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ABSTRACT

Historically, our understanding of the soil and assessment of its
quality and function has been gained through field survey and routine
soil physicochemical laboratory analysis. Reflectance spectroscopy can
be used to non-destructively characterize materials for a wide range of
applications. Hyperspectral remote sensing data provide a rich source
of information produced in the form of the spectrum which can be used
to identify surface materials. In this study, Field Portable Hyperspectral
Radiometer (FPHR) was evaluated in an attempt for prediction of
diverse soil properties related to three different soil orders (Vertisols,
Aridisols, and Entisols) across Lower Egypt. Eight pedons consisting of
34 samples were collected from different semi-arid areas.

Soil horizonation and twelve soil attributes including clay, sand,
silt, SOC, pH, EC, AW, gypsum, CaCQOg, Fe,03, Al,O3, and SiO, were
traditionally analyzed and then correlated with spectral reflectance of
the spectrum range. Four bands (blue, green, red, and near-infrared)
were calculated for prediction of these variables. The results showed
that the variations in spectral reflectance for each horizon across the
spectrum range (276-1093 nm) were matched well with those of
morphologically described horizons in the field. Additionally, the
correlation results of different soil variables were highly correlated
with spectral reflectance at different band wavelengths. For example,
clay content correlated negatively (r = -0.93) with reflectance at the
green band while silt (r = 0.67 at the blue band) and sand (0.87 at the
green band) correlated positively. Regression equations were fitted in
graphs to attempt the quantification of the soil constituents from their
reflectance values. The best predictive models were obtained for clay



484 ELWAN etal.

content (R? = 0.93), SiO* (R? = 0.86), AlL,O3 (R*> = 0.85), AW. (R* =
0.79), CaCOs (R? = 0.79), gypsum (R* = 0.75), Fe,05 (R = 0.71), sand
(R = 0.69), silt (R> = 0.54), and SOC (R* = 0.51) while the poor
prediction was for EC and pH. The results concluded that the spectral
reflectance of the spectrum had the potential to differentiate the soil
horizonation and to predict the selected soil variable at different
wavelength bands.

Conclusively, FPHR was shown to be an effective tool for
enhanced soil horizon differentiation and the acquisition of soil
attributes information.

Keywords: Hyperspectral, Horizonation, Soil attributes prediction, Soil
reflectance.

INTRODUCTION

The soil is a heterogeneous system whose processes and mechanisms are
complex and difficult to fully comprehend (Viscarra Rossel et al., 2006).
Many conventional soil analytical techniques are used in an attempt to
establish the relationship between soil physical and chemical properties and
individual soil components, often disregarding their complex, multi-
component interactions. Indeed, soil chemical extractions that alter the
equilibrium between the phases may further complicate the interpretation of
results. Historically our understanding of the soil system and assessment of its
quality and function has been gained through this type of laboratory analysis.
We need to further develop our analytical techniques to better understand the
soil as a complete system and a resource so that we may make more efficient
use of it and simultaneously preserve it for future generations. This is more
important now than ever before since the acquisition of larger amounts of
accurate soil data is essential if we are to manage our base resources sensibly
to meet the food demands of future populations (Bilgili et al., 2010). Remotely
sensed hyperspectral data have great potential for quantitative assessment of
soil and vegetation parameter at spatial scale. The development of methods to
map soil properties using optical remote sensing data in combination with field
measurements has been the objective of several studies during the last decade.
Also, it has been a challenge to find the most appropriate technique for
studying soil properties from optical data and thus reducing the time and effort
involved in field sampling and laboratory analysis. Hyperspectral sensors
operate with more than hundreds of bands with good spatial and spectral
resolution producing continuous spectra. With the progress and maturity of the
technology, hyperspectral remote sensing has found a wide range of
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applications in mapping soil types and quantifying soil constituents (Minu
et al., 2016).

