
IJCI. Vol. 2 – No. 1, January 2009

1

A Hybrid Evolutionary Algorithm for Solving Flexible Job Shop Scheduling
Problem

Mahmoud Riad Mahmoud
Institute of Statistical

Studies & Research

Mohamed Sayed Ali Osman,
Higher Technological

Institute

Ramadan Abd El-
hamed Zean El-Deen

Institute of Statistical
Studies & Research

Abd Al-azeem
Mohamed Abd Al-azeem

Institute of Statistical
Studies & Research

Abstract This paper presents an Evolutionary Algorithm (EA) to solve the flexible job shop scheduling problem,
especially minimizing the makespan. A hybrid algorithm is introduced for solving flexible job shop scheduling problem.
The proposed algorithm consists of three sequential stages. The first stage is a new technique for initializing feasible
solutions, is used as initial population for the second stage. The second stage uses genetic algorithm to improve the
solutions that have been found in the first stage. The final stage uses tabu search to improve the best solution that has
been found by genetic algorithm. The Job Shop Scheduling Problem (JSSP) is an NP-hard combinatorial optimization
problem that has long challenged researchers. A schedule is a mapping of operations to time slots on the machines. The
makespan is the maximum completion time of the jobs. One of the objectives of the JSSP is to find a schedule that
minimizes the makespan [12]. Some problems from references are solved using the proposed algorithm and an
implementation study is presented. The implementation study shows the efficiency of the proposed algorithm.

Key words: flexible job shop scheduling, genetic algorithm, heuristic and tabu search

1. Introduction
In the classical Job Shop Scheduling Problem (JSSP), n jobs are processed to completion on m unrelated machines.
Each job requires processing on each machine exactly once. For each job, technology constraints specify a complete,
distinct routing, which is fixed and known in advance. Processing times are sequence independent, fixed, and known
in advance. Each machine is continuously available from time zero, and operations are processed without
interruption (non-preemption). The common objective is to minimize the maximum completion time (makespan).
Each machine is limited to executing one operation (one step of the job route) at a time. Each job has a release-date
(the time after which the operations in the job may be executed) and a due-date (the time by which the last activity in
the job must finish).
Scheduling has been defined as "the art of assigning resources to tasks in order to insure the termination of these

tasks in a reasonable amount of time", or it is allocation of resource over time to perform a collection of tasks [9].
From the area of complexity theory we know that problems can be divided into different classes to enable a

differentiation concerning the effort (runtime or memory) that is required to complete a globally best solution [13]:
1. The class of P-problems contains all problems for which the effort in relation to the problem dimension can

be dominated by a polynomial function. Consequently the best solution for such problems can be found in
most cases due to the computing power available today. It is even possible in the worst case just to try all
possible solution candidates iteratively.

2. The class of NP-problems in contrast represents such instances whose effort increases more than
polynomial (i.e. exponential or even over-exponential) depending on the problem size. Therefore, problems
of that type cannot be solved algorithmically even in rather low dimensions because of the enormous
number of potential solution candidates that makes it impossible to find the global optimum in acceptable
time.

Job Shop scheduling is a well known scheduling problem. It is NP-hard and one of the most intractable
combinatorial problems [3]. There are many methods to solve scheduling problems. These methods are trying to find
optimal solution (exact solution) or acceptable solution (approximate solution). In most cases, to find the optimal
solution is unpractical (some times impossible). Since it’s impossible to find the optimal solution, it's necessary to use
methods that find a good solution but no guarantee for how far that solution from the optimal solution. For example,
tabu search and genetic algorithms are methods that are used to find an approximate solution.

Tabu search methods have been applied successfully for the scheduling problems and as solvers of mixed integer
programming problems [9]. Nowicki and Smutnicki [7] implemented tabu search methods for job shop and flow shop

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

2

scheduling problems. Vaessens [7] showed that tabu search methods (in specific job shop scheduling cases) are superior
over other approaches such as simulated annealing, genetic algorithms, and neural networks.

The basic idea of tabu search is to explore the search space of all feasible scheduling solutions by a sequence of
moves. A move from one schedule to another schedule is made by evaluating all candidates and choosing the best
available, just like gradient-based techniques. Some moves are classified as tabu (i.e., they are forbidden) because they
either trap the search at a local optimum, or they lead to cycling (repeating part of the search). These moves are put onto
something called the tabu List, which is built up from the history of moves used during the search. These tabu moves
force examination of the search space until the old solution area (e.g., local optimum) is left behind. Another key
element is that of freeing the search by a short-term memory function that provides “strategic forgetting”. Tabu search
methods have been evolving to more advanced frameworks that include longer term memory mechanisms. These
advanced frameworks are sometimes referred as Adaptive Memory Programming (AMP) [9].

Genetic Algorithms (GAs) are a part of evolutionary computing, which is a rapidly growing area of artificial
intelligence. As you can guess, genetic algorithms are inspired by Darwin's theory of evolution. When solving a
problem using GA, we are usually looking for some solution, which will be the best among others. The space of all
feasible solutions (the set of solutions among which the desired solution resides) is called search space (also state
space). Each point in the search space represents one possible solution. Each possible solution can be "marked" by its
value (or fitness) for the problem. With GAs, we look for the best solution among a number of possible solutions where
the best solution represented by one point in the search space.

