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ABSTRACT 

Historically, our understanding of the soil and assessment of its 

quality and function has been gained through field survey and routine 

soil physicochemical laboratory analysis. Reflectance spectroscopy can 

be used to non-destructively characterize materials for a wide range of 

applications. Hyperspectral remote sensing data provide a rich source 

of information produced in the form of the spectrum which can be used 

to identify surface materials. In this study, Field Portable Hyperspectral 

Radiometer (FPHR) was evaluated in an attempt for prediction of 

diverse soil properties related to three different soil orders (Vertisols, 

Aridisols, and Entisols) across Lower Egypt. Eight pedons consisting of 

34 samples were collected from different semi-arid areas.  

Soil horizonation and twelve soil attributes including clay, sand, 

silt, SOC, pH, EC, A.W, gypsum, CaCO3, Fe2O3, Al2O3, and SiO2 were 

traditionally analyzed and then correlated with spectral reflectance of 

the spectrum range. Four bands (blue, green, red, and near-infrared) 

were calculated for prediction of these variables. The results showed 

that the variations in spectral reflectance for each horizon across the 

spectrum range (276-1093 nm) were matched well with those of 

morphologically described horizons in the field. Additionally, the 

correlation results of different soil variables were highly correlated 

with spectral reflectance at different band wavelengths. For example, 

clay content correlated negatively (r = -0.93) with reflectance at the 

green band while silt (r = 0.67 at the blue band) and sand (0.87 at the 

green band) correlated positively. Regression equations were fitted in 

graphs to attempt the quantification of the soil constituents from their 

reflectance values. The best predictive models were obtained for clay 
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content (R
2
 = 0.93), SiO

2
 (R

2
 = 0.86), Al2O3 (R

2
 = 0.85), A.W. (R

2
 = 

0.79), CaCO3 (R
2
 = 0.79), gypsum (R

2
 = 0.75), Fe2O3 (R

2
 = 0.71), sand 

(R
2
 = 0.69), silt (R

2
 = 0.54), and SOC (R

2
 = 0.51) while the poor 

prediction was for EC and pH. The results concluded that the spectral 

reflectance of the spectrum had the potential to differentiate the soil 

horizonation and to predict the selected soil variable at different 

wavelength bands.  

Conclusively, FPHR was shown to be an effective tool for 

enhanced soil horizon differentiation and the acquisition of soil 

attributes information.  

          Keywords: Hyperspectral, Horizonation, Soil attributes prediction, Soil 

reflectance. 

INTRODUCTION 
The soil is a heterogeneous system whose processes and mechanisms are 

complex and difficult to fully comprehend (Viscarra Rossel et al., 2006). 

Many conventional soil analytical techniques are used in an attempt to 

establish the relationship between soil physical and chemical properties and 

individual soil components, often disregarding their complex, multi-

component interactions. Indeed, soil chemical extractions that alter the 

equilibrium between the phases may further complicate the interpretation of 

results. Historically our understanding of the soil system and assessment of its 

quality and function has been gained through this type of laboratory analysis. 

We need to further develop our analytical techniques to better understand the 

soil as a complete system and a resource so that we may make more efficient 

use of it and simultaneously preserve it for future generations. This is more 

important now than ever before since the acquisition of larger amounts of 

accurate soil data is essential if we are to manage our base resources sensibly 

to meet the food demands of future populations (Bilgili et al., 2010). Remotely 

sensed hyperspectral data have great potential for quantitative assessment of 

soil and vegetation parameter at spatial scale. The development of methods to 

map soil properties using optical remote sensing data in combination with field 

measurements has been the objective of several studies during the last decade. 

Also, it has been a challenge to find the most appropriate technique for 

studying soil properties from optical data and thus reducing the time and effort 

involved in field sampling and laboratory analysis. Hyperspectral sensors 

operate with more than hundreds of bands with good spatial and spectral 

resolution producing continuous spectra. With the progress and maturity of the 

technology, hyperspectral remote sensing has found a wide range of 
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applications  in mapping soil types and quantifying soil constituents (Minu      

et al., 2016).   