Infrared spectroscopic techniques are highly sensitive to both organic
and inorganic phases of the soil, making their use in the agricultural and
environmental sciences particularly relevant. Intense fundamental molecular
frequencies related to soil components occur in the mid-infrared (MIR)
between wavelengths 2500 and 25,000 nm. The visible and infrared portions of
the electromagnetic spectrum are highlighted in Fig. 1. Weak overtones and
combinations of these fundamental vibrations dominate the near-infrared
(NIR) (700-2500 nm) and electronic transitions the visible (VIS) (400-700
nm) portions of the electromagnetic (EM) spectrum. Quantitative spectral
analysis of soil using visible and infrared reflectance spectroscopy requires
sophisticated statistical techniques to discern the response of soil attributes
from spectral characteristics. Various methods have been used to relate soil
spectra to soil attributes. For example, Elwan and Sivasamy (2013) used
multiple regression and correlation analyses to relate specific bands in the NIR
to a number of soil properties in a semi-arid area of India. Shibusawa et al.
(2001) used stepwise multiple linear regression for the estimation of various
soil properties from the NIR spectra of soil. Shepherd and Walsh (2002) used
multivariate adaptive regression splines for the estimation of soil properties
from soil spectral libraries.

Soil reflectance characteristics are determined over the entire visible
(350-700 nm) and near-infrared (700-2500 nm) region with the use of a
monochromator (Viscarra Rossel et al., 2006). Raw data, first-, and second-
derivatives each provide valuable information that can be analyzed separately
or combined using multivariate statistical methods or data mining techniques.
Soil constituents have unique absorption features in these wavelength regions
due to overtones related to stretching and bending vibrations in molecular
bonds (Viscarra Rossel et al., 2006). Chang et al. (2001) predicted more than
thirty soil properties simultaneously with variable levels of success using a
principal component analysis method with cross-validation. They reported
successful predictions (R*> 0.80) for total organic carbon and nitrogen (g kg™),
gravimetric soil water content, soil water content, exchangeable calcium,
cation exchange capacity (CEC) and silt and sand content. Brown et al. (2006)
used over 4100 surface and subsurface soils from across the United States,
Africa and Asia to evaluate the accuracy of VNIR empirical models for global
soil characterization and reported strong predictability for kaolinite,
montmorillonite, clay content, as well as CEC, soil organic carbon,
inorganic carbon, and extractable Fe. Others also used VNIR spectroscopy to
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Fig. 1. The electromagnetic (EM) spectrum highlighting the visible and infrared
portions (after Viscarra Rossel et al., 2006).

successfully predict organic carbon and nitrogen (Reeves et al., 2002), Fe,Os3,
Al,O3, CaCOs, potentially mineralizable nitrogen (Reeves and Van Kessel,
1999), heavy metals, micronutrients (Udelhoven et al., 2003), C:N ratio and
soil biological properties (Ludwig et al., 2002). Additionally, the prediction of
soil constituents that do not absorb within the VNIR range may be possible
through their correlations with spectrally active constituents.

Therefore, the objectives of this study were to: (i) determine the
efficiency of FPHR with comparison to traditional field and laboratory
methods in enhancing soil horizon differentiation, (ii) determine whether
FPHR spectroscopy can be used easily as a rapid, inexpensive alternative or
supplement to traditional methods for measuring soil properties by correlation
coefficients, and (iii) find the appropriate bands across the spectrum range that
can properly predict the soil variable using the regression analysis.

MATERIALS AND METHODS

Pedon Sampling
The study was conducted on three soil orders (Vertisols, Aridisols, and
Entisols), which cover the major variations in soil types in Egypt. Standard eight
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pedons consisting of 34 samples (Fig. 2) were collected from different semi-arid
sites in Lower Egypt. Two pedons were collected from Nile old deltaic plain (P1
and P2) and one pedon (P3) from bajada plain at wadi Al-Molak of East Delta;
one pedon (P4) from Inshas, Sharkia Governorate; two pedons (P5 and P6) from
Abu-Soltan, Ismailia Governorate; one pedon (P7) from Al-Tur, South Sinai; and
one pedon (P8) from Al-Hamam area, Northeastern coast of Egypt. P1 was
classified as Vertisols, P2 and P3 were classified as Aridisols, and P4 to P8 were
classified as Entisols. Study areas have a semi-arid climate with a mean annual
precipitation, evaporation, temperature and relative humidity of 13 mm, 881 mm,
22 °C and 55%, respectively.

In the field, a range of soil features is generally used during the process of
horizon description, including soil color, texture, and structure, which are
essentially affected by the physical and chemical composition of the soil. For
example, besides soil organic matter (SOM) and soil water content, Fe and Mn are
the primary coloring agents for many soils. Morphological descriptions for all
pedons were morphologically described and the horizons were differentiated based
on visual examination and hand texturing according to Schoeneberger et al.,
(2012). Collected samples were transported to the laboratory in sealed plastic bags.