The next section is assigned to the problem description, and then followed by section three which is assigned to
describe the proposed hybrid algorithm. In addition, section four is assigned to give an illustrative example on the
proposed algorithm, and in section five, the implementation part is given. Finally, section six represents the conclusion.

2. Description of flexible job shop scheduling
Flexible job shop is a generalization of the job shop and the parallel machine environment, which provides a closer

approximation to a wide range of real manufacturing systems [٦].
The flexible job shop problem is more complex than the job shop problem because of the additional need to

determine the assignment of operations to machines.
The total flexible job shop scheduling problem can be described as:

1. A set of n jobs = J = 1 2, ,........, nj j j and these jobs are independent of one another. In addition, each job

rj (r = 1, 2, ..., n) is available from time zero. And, there is no priority for achieving any job earlier than

others.

2. Each job consists of a set of x operations =
1

x
i r i

o

 where i ro means operation number i of a job rj .

3. These operations should be achieved in a predetermined order o rx which means the order of operation

number o of the job rj

4. Each operation should be assigned for a determined machine from a set of m machines = M =

 1 2, ,........, mM M M

5. An operation which has started can't leave the machine until completion (non-preemption condition).
6. Each machine can perform operations one after another.
7. Each machine has the capability to achieve any operation.

8. The time required to complete the whole jobs constitutes the makespan maxC (maxC = max
1

n
r r

C

, and rC

= completion time of all operation of job rj).

9. The objective is to determine the set of completion times for each operation which minimizes maxC .

Of course, for simplicity requirements, using some notations are essential for making a mathematical model of the

total flexible job shop scheduling problem as follows:

 i ro means operation number i of job rj

 o rx means the order of operation number o of job rj

 x r qP = processing time of operation with order x of job rj on machine qM

IJCI. Vol. 2 – No. 1, January 2009

3

 x r qs = starting time of operation with order x of job rj on machine qM

 rC = completion time of all operation of job rj

 x qI =

1, if machine is assigned for

 the operation with order x

0, otherwise

qM

 ,t rx = the total number of operations of a job rj

 ,t rm = the total number of machines available for the job rj

 bMR = the time that machine b (bM) is available to work.

 n is the total number of jobs.
 The objective is to determine the set of completion times for each operation which minimizes maxC .

So, formulating a mathematical model for the total flexible job shop scheduling problem can be constructed as

follows:

Min [z = max
1

n
r r

C

], where rC =

, ,

1 1

t r t rx x q m

x q x r q

x q

I P

Subject to:

(1)x r bs = max { x r as + x r aP , bMR }, ,a bM M M

 1 0, , ,r qs r q

 0, , bMR b

 jC 0

 x j mp 0

 0, 1I

Bruker and Schlie [٦] were among the first to address the Flexible job shop problem. They developed a polynomial

algorithm for solving the flexible job shop scheduling problem with two jobs. Chambers [٦] developed a tabu search
algorithm to solve the problem. Mastrolilli and Gambardella [٦] proposed two neighborhood functions for the Flexible
job shop problem. Yang [٦] presented a new genetic algorithm (GA)-based discrete dynamic programming approach.
Kacem and Borne [٦] proposed the approach by localization to solve the resource assignment problem, and an
evolutionary approach controlled by the assignment model for the Flexible job shop problem. Wu and Weng [٦]
considered the problem with job earliness and tardiness objectives, and proposed a multiagent scheduling method. Xia
and Wu [14] treated this problem with a hybrid of particle swarm optimization and simulated annealing as a local search
algorithm. Zhang and Gen [16] proposed a multistage operation-based genetic algorithm to deal with the Flexible job
shop problem from a point view of dynamic programming.

3. Description of evolutionary algorithm
Evolutionary Algorithms are in the area of study which uses the principles of Darwin's evolution to search large

number of feasible solutions for finding the optimal (best) solution in complex problems [5].
One of the extra benefits of evolutionary algorithms over standard search or optimization techniques is the

algorithm’s modularity. For each of the stages in an evolutionary algorithm, whether creating the initial sample of
candidate solutions, called chromosomes, scoring a generation or creating a new generation, the same (or similar) task
is done on every chromosome in the sample. This allows evolutionary algorithms to be multithreaded easily so that they
can be run in parallel. The ways that this basic algorithm can be implemented are many. The earliest and most basic
algorithms based on the above are the Genetic Algorithm (GA) that was pioneered by John Holland from the 1960s and
Genetic Programming in the early 1970s [5].

The proposed evolutionary algorithm is a hybrid algorithm, consists of three algorithms (stages):
1. Dispatching rule (shortest processing time SPT)

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

4

2. Genetic algorithm
3. Tabu search

In the beginning, the proposed algorithm starts by creating initial solutions (initial population of genetic algorithm

stage) using the principle of SPT. Next, genetic algorithm is trying to improve the result of the SPT stage (initial
solutions). Finally, tabu search algorithm stage is used to improve the solution that is found by the genetic algorithm
stage.