Infrared spectroscopic techniques are highly sensitive to both organic 

and inorganic phases of the soil, making their use in the agricultural and 

environmental sciences particularly relevant. Intense fundamental molecular 

frequencies related to soil components occur in the mid-infrared (MIR) 

between wavelengths 2500 and 25,000 nm. The visible and infrared portions of 

the electromagnetic spectrum are highlighted in Fig. 1. Weak overtones and 

combinations of these fundamental vibrations dominate the near-infrared 

(NIR) (700–2500 nm) and electronic transitions the visible (VIS) (400–700 

nm) portions of the electromagnetic (EM) spectrum. Quantitative spectral 

analysis of soil using visible and infrared reflectance spectroscopy requires 

sophisticated statistical techniques to discern the response of soil attributes 

from spectral characteristics. Various methods have been used to relate soil 

spectra to soil attributes. For example, Elwan and Sivasamy (2013) used 

multiple regression and correlation analyses to relate specific bands in the NIR 

to a number of soil properties in a semi-arid area of India. Shibusawa et al. 

(2001) used stepwise multiple linear regression for the estimation of various 

soil properties from the NIR spectra of soil. Shepherd and Walsh (2002) used 

multivariate adaptive regression splines for the estimation of soil properties 

from soil spectral libraries. 

Soil reflectance characteristics are determined over the entire visible 

(350–700 nm) and near-infrared (700–2500 nm) region with the use of a 

monochromator (Viscarra Rossel et al., 2006). Raw data, first-, and second-

derivatives each provide valuable information that can be analyzed separately 

or combined using multivariate statistical methods or data mining techniques. 

Soil constituents have unique absorption features in these wavelength regions 

due to overtones related to stretching and bending vibrations in molecular 

bonds (Viscarra Rossel et al., 2006). Chang et al. (2001) predicted more than 

thirty soil properties simultaneously with variable levels of success using a 

principal component analysis method with cross-validation. They reported 

successful predictions (R2> 0.80) for total organic carbon and nitrogen (g kg-1), 

gravimetric soil water content, soil water content, exchangeable calcium, 

cation exchange capacity (CEC) and silt and sand content. Brown et al. (2006) 

used over 4100 surface and subsurface soils from across the United States, 

Africa and Asia to evaluate the accuracy of VNIR empirical models for global 

soil characterization and reported strong predictability for kaolinite, 

montmorillonite, clay content, as well as CEC, soil organic carbon,      

inorganic carbon, and extractable Fe. Others also used VNIR spectroscopy to 
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Fig. 1.  The electromagnetic (EM) spectrum highlighting the visible and infrared 

portions (after Viscarra Rossel et al., 2006). 

 
successfully predict organic carbon and nitrogen (Reeves et al., 2002), Fe2O3, 

Al2O3, CaCO3, potentially mineralizable nitrogen (Reeves and Van Kessel, 

1999), heavy metals, micronutrients (Udelhoven et al., 2003), C:N ratio and 

soil biological properties (Ludwig et al., 2002). Additionally, the prediction of 

soil constituents that do not absorb within the VNIR range may be possible 

through their correlations with spectrally active constituents. 

Therefore, the objectives of this study were to: (i) determine the 

efficiency of FPHR with comparison to traditional field and laboratory 

methods in enhancing soil horizon differentiation, (ii) determine whether 

FPHR spectroscopy can be used easily as a rapid, inexpensive alternative or 

supplement to traditional methods for measuring soil properties by correlation 

coefficients, and (iii) find the appropriate bands across the spectrum range that 

can properly predict the soil variable using the regression analysis. 

MATERIALS AND METHODS 

Pedon Sampling 
   The study was conducted on three soil orders (Vertisols, Aridisols, and 

Entisols), which cover the major variations in soil types in Egypt. Standard eight 
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pedons consisting of 34 samples (Fig. 2) were collected from different semi-arid 

sites in Lower Egypt. Two pedons were collected from Nile old deltaic plain (P1 

and P2) and one pedon (P3) from bajada plain at wadi Al-Molak of East Delta; 

one pedon (P4) from Inshas, Sharkia Governorate; two pedons  (P5 and P6)  from  

Abu-Soltan,  Ismailia Governorate; one pedon (P7) from Al-Tur, South Sinai; and 

one pedon (P8) from Al-Hamam area, Northeastern coast of Egypt. P1 was 

classified as Vertisols, P2 and P3 were classified as Aridisols, and P4 to P8 were 

classified as Entisols. Study areas have a semi-arid climate with a mean annual 

precipitation, evaporation, temperature and relative humidity of 13 mm, 881 mm, 

22 ˚C and 55%, respectively.  