Laboratory Analyses

In the laboratory, soil samples were air-dried and gently ground to pass
through a 2 mm sieve, then subjected to standard soil characterization. The
prepared samples were then scanned on the sample surface using FPHR
(described below). Particle size analysis was accomplished via pipette method and
sieved sands using a 63 pum sieve (Gee and Bauder, 1986). Soil organic carbon
(SOC) was quantified via titration following the Walkley-Black dichromate
oxidation method (Nelson and Sommers, 1996). Gypsum concentration was
determined by the differential water loss method (Artieda et al., 2006). Carbonates
were determined using a calcimeter (Kacar, 1994); soil pH with a 1:2 soil/water
suspension using a glass electrode pH meter (McLean, 1982); electrical
conductivity (EC) in soil extraction using a conductivity meter (Janzen, 1993).
Furthermore, the soil samples were analyzed for soil available water (A.W.), SiO,,
Al,Os3, and Fe,O3 following standard procedures (Jackson, 1973; Soil Survey
Staff, 2014).

Field Portable Hyperspectral Radiometer (FPHR)

The GER 1500 model is a field portable hyperspectral radiometer (FPHR)
covering the UV, Visible, and NIR wavelengths from 276 nm to 1093 nm (Fig. 3).
It was used to scan each soil sample. The instrument uses a diffraction grating
with a silicon diode array. The silicon array has 512 discrete detectors that provide
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Fig. 3. Field portable hyperspectral radiometer (FPHR) sensor used in the
current study.

the capability to read 512 spectral bands. The spectroradiometer includes
memory for stand-alone operation as well as the capability for computer-
assisted operation through its COM2, RS232 serial port. The spectral readings
can be stored for subsequent downloading and analysis using a personal
computer with a standard RS232 serial port and GER licensed operating
software. Computers incorporating only USB serial ports may be connected to
the GER 1500 by using the SVC ADP000015 USB Serial port adapter. An
optional external GPS device may be connected via the instrument’s COM1
RS232 serial port. When connected, GER 1500 records the latitude, longitude,
and time of each spectral reading. For all scanning, recalibration and
verification with NIST standards were conducted every 20 scans and the
aperture of the instrument was covered with a thin plastic wrap to prevent soil
or dust from contaminating the aperture window. Data from the instrument
was exported to MS Excel for analysis and display.
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Hyperspectral reflectance and data processing

Thirty-four soil samples of selected eight pedons were air-dried, crushed,
and sieved (2 mm); then the samples were scanned using FPHR in the
laboratory condition. Soil samples were individually spread on a white paper
(30 x 42 cm diameter) forming a layer of 1.8 cm (1.5 cm is considered as
optically infinitely thick for soil). The sample surface was scraped plane with a
ruler, as pressing can affect the porosity of the soil and result in a false
measurement. The absolute reflectance of samples was recorded for 276-1093
nm at 1.5 nm spectral resolution, yielding a total of 512 data channels per
spectrum. Reflectance spectra were measured mid noon in between 11.30 am
to 12.30 pm, for allowing good sunlight. The zenith angle of the FPHR was set
to 45° by pointing the instrument at a distance of 30 cm above the soil surface.
A standard panel coated with barium sulphate (BaSO,) was used as a reference
for the reflectance calibration before each set of measurements. Each
reflectance  measurement produced a single spectrum. Reference
measurements were taken before the first measurements set and after every
five minutes onwards to adapt the changing atmospheric conditions. The
percent reflectance spectrum was calculated as the ratio between the reflected
spectra from the target (soil sample) and the incident spectra from the panel
(reference) using the following formula.