The big challenge was to find a suitable representation for encoding a solution that make it is easy to move from one

stage (algorithm) to another. Thinking that, the most difficult part was in the genetic algorithm stage and how to find
that representation that could deal with genetics' steps. So, genetic algorithm and chromosome representation has been
focused in for finding a suitable way to encode the solutions of the problem.

3.1. Encoding the problem for genetic algorithm

Generally, chromosomes are encoding as simple binary vectors. Unfortunately, this approach cannot frequently be

used for real world engineering problems such as combinatorial ones. Two categories of encoding are used for real
world engineering problems [١١]:

 Direct chromosome representation.
 Indirect chromosome representation.

The first, the direct chromosome representation can represent a scheduling problem by using the schedule itself as a

chromosome. This method generally requires developing specific genetic operators. The second, the indirect
chromosome representation does not directly represent a schedule, and transition from the chromosome representation
to a legal schedule builder (decoder) is needed prior to evaluation. In the proposed algorithm, direct representation was
chosen to give feasibility and legibility to a chromosome and simplicity of utilization for a user. There are two direct
representational chromosomes:

1. Parallel Machines Encoding (PME).
2. Parallel Jobs Encoding (PJE).

The second type of direct chromosomes representation was used. It is a direct encoding which permits to solve some
of the problems met in the first encoding (indirect representation) such as illegal schedules (they can't be understood
without a decoder) after a crossover operation and the creation of the first population. Indeed, this encoding integrates
the precedence constraints.

3.2. Shortest processing time algorithm

Although dispatching rules are not better than the local search methods, they are the more frequently applied

heuristics due to their simplicity of implementation and their low time complexity. When a machine is available, a
priority-based dispatching rule examines the waiting jobs and selects the job with the highest priority to be processed
next. Recently, the introduction of composite dispatching rules (CDRs) has been increasingly investigated by the some
researchers. These rules are the heuristic combination of single dispatching rules that aim to take over the advantages of
the former. The results show that, with careful combination, the composite dispatching rules do perform better than the
single ones in the quality of schedules [٨].

Depending on the specification of each rule, it can be classified [٨] into:

 Simple Priority Rules
 CDRs
 Weighted Priority Indexes
 Heuristic Scheduling Rules

Simple Priority Rules (SPRs) are usually based on a single objective function. They usually involve only one model

parameter, such as:

IJCI. Vol. 2 – No. 1, January 2009

5

 Processing time
 Due date
 Number of operations or arrival time

The Shortest Processing Time (SPT) is an example of a SPR. It orders the jobs on the queue in the order of

increasing processing times. When a machine is freed, the next job with the shortest time in the queue will be removed
for processing. SPT has been found to be the best rule for minimizing the mean flow time and number of tardy jobs.

The CDRs have been studied to join good features from such SPRs. There are two kinds of CDRs presented in

literature:
 The first type involves arranging a select number of SPRs at different machines or work centers. Each machine

or work center uses a single rule. When a job enters a specific machine, it is processed by the SPR that is
predetermined for that machine.

 The second type involves applying the composition of several SPRs to evaluate the priorities of jobs on the
queue. The latter type is executed similarly to SPRs; when a machine is free, this CDR evaluates the queue and
then selects the job with the highest priority.

Weighted priority index rules are the linear combination of SPRs described above with computed weights.

Depending on specific business domains, the importance of a job determines its weight.

Heuristic rules are rules that depend on the configuration of the system. These rules are usually used together with

previous rules, such as SPRs, CDRs or weighted priority index rules.

The proposed algorithm uses the principal of a Simple Priority Rule (shortest processing time) to initialize some
feasible solutions. The initialized solutions will be used as the initial population of the genetic algorithm stage. Using
SPT as a first stage gives the algorithm a better start than initializing the initial solution randomly.

The first stage, the SPT algorithm is used for getting solutions that will be used as initial population for the genetic

algorithm is described as followed:
 Step 1. Scan for unscheduled jobs.
 Step 2. Select randomly one job (suppose the job is b)
 Step 3.

For j = 1 to x (number of operations of b)

Assign a machine with the smallest processing time to achieve jx (select a machine randomly if there are

more than one machine have the smallest processing time).
j = j + 1
Next

 Step 4. Go to step 1 until all jobs are scheduled.
 If all operations of each job is assigned for a machine, calculate the start time for each operation column by

column (by the sequence column 1, column 2, column 3,…….)

3.3. Genetic algorithm

Genetic Algorithms (GAs) are a general methodology for investigating a discrete solutions space in a manner that is
similar to process of natural selection procedure in biological systems.

Genetic algorithm is one of the stochastic search algorithms based on biological evolution. In order to solve a clearly

defined problem and an offspring represented the candidate of solutions. GA is according to crossover and mutation
operators with their probabilities to produce a set of offspring chromosomes. GA likes an over and over process, and
tries to find one or more highly fit chromosomes [4].

Genetic algorithms, as the name implies, are a type of algorithms, not a single one. This means that many

variants of the basic idea exist, and that individual applications may be highly different. However, every variant should
include the following operations [15]:

1. A method for encoding solutions to the problem into a string of characters.

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

6

2. An evaluation function which takes a string as an input and returns a fitness value which measures the quality
of the solution the strings describes.