  In the field, a range of soil features is generally used during the process of 

horizon description, including soil color, texture, and structure, which are 

essentially affected by the physical and chemical composition of the soil. For 

example, besides soil organic matter (SOM) and soil water content, Fe and Mn are 

the primary coloring agents for many soils. Morphological descriptions for all 

pedons were morphologically described and the horizons were differentiated based 

on visual examination and hand texturing according to Schoeneberger et al., 

(2012). Collected samples were transported to the laboratory in sealed plastic bags. 
 

Laboratory Analyses  
In the laboratory, soil samples were air-dried and gently ground to pass 

through a 2 mm sieve, then subjected to standard soil characterization. The 

prepared samples were then scanned on the sample surface using FPHR 

(described below). Particle size analysis was accomplished via pipette method and 

sieved sands using a 63 μm sieve (Gee and Bauder, 1986). Soil organic carbon 

(SOC) was quantified via titration following the Walkley–Black dichromate 

oxidation method (Nelson and Sommers, 1996). Gypsum concentration was 

determined by the differential water loss method (Artieda et al., 2006). Carbonates 

were determined using a calcimeter (Kacar, 1994); soil pH with a 1:2 soil/water 

suspension using a glass electrode pH meter (McLean, 1982); electrical 

conductivity (EC) in soil extraction using a conductivity meter (Janzen, 1993). 

Furthermore, the soil samples were analyzed for soil available water (A.W.), SiO2, 

Al2O3, and Fe2O3 following standard procedures (Jackson, 1973; Soil Survey 

Staff, 2014).   

 

Field Portable Hyperspectral Radiometer (FPHR) 
   The GER 1500 model is a field portable hyperspectral radiometer (FPHR) 

covering the UV, Visible, and NIR wavelengths from 276 nm to 1093 nm (Fig. 3). 

It was used to scan each soil sample. The instrument uses a diffraction grating 

with a silicon diode array. The silicon array has 512 discrete detectors that provide 
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Fig. 3. Field portable hyperspectral radiometer (FPHR) sensor used in the 

current study. 
 

the capability to read 512 spectral bands. The spectroradiometer includes 

memory for stand-alone operation as well as the capability for computer-

assisted operation through its COM2, RS232 serial port. The spectral readings 

can be stored for subsequent downloading and analysis using a personal 

computer with a standard RS232 serial port and GER licensed operating 

software. Computers incorporating only USB serial ports may be connected to 

the GER 1500 by using the SVC ADP000015 USB Serial port adapter. An 

optional external GPS device may be connected via the instrument’s COM1 

RS232 serial port. When connected, GER 1500 records the latitude, longitude, 

and time of each spectral reading. For all scanning, recalibration and 

verification with NIST standards were conducted every 20 scans and the 

aperture of the instrument was covered with a thin plastic wrap to prevent soil 

or dust from contaminating the aperture window. Data from the instrument 

was exported to MS Excel for analysis and display. 
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Hyperspectral reflectance and data processing  

Thirty-four soil samples of selected eight pedons were air-dried, crushed, 

and sieved (2 mm); then the samples were scanned using FPHR in the 

laboratory condition. Soil samples were individually spread on a white paper 

(30 × 42 cm diameter) forming a layer of 1.8 cm (1.5 cm is considered as 

optically infinitely thick for soil). The sample surface was scraped plane with a 

ruler, as pressing can affect the porosity of the soil and result in a false 

measurement. The absolute reflectance of samples was recorded for 276–1093 

nm at 1.5 nm spectral resolution, yielding a total of 512 data channels per 

spectrum. Reflectance spectra were measured mid noon in between 11.30 am 

to 12.30 pm, for allowing good sunlight. The zenith angle of the FPHR was set 

to 45
o
 by pointing the instrument at a distance of 30 cm above the soil surface. 