_ Reflectance from the soil sample
Reflectance from the reference panel

Percent spectral reflectance % 100 1)
The spectral reflectance data, both absolute and percent reflectance values,
were transferred from the FPHR to a personal computer as ASCI files with
.asc extension utilizing a specific software supplied with the instrument. These
files were later opened in a spreadsheet programme and further analyses were
carried out. In the current study, raw spectra were tested both separately and
jointly in predicting soil horizonation. Furthermore, the reflectances in blue,
green, red, and near-infrared (NIR) bands were selected due to their most
sensitive wavelengths to soil components and calculated for each sample by
taking mean of reflectance values in the wavelengths ranges of 450-520 nm,
520-600 nm, 630-690 nm and 760-900 nm, respectively, to match the bands in
the Landsat Thematic Mapper (TM) sensors (Fig. 1).
Statistical analysis
Reflectance data were translated from binary to ASCII and exported in
batches using ViewspecPro (Analytical Spectral Devices, Inc., Boulder, CO,
80301). The ASCII files were later opened in a spreadsheet programme and
further analyses were carried out. The sequential percent spectral reflectance
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readings obtained from each sample (512 values) at approximately 1.5 nm
bandwidth interval across the spectrum wavelengths were performed using
Microsoft Excel spreadsheet software, producing a master data file with one
representative reflectance spectrum per soil sample. Calibrations between soil
reflectance and soil parameters were performed using both correlation (r) and
multiple regression models for selecting bandwidth that is the best for
prediction of soil properties.

Correlation between each band and each soil property were worked out
separately for spectral datasets and evaluated the relationship of correlation of
reflectance with soil properties with the change in bandwidth. Multiple
regression models for each soil property were developed using each spectral
data sets. Model predictability (Model R?) was evaluated for selecting the best
bandwidth for prediction of soil properties. Optimum bandwidth found was to
be used in the study for prediction of soil properties. Regression equations
were fitted and plotted as graphs to quantify the soil constituents using
reflectance in the band in which the highest correlation was registered, as
suggested by Chang et al., (2001). Bivariate correlations analysis was done
between soil properties and spectral data sets using SPSS software. Correlation
analysis was performed for each soil property with each band. Best correlated
bands from each reflectance related datasets were selected separately for each
soil property, considering the absolute values of correlation coefficients.

The prediction model was developed for each soil properties considering
all the bands as a variable. Model predictability (R?) was used for evaluating
the spectral data sets for prediction of soil properties. The spectral dataset with
the highest R? was selected for model development for each soil property. The
correlation with each soil properties and reflectance data at different bandwidth
was computed and plotted against wavelength. Correlation between soil
properties and reflectance at different wavelength for spectral data sets was
evaluated for all soil properties. Multiple linear regression is a common
multivariate tool which, at its simplest level, forms a model that specifies the
relationship between a response variable (Y) and a set of dependent variables
(X). The soil property was considered the dependent variable, and the band
reflectance was the independent variables. After a choice of the number of
bands, multiple linear regression was carried out for each soil attribute and
best-correlated bands from each spectral dataset were selected. Best dataset
and optimum number of bands to be included in the model have been selected
based on the highest R? value.
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RESULTS AND DISCUSSION

Field morphological horizonation

The selected morphological characters of studied pedons are furnished in
Table 1 and visualized in Fig. 2. Moreover, the textural classes across all
landscapes are widely varied from sand to clay, indicating the heterogeneity of soil
forming processes and variety of parent materials. Sand fraction concentration
ranged from 9.3% in P1 to 95.4 in P 8 while clay content varied from 1.2% in the
subsurface layer of P8 to 62% in the deepest horizon of P1 (Table 1). Most pedons
selected for this study were derived from alluvium as it is the dominant parent
material of Lower Egypt. Pedons P1 and P2 were developed on Nile old deltaic
plain at toeslope landscape position in wadi Al-Molak, East Delta while P3 was
developed on bajada plain at toeslope of wadi Al-Molak. Pedon P4 was derived
from ferruginous sandstone on the alluvial plain of Inshas area while pedons (P5
and P6) from alluvial plain at Abu-Soltan region. Furthermore, pedon P7 was
formed on alluvial fans and outwash plain at Al-Tur area while pedon P8 were
formed locally from weathered marine limestone on inland portion of the
northeastern coastal region.