3. An adaptive plan, whose purpose is to produce new, improved generation of solutions from the current one.

The advantage of applying GAs to hard optimization problems lies in their ability to scan broader regions of the
solution space than heuristic methods based upon neighborhood search do. Nevertheless, also GAs are frequently faced
with a problem which, at least in its impact, is quite similar to the problem of fall into a local optimum. This drawback
is called premature convergence in the terminology of GAs [1].

3.3.1. Crossover operators

In this section, crossover operator is presented to adapt to the parallel jobs encoding. The algorithm of this

crossover is presented as follows:
 Step 1. Choose randomly the best two parents (chromosomes) and select randomly one job (a row of the matrix).

Suppose that the job J is randomly selected.
 Step 2. The operations of job J in Child 1 received the same machines as assigned to the same job J of Parent 2.
 Step 3. Browse all of the jobs (the rows) R of parent 1

While ((1 ≤ R ≤ N) and (R ≠ J)) do
Copy the remainder of the machines assigned to the operations of job R of Parent 2 in the same job R of

Child 1
R = R + 1
End

 Step 4. To obtain Child 2, go to Step 2 and interchange the roles of Parent 1 and Parent 2.

3.3.2. Mutation operator

In this part, a mutation operator is presented, and is called the controlled mutation operator. This operator is
designed for parallel jobs encoding where it can balance the machine loads.

The algorithm of this operator is presented as follows:

 Step 1. Choose randomly one chromosome S and calculates the load of all machines in the shop according to S.
 Step 2. Choose randomly one operation from the set of operations in chromosome S assigned to a machine with

a high load.
 Step 3. Assign this operation to another machine with a small load.

3.3.3. Fitness function

Fitness is a measure of how well an algorithm has learnt to predict the outputs from the inputs. The goal of
having a fitness evaluation is to give feedback to the learning algorithm regarding which individuals should have a
higher probability of being allowed to multiply and reproduce and which of them should have a higher probability of
being removed from the population.

Evaluation functions play the same role in EAs as the environment in natural evolution. It must indicate the

aspects of schedules which make them seem right or wrong to the users. The objective is to minimize the makespan.

The makespan maxC is calculated, according to the following algorithm:

Select chromosome X = chromosome 1
For X = 1 to popsize (population size)
Select job L = job 1
While (1 ≤ L ≤ N) do

Calculate LC = time of completion of the last scheduling operation of job L

L = L + 1
End While

IJCI. Vol. 2 – No. 1, January 2009

7

maxC X = Max { 1C , 2C , . . . , NC }, (N is the number of jobs)

X = X +1
Next

For each chromosome the fitness function aims to find the minimum of all maxC , and is represented as follows:

Fitness = Min { max1C , max 2C , . . . , maxC X }, (X is the population size)

3.4. Tabu algorithm

The tabu search was proposed by Glover. TS try to keep track of the visited search space to avoid revisiting the
same solutions and thus improving the efficiency of search [2]. So, the proposed algorithm used three types of tabu list,
in tabu search algorithm stage. It can be described as follows:

1. Machine-tabu-list: the machine is not being allowed to be assigned until trying all machines.
2. Job-tabu-list: the job is not being allowed to be visited until completing all jobs.
3. Operation-tabu-list: the operation is not being allowed to be selected until completing all operations.

Each step of the proposed tabu search algorithm stage is illustrated in the next example.

4. An illustrative example

Three jobs and five machines are considered. The operating sequences of these jobs are as follows:

 Job1: 1, 1o → 2, 1o → 3, 1o

 Job2: 1, 2o → 2, 2o → 3, 2o

 Job3: 1, 3o → 2, 3o

In which 2, 3o means operation two in job three. This problem is an example of a total flexibility in which any

operation can be performed equally well by any machine with different processing times. According to the machine
used, the processing time of operations is different as described in table 1. All machines and jobs are available from
time zero. Non-preemptive principle is used. Besides, parallel jobs encoding was used to represent any solution. In this
case, for each operation, the proposed algorithm determines the following:

 machine number, starting time, processing time,completion time

For example, an operation has 3,4,2,6M that means the assigned machine is 3M and the starting time of the

operation on 3M is 4 and the processing time is 2 and the completion time is 6.

Table 1 Processing time of the operations on different machines.

 jx operation 1M 2M 3M 4M 5M

1x 1, 1 1 8 3 7 5

2x 2, 1 3 5 2 6 4
J

3x 3, 1 6 7 1 4 3

1x 1, 2 1 4 5 3 8

2x 2, 2 2 8 4 9 3
J

3x 3, 2 9 5 1 2 4

1x 1, 3 1 8 9 3 2

 2x 2, 3 5 9 2 5 3

4.1. Initial population

Some symbols were used to make it easy to describe each chromosome as the following:

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

8

1. GenNo i = Generation number i
2. Ch i = Chromosome number i

As an example, two solutions were initialized by using SPT technique as explained before. The next two

chromosomes ((GenNo 0, Ch1) and (GenNo 0, Ch2)) represent the two solutions generated by the SPT stage.