A standard panel coated with barium sulphate (BaSO4) was used as a reference 

for the reflectance calibration before each set of measurements. Each 

reflectance measurement produced a single spectrum. Reference 

measurements were taken before the first measurements set and after every 

five minutes onwards to adapt the changing atmospheric conditions. The 

percent reflectance spectrum was calculated as the ratio between the reflected 

spectra from the target (soil sample) and the incident spectra from the panel 

(reference) using the following formula. 

Percent spectral reflectance = 
Reflectance from the soil sample 

× 100 (1) 
Reflectance from the reference panel 

The spectral reflectance data, both absolute and percent reflectance values, 

were transferred from the FPHR to a personal computer as ASCI files with 

.asc extension utilizing a specific software supplied with the instrument. These 

files were later opened in a spreadsheet programme and further analyses were 

carried out. In the current study, raw spectra were tested both separately and 

jointly in predicting soil horizonation. Furthermore, the reflectances in blue, 

green, red, and near-infrared (NIR) bands were selected due to their most 

sensitive wavelengths to soil components and calculated for each sample by 

taking mean of reflectance values in the wavelengths ranges of 450-520 nm, 

520-600 nm, 630-690 nm and 760-900 nm, respectively, to match the bands in 

the Landsat Thematic Mapper (TM) sensors (Fig. 1). 

Statistical analysis 

  Reflectance data were translated from binary to ASCII and exported in 

batches using ViewspecPro (Analytical Spectral Devices, Inc., Boulder, CO, 

80301). The ASCII files were later opened in a spreadsheet programme and 

further analyses were carried out. The sequential percent spectral reflectance 
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readings obtained from each sample (512 values) at approximately 1.5 nm 

bandwidth interval across the spectrum wavelengths were performed using 

Microsoft Excel spreadsheet software, producing a master data file with one 

representative reflectance spectrum per soil sample. Calibrations between soil 

reflectance and soil parameters were performed using both correlation (r) and 

multiple regression models for selecting bandwidth that is the best for 

prediction of soil properties.  

   Correlation between each band and each soil property were worked out 

separately for spectral datasets and evaluated the relationship of correlation of 

reflectance with soil properties with the change in bandwidth. Multiple 

regression models for each soil property were developed using each spectral 

data sets. Model predictability (Model R
2
) was evaluated for selecting the best 

bandwidth for prediction of soil properties. Optimum bandwidth found was to 

be used in the study for prediction of soil properties. Regression equations 

were fitted and plotted as graphs to quantify the soil constituents using 

reflectance in the band in which the highest correlation was registered, as 

suggested by Chang et al., (2001). Bivariate correlations analysis was done 

between soil properties and spectral data sets using SPSS software. Correlation 

analysis was performed for each soil property with each band. Best correlated 

bands from each reflectance related datasets were selected separately for each 

soil property, considering the absolute values of correlation coefficients. 

   The prediction model was developed for each soil properties considering 

all the bands as a variable. Model predictability (R
2
) was used for evaluating 

the spectral data sets for prediction of soil properties. The spectral dataset with 

the highest R
2
 was selected for model development for each soil property. The 

correlation with each soil properties and reflectance data at different bandwidth 

was computed and plotted against wavelength. Correlation between soil 

properties and reflectance at different wavelength for spectral data sets was 

evaluated for all soil properties. Multiple linear regression is a common 

multivariate tool which, at its simplest level, forms a model that specifies the 

relationship between a response variable (Y) and a set of dependent variables 

(X). The soil property was considered the dependent variable, and the band 

reflectance was the independent variables. After a choice of the number of 

bands, multiple linear regression was carried out for each soil attribute and 

best-correlated bands from each spectral dataset were selected. Best dataset 

and optimum number of bands to be included in the model have been selected 

based on the highest R
2
 value. 
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RESULTS AND DISCUSSION 

 

Field morphological horizonation  
   The selected morphological characters of studied pedons are furnished in 