A soil horizon is defined as a layer of soil or soil material approximately
parallel to the land surface and differing from adjacent genetically related layers in
physical, chemical, and biological properties or characteristics such as color,
structure, texture, consistency, kinds and number of organisms present, or degree
of acidity or alkalinity (Soil Science Society of America, 2017). As the formation
of horizons is a function of a variety of physical, chemical, geological, and
biological processes associated with the landscape and climate over long time
periods, the differentiation of soil horizons is essential for the understanding and
classification of soil (Schaetzl and Anderson, 2005). The process of field
horizonation to some degree is a process of subjective approximation of soil
features by field soil surveyors. Surveyors use all the tools available to
differentiate soil horizons and establish minimal within-horizon variability,
considering a variety of soil properties. As such, significant variations of soil
properties should occur between soil horizons in a given pedon. Clearly, the most
important part of horizonation is the identification of differences between soil
horizons. Pedon P1 has highly developed horizonation sequence: Apzg-Btg-Bssz-
Btk-Btkm and classified as Aquic Salitorrerts, which characterized by anthraquic
condition (APzg and Btg), salic horizon (Bssz). Likewise, the horizon sequences
of Aridisols pedons are Ap-E-Btn-Btk-Bt for P2 (Petronodic Natrargids) and Ap-
Btnz-Bg-C for P3 (Calcic Haplosalids). On the other hand, the layer sequences in
the Entisols pedons are: Ap-C-2CK-3C1-3C2 for P4; C-2C-3C-4C for P5; Ap-C-
2C1-2C2 for P6; C-2C1-2C2-3C for P7; and C-2Cqy1-2Cqy2 for P8 (Fig. 2).



Table 1. Soil characterization data for thirty-four soil samples of eight pedons
from different areas across Lower Egypt
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Apzg 20 13.0 355 51.5 0.81 8.8 22.3 50.5 12 3.8 6.2 21.3 42.3

Btg 43 155 30.0 54.5 0.60 8.6 19.5 58.4 2.2 5.2 6.8 20.4 415

Pl Bssz 98 9.3 39.5 51.2 0.59 8.6 30.7 52.5 15 6.5 4.7 185 42.6
Btk 150 11.2 29.3 59.5 0.53 8.8 15.0 51.6 11 8.1 6.2 313 39.4

Btkm 180 135 245 62.0 0.48 8.7 8.8 46.2 0.9 7.5 7.8 341 38.4

Ap 45 17.0 31.2 51.8 0.80 8.6 125 40.5 0.7 5.8 3.7 29.4 41.3

E 75 231 375 394 0.68 8.5 5.8 36.2 0.6 6.2 2.1 215 435

P2 Btn 100 19.5 233 57.2 0.46 8.8 7.5 433 0.3 8.4 7.2 334 39.8
Btk 120 25.2 19.5 55.3 0.45 8.7 6.3 42.8 0.8 9.1 6.8 28.6 41.2

Bt 155 134 34.1 52.5 0.41 8.5 52 40.0 0.3 8.8 8.2 21.7 43.8

Ap 45 9.8 524 37.8 0.27 8.4 11.8 253 0.5 7.2 5.7 18.3 46.5

Btnz 75 37.0 37.8 25.2 0.38 8.5 30.1 215 0.2 8.8 6.6 175 45.2

P3 Bq 150 45.7 385 15.8 0.11 8.3 6.7 15.8 0.3 9.3 4.2 144 473
C 190 49.4 36.2 14.4 0.08 8.1 5.9 115 0.1 10.2 5.1 131 48.3

Ap 15 63.35 25.4 113 0.12 7.8 2.1 7.6 0.2 6.5 9.5 4.3 56.2

C 55 64.7 26.7 8.6 0.08 7.9 2.5 6.4 0.3 8.5 116 4.6 58.6

P4 2Ck 105 60.5 29.1 10.4 0.04 8.2 2.7 72 0.4 10.5 19.2 4.8 57.8
3C1 125 61.5 318 6.7 0.03 8.1 18 53 0.1 9.5 12.4 6.3 60.1

3C2 165 71.0 21.9 7.1 0.07 7.9 1.7 6.1 0.2 8.4 8.5 5.7 53.1

C 15 58.0 314 10.6 0.12 7.3 1.4 6.8 0.4 5.6 2.6 3.4 67.1

2C 50 56.7 34.9 8.4 0.08 7.4 13 54 0.9 4.7 2.5 3.6 64.3

Pe 3C 65 64.0 28.1 7.9 0.09 7.3 15 5.6 0.6 3.8 2.7 3.7 68.4
4C 100 64.0 276 8.4 0.07 7.6 0.9 4.8 0.8 5.7 3.9 3.8 69.4