(GenNo 0, Ch1)

jJ Random order 1x 2x 3x max JC max maxC

1J 1 1,0,1,1M 3,1,2,3M 3,5,1,6M 6

2J 3 1, 2,1,3M 1,3,2,5M 3,6,1,7M 7

3J 2 1,1,1,2M 3,3, 2,5M 5

7

(GenNo 0, Ch2)

jJ Random order 1x 2x 3x max JC max maxC

1J 2 1,1,1,2M 3, 2,2, 4M 3,7,1,8M 8

2J 1 1,0,1,1M 1,3, 2,5M 3,6,1,7M 7

3J 3 1, 2,1,3M 3, 4,2,6M 6

8

4.2. Genetic algorithm

In the proposed genetic algorithm stage, genetic algorithm used the initial solutions that are generated in the first
stage as the initial population.

4.2.1. Crossover steps

 Generating (GenNo 1, Ch1) by Selecting randomly a job (as an example 1J) from (GenNo 0, Ch2) and

assign its machines for (GenNo 1, Ch1) to get the same machines assigned
 Complete the remaining machines of (GenNo 1, Ch1) from (GenNo 0, Ch1).
 Generating (GenNo 1, Ch2) is the same steps for generating (GenNo 1, Ch1) by switching Ch1 and Ch2.
 Calculate the starting time for each chromosome by using random order for jobs for each chromosome.

The next two solutions ((GenNo 1, Ch1) and (GenNo 1, Ch2)) represent the two chromosomes after crossover steps.

(GenNo 1, Ch1)

jJ Random
order 1x 2x 3x max JC max maxC

1J 1 1,0,1,1M 3,1,2,3M 3,5,1,6M 6

2J 2 1,1,1,2M 1,3,2,5M 3,6,1,7M 7

3J 3 1, 2,1,3M 3,3, 2,5M 5

7

(GenNo 1, Ch2)

jJ Random
order 1x 2x 3x max JC max maxC

1J 3 1,2,1,3M 3,3, 2,5M 3,6,1,7M 7

2J 2 1,1,1,2M 1,3,2,5M 3,5,1,6M 6

3J 1 1,0,1,1M 3,1,2,3M 3

7

IJCI. Vol. 2 – No. 1, January 2009

9

4.2.2. Mutation steps

 Select (GenNo 1, Ch2) for mutation and calculate machine load for the selected chromosome as illustrated in the

next table 2.

Table 2 Calculation of machine load of

(GenNo. 1, Ch2)

1M 2M 3M 4M 5M

5 0 6 0 0

 Select 3M (the highest load machine) to be exchanged by a machine with the smallest load.

 Select randomly a job where 3M is assigned to achieve an operation (suppose 1J).

 Select randomly an operation of the selected job 1J (suppose 3x).

 Select randomly from the machines with the smallest load, a machine for completing 3x .

 Exchange 3M by 5M to achieve operation 3x of job 1J .

The next chromosome ((GenNo 1, Ch3)) represents the solution after mutation steps.

(GenNo 1, Ch3)

jJ Random
order 1x 2x 3x max JC max maxC

1J 1 1,0,1,1M 3,1,2,3M 5,3,3,6M 6

2J 2 1,1,1,2M 1,3,2,5M 3,5,1,6M 6

3J 3 1, 2,1,3M 3,3, 2,5M 5

6

4.2.3. Fitness

In fitness stage, the makespan is calculated for each chromosome to determine the chromosomes that will be

survive for the next population as illustrated in the next table 3.

Table 3 Calculate fitness of each chromosome

(GenNo 0,

Ch1)
(GenNo 0,

Ch2)
(GenNo 1,

Ch1)
(GenNo 1,

Ch2)
(GenNo 1,

Ch3)

max maxC 7 8 7 7 6

4.2.4. Selection

The next population (population number 1) has the same size of the previous population. Selection step is
completed by selecting chromosomes randomly from offspring (chromosomes) which have been created in the previous
step (offspring consist of the original population and two chromosomes that created by crossover step, and finally, one

chromosome that created by mutation step) that have the smallest maxC (the best fitness).

4.2.5. Next population

In this step, the algorithm Uses population number l (l = 1, 2, 3,) to generate next population number (l+1)

and so on until the desired number of populations are get.

4.3. Tabu search

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

10

After generating the required number of population using the genetic algorithm, Select randomly the solution

(chromosome) with the smallest maxC and let us suppose it's as (GenNo. 1, Ch3).

(GenNo 1, Ch3)

jJ Random
order 1x 2x 3x max JC max maxC

1J 1 1,0,1,1M 3,1,2,3M 5,3,3,6M 6

2J 2 1,1,1,2M 1,3,2,5M 3,5,1,6M 6

3J 3 1, 2,1,3M 3,3, 2,5M 5

6

Tabu search algorithm procedures:

1. Select the first job in the chromosome (1J).

2. Put the selected job in job-tabu-list
3. Select by ordering an available operation of 1J (for the first time it will be 1x)

4. Put the selected operation (1x) in operation-tabu-list

5. Put the machine assigned for completing 1x in a machine-tabu-list (to not be visited until trying other

machines available for 1x).