Table 1 and visualized in Fig. 2. Moreover, the textural classes across all 

landscapes are widely varied from sand to clay, indicating the heterogeneity of soil 

forming processes and variety of parent materials. Sand fraction concentration 

ranged from 9.3% in P1 to 95.4 in P 8 while clay content varied from 1.2% in the 

subsurface layer of P8 to 62% in the deepest horizon of P1 (Table 1). Most pedons 

selected for this study were derived from alluvium as it is the dominant parent 

material of Lower Egypt. Pedons P1 and P2 were developed on Nile old deltaic 

plain at toeslope landscape position in wadi Al-Molak, East Delta while P3 was 

developed on bajada plain at toeslope of wadi Al-Molak. Pedon P4 was derived 

from ferruginous sandstone on the alluvial plain of Inshas area while pedons (P5 

and P6) from alluvial plain at Abu-Soltan region. Furthermore, pedon P7 was 

formed on alluvial fans and outwash plain at Al-Tur area while pedon P8 were 

formed locally from weathered marine limestone on inland portion of the 

northeastern coastal region. 

A soil horizon is defined as a layer of soil or soil material approximately 

parallel to the land surface and differing from adjacent genetically related layers in 

physical, chemical, and biological properties or characteristics such as color, 

structure, texture, consistency, kinds and number of organisms present, or degree 

of acidity or alkalinity (Soil Science Society of America, 2017). As the formation 

of horizons is a function of a variety of physical, chemical, geological, and 

biological processes associated with the landscape and climate over long time 

periods, the differentiation of soil horizons is essential for the understanding and 

classification of soil (Schaetzl and Anderson, 2005). The process of field 

horizonation to some degree is a process of subjective approximation of soil 

features by field soil surveyors. Surveyors use all the tools available to 

differentiate soil horizons and establish minimal within-horizon variability, 

considering a variety of soil properties. As such, significant variations of soil 

properties should occur between soil horizons in a given pedon. Clearly, the most 

important part of horizonation is the identification of differences between soil 

horizons. Pedon P1 has highly developed horizonation sequence: Apzg-Btg-Bssz-

Btk-Btkm and classified as Aquic Salitorrerts, which characterized by anthraquic 

condition (APzg and Btg), salic horizon (Bssz). Likewise, the horizon sequences 

of Aridisols pedons are Ap-E-Btn-Btk-Bt for P2 (Petronodic Natrargids) and Ap-

Btnz-Bq-C for P3 (Calcic Haplosalids). On the other hand, the layer sequences in 

the Entisols pedons are: Ap-C-2CK-3C1-3C2 for P4; C-2C-3C-4C for P5; Ap-C-

2C1-2C2 for P6; C-2C1-2C2-3C for P7; and C-2Cqy1-2Cqy2 for P8 (Fig. 2).  
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Table 1. Soil characterization data for thirty-four soil samples of eight pedons 

from different areas across Lower Egypt 

P
ed

o
n

 

Horizon / 

layer 

Lower 

depth 

(cm) 

Fine earth (%) 
SOC 

% 
pH 

EC 

dS/m 

A.W 

% 

Gypsum 

% 

CaCO3 

% 

Fe2O3 

% 

Al2O3 

% 
SiO2 % 

Sand Silt Clay 

P1 

 