Ap 15 75.4 15.4 9.2 0.19 7.9 12 6.9 0.4 4.6 3.1 4.6 84.5

C 85 76.3 17.3 6.4 0.11 7.6 0.7 6.4 0.9 5.7 2.6 3.8 85.6

Pe 2C1 135 78.9 16.4 4.7 0.04 7.8 13 6.7 0.8 15 3.0 4.1 87.3
2C2 175 823 113 6.4 0.02 7.1 0.6 51 0.4 2.7 25 4.6 88.1

C 10 82.0 10.9 7.1 0.02 7.2 1.2 4.2 1.25 272 2.6 3.9 743

2C1 35 81.7 148 35 0.03 7.3 2.0 3.7 1.6 315 1.2 4.8 76.2

P 2C2 90 85.1 123 2.6 0.01 7.6 2.5 4.5 17 29.7 13 4.2 74.5
3C 115 90.5 8.2 13 0.05 7.4 17 3.2 1.9 20.8 1.4 4.1 71.3

C 90 90.4 4.3 53 0.01 8.1 1.4 3.6 7.9 9.5 0.5 3.6 78.3

P8 2Cqyl 110 92.4 6.4 12 0.02 8.3 3.6 24 14.3 113 0.7 3.7 74.6
2Cqy2 180 95.4 1.9 2.7 0.01 8.4 5.8 25 175 10.4 0.9 5.4 79.5
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The boundary between two layers was clearly identified in the field based
on color, texture, structure, hardness, or other features which largely
influenced by the pedogenic process. Boundaries between the horizons in
studied pedons are varied in both distinctiveness and topography. Abrupt
smooth boundaries were the dominant within the most investigated pedons.
The occurrence of smooth and abrupt to diffuse boundaries in studied pedons
is often cited as field evidence for a lithologic discontinuity (LD) (Schaetzl and
Anderson, 2005). In P4, the soil exhibited abrupt smooth C-2Ck and 2Ck-3C1
boundaries in P4 indicating two unlike parent material with different modes of
deposition occurring on more stable surfaces, however, the wavy boundary
was found between Ap-C horizons indicating same materials (Fig. 2).

Prediction of soil horizonation

Basic soil constituents affecting soil reflectance characteristics are
anthraquic features of Vertisols, soil water, clay content, organic matter,
and Fe—Al oxides (Bowers and Hanks, 1965). Fig. 4 shows raw reflectance
spectra and their prediction in pedon horizonation (Fig. 2). Soil reflectance
was generally lower in the visible range of blue and green bands (450-600
nm) and higher in the red and near-infrared range (630-900 nm). With
regard to FPHR analysis of pedon horizonation, the studied pedons
qualitatively showed good alignment with field-established horizonation.
Absorption peaks for Vertisols were higher and the percent soil reflectance
was low (16-20%) while for Aridisols it was slightly low (20-25%) in P2
and slightly high (32-40%) in P3. By contrast, the soil reflectances of
Entisols pedons were higher compared to Vertisols and Aridisols and
varied from 35% in C layer of P4 to 75% in P8 (2Cqy2). Horizonation was
easily identified based on the reflectance characters for each soil sample
(horizon or layer) (Fig. 4).

Given the raw reflectance data from FPHR (Fig. 4) vs. morphological
horizonation (Table 1) from field survey, it is suggested that FPHR could
be used as a tool to assist in field morphological horizon differentiation. For
example, FPHR could be used to identify multiple argillic horizons within a
Vertisol pedon and lithologic discontinuity in P4 at depths of 55 and 105
cm. In summary, the results concluded that the data afforded by the use of
FPHR sensor offer pedologists unique insights into predicted differences
between soil horizons-differences that may be indicative of lithologic
discontinuities and soil horizonation.
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The authors do not endorse the strict use of FPHR elemental data for
soil horizon establishment, irrespective of morphological features.
However, this sensor provides pedologists with another data stream,
quickly and easily acquired in situ, that can help identify areas of lithologic
discontinuity and  horizonation  within a given pedon, whether
visually observable or not. Collectively, these proximal sensors can detect
depth changes in both organic and inorganic soil constituents, many of
which may align with changes in the parent material. Hence, the method
may offer insight into the presence of discontinuities that may not normally
have been detected in the field. Rather, FPHR sensor is suggested as a tool
for detecting or enhancing field morphological horizonation.