6. Exchange the machine assigned for achieving 1x by another available machine (say aM)

7. Calculate the starting time for the new solution (using the same order assigned for the solution before).
8. Calculate maxC for the new solution = max iSC

9. If the new (max maxC) is smaller than the old make a move.

10. Add aM in machine-tabu-list

11. Go to step 6 until completing all available machines.
12. Clear machine-tabu-list.
13. Go to step 3 until completing all operations.
14. Clear operation-tabu-list.
15. Go to step 1 until selecting all jobs.
16. Clear job-tabu-list.

If it is decided to use multi-start of tabu, it is done only by exchange step 9 of the tabu algorithm by the following:

1. If the new (max maxC) is smaller than or equal the old make a move.

5. Implementation

The implementation was done on the system of Microsoft, Windows XP Professional Service Pack 2 and on a

computer with Intel Pentium III processor 800 MHz and 256 MB of RAM. A special program was coded using visual
basic 6 to implement the proposed hybrid algorithm.

5.1. The First Test (10×6 problem)

This problem presents a partial flexibility. The problem consists of 10 jobs and 6 machines and each job has 5 or 6
operations in its operating sequence. The problem is called "mk01" and the best known makespan is equal to 40 units of
time [10].

IJCI. Vol. 2 – No. 1, January 2009

11

The following table 4 shows the results of ten runs. Some notations are used in all tables that illustrate the results,
as "I" stands for the number of initial solutions, "P" stands for the population size and "G" stands for the number of
generations.

Table 4 Results of the hybrid algorithm for each stage.
I = 50, P = 10, G = 10

Makespan found by Run
No. SPT GA TS TS with multi-start = 3

Makespan
(units of time)

1 48 48 48 48 48
2 49 49 46 43 43
3 48 48 44 44 44
4 48 48 45 44 44
5 48 47 42 39 39
6 48 48 45 44 44
7 49 49 47 44 44
8 48 48 45 44 44
9 46 46 41 38 38

10 48 47 43 40 40

It's clear from the results that the use of multi-start technique of the tabu algorithm has the capability to force the

solution to be better than the solution that it is found without using multi-start strategy.

Table 5 represents the best solution has been found by the proposed algorithm. Some symbols are used to make it

easer to represent the solution, as follows:
 S, refers to start time of the machine
 F, refers to finish time of the machine
 J, refers to the job that the machine is assigned to achieve an operation of that job
 O, refers to the operation order that the machine is assigned to achieve it

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

Table 5 The best solution (makespan = 38)
M1 M2 M3 M4 M5 M6

S F J O S F J O S F J O S F J O S F J O S F J O
0 1 4 1 0 2 2 1 0 4 1 1 3 5 7 2 0 3 5 1 0 2 10 1
5 7 6 2 2 8 3 1 4 5 2 2 11 14 9 3 6 11 9 2 2 3 7 1
7 8 5 2 8 14 4 2 8 12 8 2 14 20 2 4 11 14 1 2 3 5 6 1
8 10 2 3 14 20 5 3 12 16 7 3 20 26 10 5 14 17 10 3 5 6 9 1
16 17 3 3 20 26 6 4 16 20 6 3 26 32 5 5 17 18 7 4 6 8 8 1
17 18 8 3 26 32 8 4 20 21 4 3 32 38 9 6 21 24 4 4 8 14 10 2
18 20 9 4 32 38 8 5 21 25 5 4 25 30 3 5 14 16 3 2
20 21 1 4 25 26 7 5 16 18 1 3
26 27 6 5 26 30 9 5 18 19 10 4
27 30 10 6 30 31 1 5 19 25 3 4
30 33 6 6 32 36 5 6 25 30 2 5
 30 32 4 5
 32 38 1 6

5.2. The Second Test (10 × 10 problem)

Implementation of the hybrid algorithm was done to a problem with 10 jobs and 10 machines. Each job has 3

operations in its operating sequence. This problem presents a total flexibility [14] [11].
Ten runs were performed and the following table 6 shows the results by using the proposed algorithm for illustrating

the efficiency of the proposed hybrid algorithm.]

Table 6 Results of our algorithm for each stage.
I = 50, P = 10, G = 10

Makespan found by
Run No.

SPT GA TS
TS with multi-start =
3

Makespan
(units of time)

1 8 8 8 8 8
2 9 8 8 8 8
3 9 9 8 8 8
4 8 8 8 8 8
5 9 9 8 8 8
6 9 8 8 8 8
7 8 8 8 7 7
Table 6 (continued) Results of our algorithm for each stage.

Makespan found by
Run No.

SPT GA TS
TS with multi-start =
3

Makespan
(units of time)

8 8 8 8 8 8
9 9 8 8 8 8
10 9 9 9 8 8

Table 6 shows the efficiency of our hybrid algorithm and make it clear to think about the SPT algorithm as a good

solo technique for solving the flexible job shop scheduling in some cases.

