on exponential distribution not only approximates the ground 
truth more closely in all sub-figures a, b, c, and d. Additionally, the performance of exponential distribution based 
average enhances from a to b and c, and it has the best performance in d. That is the exponential based average 
system can perform better when the mean value of false data significantly deviate from the correct ones.

This means that our system has better capabilities to reflect the nature of the ground truth data even if the system 
faces a massive disruption. This is because our proposed exponential distribution has much sharper degradation 
which allows it to highly consider contributions which have a slight deviation from the correct ones (i.e. the ones 
that have a deviation more close to 0). In addition, it allows to aggressively assigning bad scores to the ones which 
have much more deviation. Thus, they are less considered. Therefore, the calculated data average has better 
capabilities to reflect the ground truth data than the Gompertz and Gaussian.

VI.CONCLUSION

In this paper, we propose the DTSRS reputation system for participatory sensing applications. The system 
depends on a dynamic trusted set of participants to identify the good data in each campaign. DTSRS system also 
incorporates other parameters such as the vicinity to the sensing area and the users' feedback to calculate a trust and 
reputation score for each participant. We experimentally evaluated the system by incorporating it within a simulated 
system for noise monitoring participatory sensing application. The results indicate that DTSRS system accurately 
assesses the quality of participants' contributions. It exposes the average of the aggregated data to the minimum 
possible noise. In addition, the system clearly identifies adversaries even if the number of colluding adversaries 
reaches 60% of the total number of participants in the campaign. Furthermore, adversaries who launch on-off attack 
are clearly identified even if they contribute good data with high probability (e.g. 0.8). Therefore, the proposed 
DTSRS reputation system can defend against corruption, On-Off, and collusion attacks which are not considered in 
literature. In a future work, we target to manage both the conflicting objectives of trust assessment and privacy 
preservation of participants in participatory sensing environment. Thus, we are going to incorporate the DTSRS 
reputation system within a privacy preserving framework.
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(a)false data 80 dBA

(b)false data 100 dBA

(c)false data 120 dBA

(d)false data 150 dBA
Fig. 9. Average aggregated noise level where the mean of a correct data is 60 dBA and the mean of a false data is 80, 100, 120, 150 depicted in 

sub-figures a, b,c, and d respectively
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