Prediction of soil variables

To further validate the efficiency of the FPHR sensor, twelve soil
variables including fractions of clay, silt, and sand, SOC, pH, EC, soil
available water, gypsum, CaCOs, Fe,03, Al,O3, and SiO, were correlated
with soil reflectance at different bands. Summary statistics of Pearson
correlation coefficients between soil variables and correlation coefficients
between soil variables and reflectance spectra at each band are provided in
Tables 2 and 3, respectively. Significant correlations existed among soil
variables. Clay was strongly correlated with A.W. (r=0.83), SOC (r=0.87),
Fe,03(r=0.72), Al,O3 (r=-0.51) (Table 2). Sand content was negatively
correlated with clay (r=-0.79), SOC (r=-0.55), and EC (r=-0.39), and
positively with SiO; (r=0.88), Al,O3(r=47), silt (r=0.42), gypsum (r=0.33),
and CaCOg; (r=0.29) (Table 2). The results in Table 3 revealed that the soil
constituents correlated well with the reflectance at different bands based on
the absorption and reflection characteristics of each soil constituent by
using the correlation coefficient (r). Correlation coefficients between soil
variables and reflectance spectra showed both positive and negative
correlations at various wavelengths across the calculated bands from the
spectrum (Table 3). Clay content correlated negatively with reflectance
within the visible range while other soil fractions (silt and sand) correlated
positively. The highest negatively significant correlations were found at
green bands for clay content (r = -0.93) and SOC (r = -0.83), and at NIR
band for AW. (r = -0.91), Fe,O3 (r = -0.89), and Al,O3 (r = -0.89). By
contrast, the highest positively significant correlations were observed for
sand (r = 0.87 at green band), silt (r = 0.67 at blue band), gypsum (r= 0.78
at red band), CaCOj3 (r = 67 at red band), and SiO, (r = 0.64 at green band).
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Table 2. Pearson correlation coefficients between analvzed soil attributes

5ol Gamd M Chy 300 i EC AW, Grpm=  CaCO, FeQ,  ALG, S0,
strribmie ) (%) (%) (%) (%4 (%) %) R (%) (%% () (%)
Sand (%% 100

St | o) 041 100

Clay (%) OTET AT LW

S0C (%) -0y Qa5 0ET 10

pH (%) -0lr -4 ol -000° 100

EC (%) -aagr =1} 41 031" -0 1L

AW (%) s -041 0E3 048 015" -0247 100

{G;J_fo?m 033 Riling -0 -036 a7 034 -0.08 100

CaCo0y ) oe 045 -0 -0547 -0 054 -0.10° s 100

Fe Oy (%) [ale.] -6 < N es” NS -000E [{F -00r -047 L

ALO, (%) 047" o -0 0447 -0.08 o4 -0317 anr - 037 L0

Silk. (%) QEFT 04T 40397 AT 00 T Q4T a3 5T ™ 0wt LW
#%Lienificant at tha level of 0.01.

* Bignificant at the laval of 0.03.

Table 3. Comrelation coefficients between soil wvariables and reflectance
spectra at each band wavelengths

Sail Ssasd St Clay  S0C  pH  EC AW, Gypn C°C Fed.  ALO:  SiO:
attributes (%4} () (L] (i) (®a) () (ki) m%) {“;} (i) (Ba) (%)
Blos bamd 079 QT 075 -0T1%e 031 023 Q6T D4%* Q1+ -0lr -024 0.
Greembamd 0TS 038 0SB 08I 04 034 -09e 031+ 038 <005 -041% D
Redband 064+  042% -0+ 047 048 003 Q% QTS QST 0TI -0&F 025
NIE band 045 0ar -0EE -0L61 -0 0zl -8 [AE. =0 045 Bk 085 040

**Sipnificant at the level of 001
* Significant at the level gf 0,05,

While the lowest significant correlation was obtained for pH (r = -0.51 at NIR
band and EC (r = 0.34 at the green band). Bilgili et al. (2010) evaluated the
visible-near infrared reflectance spectroscopy (VNIR) for prediction of diverse
soil properties related to four different soil series of the Entisol soil group within a
single field in northern Turkey. Bowers and Hanks (1965) similarly reported a
decrease in reflectance with increasing particle size.