Table 7 gives a comparison between different algorithms that have been applied for solving this problem (10 × 10

problem). In table 5.2.2 and other tables of the comparison between different algorithms, the first column is labeled
"Temporal decomposition", refers to F. Chetouane’s method. The next column labeled "Classic GA" refers to classical
genetic algorithm. The third and forth columns are labeled "Approach by localization" and "AL+CGA", respectively,
are two algorithms by Kacem et al. The fifth column is labeled “PSO+SA”, refers to the proposed algorithm by Xia and

IJCI. Vol. 2 – No. 1, January 2009

Wu [14] [6]. The sixth column is labeled "hGA", refers to the hybrid genetic algorithm proposed by Gao, J. et al. [6].
Finally, the last column is labeled "Proposed algorithm", refers to the proposed hybrid evolutionary algorithm.

Table 7 Comparison of results on problem 10×10 with 30 operations

Temporal
decomposition

Classic
GA

Approach
by

localization

AL +
CGA

PSO +
SA

hGA
Proposed

algorithm

16 7 8 7 7 7 7

Besides, the success of the proposed hybrid algorithm for finding the best known makespan for this problem, it takes

about two minutes to get a solution, which makes the proposed algorithm is the fastest. It takes from the proposed
algorithm to find the best solution about 2 minutes, while the "hGA" algorithm takes about 17 minutes to find the best
solution [6].

5.3. The Third Test (8 × 8 problem)

This is an instance of partial flexibility. In this flexible job shop problem, there are 8 jobs with 27 operations to be

performed on 8 machines [14].

Ten runs were performed and table 8 shows the results by using the proposed algorithm for illustrating the efficiency

of the proposed hybrid algorithm.

Table 9 gives a comparison between different algorithms that have been applied for solving this problem (8 × 8

problem).

Table 8 Results of our algorithm for each stage.
I = 50, P = 10, G = 10

Makespan found by
Run

No. SPT GA TS
TS with multi-start =

3

Makespan
(units of
time)

1 16 16 16 15 15
2 16 16 16 16 16
3 16 16 16 16 16
4 16 16 15 15 15
5 16 16 15 15 15
6 16 16 16 16 16
7 16 16 16 16 16
8 16 16 16 16 16
9 16 16 16 16 16

10 16 16 16 16 16

Table 9 Comparison of results on problem 8×8 with 27 operations
Temporal

decomposition
Classic
GA

Approach by
localization

AL + CGA PSO + SA hGA
Proposed

algorithm
19 16 16 15 16 15 16 15 15

It takes from the proposed algorithm to find the best solution about 1.5 minutes, while the "hGA" algorithm takes

about 5 minutes to find the best solution [6].

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

 14

5.4. The Forth Test (15 × 10 problem)

A larger-sized problem is chosen to test the performance of the proposed hybrid evolutionary algorithm. This

instance has 15 jobs with 56 operations that have to be processed on 10 machines with total flexibility [14].

Ten runs were performed and table 10 shows the results that have been found by using the proposed algorithm.

Table 11 gives a comparison between different algorithms that have been applied for solving this problem (15 × 10

problem).

Table 10 Results of our algorithm for each stage.
I = 50, P = 10, G = 10

Makespan found by
Run

No. SPT GA TS
TS with multi-

start

Makespan
(units of
time)

1 15 14 14 14 14
2 15 15 15 15 15
3 14 14 14 14 14
4 15 14 13 13 13
5 14 14 14 14 14
6 15 15 15 15 15
7 14 14 14 14 14
8 15 13 13 13 13
9 15 15 15 15 15

10 15 15 15 15 15

Table 11 Comparison of results on problem 15×10 with 56 operations
Classic
GA

AL +
CGA

PSO + SA hGA
Proposed

algorithm
23 24 12 11 13

According to the data that is illustrated in table 11, the proposed algorithm did not find the best known makespan,

only for this problem. But, it found a solution near the best known in a fast way. It takes from the proposed algorithm to
find the best solution (by the proposed algorithm) about 3 minutes, while the "hGA" algorithm takes about 135.47
minutes to find the best solution [6].

5.5. The Fifth Test

In the next section, studying the effects of changing the parameters on the behavior of our algorithm was done. The

problem of the second test (10 × 10 total flexible job shop scheduling) was chosen to be solved under various values of
parameters. In each test, changing the value of only one parameter and making the others unchanging was done. In each
test, five runs were made and the best solution is selected to be illustrated in figure 1, figure 2, figure 3, and figure 4.

IJCI. Vol. 2 – No. 1, January 2009

Figure 1 (Changing in the number of initial solutions)
Best makespan in five runs: G = 10, P = 10, multi-start = 3

6

7

8

9

10 20 30 40 50

Number of initial solutions

B
es

t m
ak

es
pa

n

Figure 2 (Changing in the number of generations)
Best makespan in five runs: I = 50, P = 10, multi-start = 3

6

7

8

9

10 20 30 40 50

Number of generations

B
es

t m
ak

es
pa

n

Figure 3 (Changing in the population size)
Best makespan in five runs: I = 50, G = 10, multi-start = 3

6

7

8

9

2 5 10 20 30 40

Population size

B
es

t m
ak

es
pa

n

Figure 4 (Changing in the number of multi-start of Tabu)
Best makespan in five runs: I = 50, P = 10, G = 10

6

7

8

9

1 2 3 4 5

Number of multi-start

B
es

t m
ak

es
pa

n

6. Conclusion

The application of evolutionary algorithms to a flexible job-shop scheduling problem has been defined. It is

demonstrated that choosing a suitable initial solutions and good representation of chromosomes (parallel job encoding)
is an important step to get better result in less iterations.

Mahmoud Mahmoud, Mohamed Ali Osman, Ramadan Zean El-Deen, Abd Al-azeem Mohamed

 16

A new method has been developed for generating initial solutions over the chromosome encoding using the concept

of SPT which could be considered a solo technique for solving the flexible job shop scheduling problem.

The parameters (number of initial solutions, population size, number of generations, and number of multi-start of

tabu algorithm) are selected heuristically.

Implementation results show that the proposed hybrid evolution algorithm is suitable for solving the flexible job

shop scheduling problem, confirming the effectiveness of the proposed approach and its fastness.

7. References

[1] Affenzeller, M., Wagner, S. and Winkler, S. (2005), "GA-Selection Revisited from an ES-Driven Point of View".
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, Lecture Notes in
Computer Science 3562, pp. 262-271. Springer-Verlag, 2005.

[2] Caldeira, J., Melicio, F. and Rosa, A. (2004), "Using a Hybrid Evolutionary-Taboo Algorithm to Solve the
JobShop Problem". ACM Symposium on Applied Computing, SAC ’04, March 14-17, 2004, Nicosia, Cyprus.

[3] Caldeira, J., Melicio, F. and Rosa, A. (2005), "Improving on Excellence. An Evolutionary Approach", Proceedings
of the 6th WSEAS Int. Conf., on Evolutionary Computing, Lisbon, Portugal, June 16-18, 2005, pp. 15-23.

[4] Chiu, H., Hsieh, K., Tang, Y. and Chien, W. (2007), "A Knowledge-Based Genetic Algorithm for the Job Shop
Scheduling Problem", Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases, Corfu Island, Greece, February 16-19, 2007.

[5] Crafti, D. (2004). "A Job Shop Scheduler using a Genetic Tree Algorithm". School of Computer Science and
Software Engineering, Monash University, Clayton, Victoria, Australia. http://www.csse.monash.edu.au/hons/se-
projects/2003/Crafti/thesis.pdf. January 29, 2004.

[6] Gao, J., Gen, M. and Sun, L. (2006), “A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job
Shop Scheduling Problem”, GECCO'06, July 8–12, 2006, Seattle, Washington, USA. Copyright 2006 ACM 1-
59593-186-4/06/0007.

[7] Glover, F. (1996), “Tabu search and adaptive memory programming - advances, applications and challenges”.
Interfaces in Computer Science and Operations Research. Barr, Helgason and Kennington (eds.), Kluwer
Academic Publishers.

[8] Ho, N. and Tay, J. (2005), "Evolving Dispatching Rules for solving the Flexible Job-Shop Problem". Evolutionary
Computation, 2005, the 2005 IEEE Congress on 2-5 Sept. 2005, Vol. 3, pp. 2848 – 2855, ISBN: 0-7803-9363-5.

[9] Jones, A. and Rabelo, L. (1998), “Survey of Job Shop Scheduling Techniques”, NISTIR, National Institute of
Standards and Technology, Gaithersburg, MD. Journal of Production Research, Vol. 38, pp. 3623-3637.

[10] Mastrolilli, M. and Gambardella, L. (2000), "Effective Neighborhood Functions for the Flexible Job Shop
Problem: Appendix". IDSIA - Istituto Dalle Molle di Studi sull'Intelligenza Artificial, C.so Elvezia 36, 6900
Lugano, Switzerland. {monaldo, luca}@idsia.ch, http://www.idsia.ch. February 14, 2000.

[11] Mesghouni, K., Hammadi, S. and Borne, P. (2004), "Evolutionary Algorithms for Job-Shop Scheduling". Int. J.
Appl. Math. Comput. Sci., Vol. 14, No. 1, 91–103.

[12] Resende, M. and Ribeiro, C. (2004), “Parallel Greedy Randomized Adaptive Search Procedures”, AT&T Labs
Research Technical Report TD-67EKXH. To appear in Parallel Metaheuristics, E. Alba (ed.), John Wiley and
Sons, 2005.

[13] Wagner, S., Affenzeller, M. and Schragl, D. (2004), "Traps and Dangers when Modelling Problems for Genetic
Algorithms". Austrian Society for Cybernetic Studies. Cybernetics and Systems 2004, pp. 79-84.

[14] Xia, W. and Wu, Z. (2005), "An effective hybrid optimization approach for multi-objective flexible job-shop
scheduling problems", Computers & Industrial Engineering Vol. 48, pp. 409–425.

[15] Zdansky, M. and Pozivil, J. (2002), "Combination Genetic/Tabu Search Algorithm for Hybrid Flowshops
Optimization". Proceedings of ALGORITMY 2002, Conference on Scientific Computing, pp. 230-236.

[16] Zhang, H. and Gen, M. (2004), “Multistage-Based Genetic Algorithm for Flexible Job-Shop Scheduling Problem”,
the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems 6th - 7th December 2004. Cairns,
Australia, pp. 223-232.