Reflectance measurements in the laboratory have been used to develop
predictive equations for the twelve soil variables at various wavelengths as
presented in Fig.5. The spectral features of clays were most prevalent in the blue
and green regions (Table 3) where distinctive absorption bands can be used to
provide quantitative information on clay minerals. In general, the results
concluded that finer soil texture presented as being darker than coarse-textured
soils, and consequently soil with sand or silt (> 0.002 mm) had higher spectral
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Fig. 5. Regression between measured values and reflectance predictions at
VNIR for all soil variables.
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reflectance than clay minerals (< 0.002 mm). Regression between soil measured
attributes and VNIR predictions for all soil variables was presented in Fig. 5
showing the most significantly correlated band for each soil property by using
regression analyses. The best predictive models were obtained for clay content (R? =
0.93), SiO, (R? = 0.86), Al,O; (R? = 0.85), AW. (R? = 0.79), CaCO; (R? = 0.79),
gypsum (R? = 0.75), Fe,03 (R? = 0.71), sand (R? = 0.69), silt (R* = 0.54), and SOC (R?
= 0.51). The results showed that most of the spectral responses in the reflective
spectrum were significantly related to iron oxide content and soil organic carbon
(SOC) that was accurately predicted in the NIR region using reflectance
spectroscopy due to their absorption features and the ability to absorb water
and nutrients which decreased the reflectance characteristics by this sensor.
The silica constituent had a similar trend of sand content (Fig. 5), where the
reflectance characteristics of soil were increased due to the presence of a silica
component (Bq horizon in P3) (Fig. 2). Inadequate models (R? < 0.50) were
obtained for pH and EC (Fig. 5). The poor predictions of pH and EC could be
attributable to a narrow chemical range, the high skewness of these variables in
data sets (Table 1), or poor correlations with primary soil variables such as
CaCQOg, clay content and organic matter that are more directly assessed by
VNIR region. Similar poor predictability for EC and pH was found by Chang
et al. (2001), Viscarra Rossel et al. (2006), and Bilgili et al. (2010). Although
this property may be inherently poorly predicted by VNIR spectroscopy,
Shepherd and Walsh (2002) achieved good predictions for pH with R? = 0.83
using soils from eastern and southern Africa.

The results showed that FPHR sensor at VNIR region could classify
various soil parameters successfully, assisting with soil management and
understanding soil parameter status. Some soil parameters cannot be predicted
precisely by the VNIR method, but they can still be classified with reasonable
agreement. This can be especially helpful for soil variables that do not have
direct relationships with reflectance.

In conclusion

Traditionally, field soil horizonation has relied on qualitative and semi-
quantitative data to somewhat subjectively establish horizons with unique
features within a given pedon. This process is affected by a range of factors,
including the surveyor’s experience and knowledge, surveyed locations,
weather, field conditions, water table depth, and so on. Use of the FPHR
sensor, which quickly determines elemental concentrations on-site, can
provide pedologists and field soil scientists with quantitative data useful in
differentiating soil horizons. In this study, eight pedons were fully described in
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the field and the horizons were distinguished via traditional morphological
description with horizons differentiated by visual examination and hand
texturing. Use of FPHR sensor is a promising tool for quantitatively
differentiating soil horizons as an enhancement to traditional soil
morphological horizonation, or in soils with little observable morphological
variability. The method is applicable to a wide range of settings including field
use directly on an exposed pedon and analysis of samples in the laboratory.

Furthermore, this study focused on the use of FPHR sensor for predicting
such as clay, sand, silt, SiO,, Fe,Os, Al,O3, gypsum, CaCOs, AW, pH, EC,
and SOC were well predicted using hyperspectral VNIR spectroscopy. The
results were generally in line with those of the other studies, even though they
were conducted at different scales and in other geographic regions. The
comparison of actual lab results and the FPHR estimations showed that in the
hyperspectral VNIR region provided the better prediction results for almost all
variables. Considering the high spatial variability, and the expensive and time-
consuming measurements of soil properties, VNIR spectroscopy proved to be
a useful method to substitute or complement traditional soil analyses and
reduce the number of samples to be analyzed for precision management
applications in fields. FPHR is rapid, timely, less expensive, non-destructive,
straightforward and sometimes more accurate than conventional analysis.

It can also be used as auxiliary information in combination with spatial
statistic methods to improve the estimation quality of the parameters and
characterization of soil constituents. Further investigations are required to
comprehensively evaluate the FPHR under a wider range of soils.
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