Apzg 20 13.0 35.5 51.5 0.81 8.8 22.3 50.5 1.2 3.8 6.2 21.3 42.3 

Btg 43 15.5 30.0 54.5 0.60 8.6 19.5 58.4 2.2 5.2 6.8 20.4 41.5 

Bssz 98 9.3 39.5 51.2 0.59 8.6 30.7 52.5 1.5 6.5 4.7 18.5 42.6 

Btk 150 11.2 29.3 59.5 0.53 8.8 15.0 51.6 1.1 8.1 6.2 31.3 39.4 

Btkm 180 13.5 24.5 62.0 0.48 8.7 8.8 46.2 0.9 7.5 7.8 34.1 38.4 

P2 

Ap 45 17.0 31.2 51.8 0.80 8.6 12.5 40.5 0.7 5.8 3.7 29.4 41.3 

E 75 23.1 37.5 39.4 0.68 8.5 5.8 36.2 0.6 6.2 2.1 21.5 43.5 

Btn 100 19.5 23.3 57.2 0.46 8.8 7.5 43.3 0.3 8.4 7.2 33.4 39.8 

Btk 120 25.2 19.5 55.3 0.45 8.7 6.3 42.8 0.8 9.1 6.8 28.6 41.2 

Bt 155 13.4 34.1 52.5 0.41 8.5 5.2 40.0 0.3 8.8 8.2 27.7 43.8 

P3 

Ap 45 9.8 52.4 37.8 0.27 8.4 11.8 25.3 0.5 7.2 5.7 18.3 46.5 

Btnz 75 37.0 37.8 25.2 0.38 8.5 30.1 21.5 0.2 8.8 6.6 17.5 45.2 

Bq 150 45.7 38.5 15.8 0.11 8.3 6.7 15.8 0.3 9.3 4.2 14.4 47.3 

C 190 49.4 36.2 14.4 0.08 8.1 5.9 11.5 0.1 10.2 5.1 13.1 48.3 

P4 

Ap 15 63.35 25.4 11.3 0.12 7.8 2.1 7.6 0.2 6.5 9.5 4.3 56.2 

C 55 64.7 26.7 8.6 0.08 7.9 2.5 6.4 0.3 8.5 11.6 4.6 58.6 

2Ck 105 60.5 29.1 10.4 0.04 8.2 2.7 7.2 0.4 10.5 19.2 4.8 57.8 

3C1 125 61.5 31.8 6.7 0.03 8.1 1.8 5.3 0.1 9.5 12.4 6.3 60.1 

3C2 165 71.0 21.9 7.1 0.07 7.9 1.7 6.1 0.2 8.4 8.5 5.7 53.1 

P5 

C 15 58.0 31.4 10.6 0.12 7.3 1.4 6.8 0.4 5.6 2.6 3.4 67.1 

2C 50 56.7 34.9 8.4 0.08 7.4 1.3 5.4 0.9 4.7 2.5 3.6 64.3 

3C 65 64.0 28.1 7.9 0.09 7.3 1.5 5.6 0.6 3.8 2.7 3.7 68.4 

4C 100 64.0 27.6 8.4 0.07 7.6 0.9 4.8 0.8 5.7 3.9 3.8 69.4 

P6 

Ap 15 75.4 15.4 9.2 0.19 7.9 1.2 6.9 0.4 4.6 3.1 4.6 84.5 

C 85 76.3 17.3 6.4 0.11 7.6 0.7 6.4 0.9 5.7 2.6 3.8 85.6 

2C1 135 78.9 16.4 4.7 0.04 7.8 1.3 6.7 0.8 1.5 3.0 4.1 87.3 

2C2 175 82.3 11.3 6.4 0.02 7.1 0.6 5.1 0.4 2.7 2.5 4.6 88.1 

P7 

C 10 82.0 10.9 7.1 0.02 7.2 1.2 4.2 1.25 27.2 2.6 3.9 74.3 

2C1 35 81.7 14.8 3.5 0.03 7.3 2.0 3.7 1.6 31.5 1.2 4.8 76.2 

2C2 90 85.1 12.3 2.6 0.01 7.6 2.5 4.5 1.7 29.7 1.3 4.2 74.5 

3C 115 90.5 8.2 1.3 0.05 7.4 1.7 3.2 1.9 20.8 1.4 4.1 71.3 

P8 

C 90 90.4 4.3 5.3 0.01 8.1 1.4 3.6 7.9 9.5 0.5 3.6 78.3 

2Cqy1 110 92.4 6.4 1.2 0.02 8.3 3.6 2.4 14.3 11.3 0.7 3.7 74.6 

2Cqy2 180 95.4 1.9 2.7 0.01 8.4 5.8 2.5 17.5 10.4 0.9 5.4 79.5 
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The boundary between two layers was clearly identified in the field based 

on color, texture, structure, hardness, or other features which largely 

influenced by the pedogenic process. Boundaries between the horizons in 

studied pedons are varied in both distinctiveness and topography. Abrupt 

smooth boundaries were the dominant within the most investigated pedons. 

The occurrence of smooth and abrupt to diffuse boundaries in studied pedons 

is often cited as field evidence for a lithologic discontinuity (LD) (Schaetzl and 

Anderson, 2005). In P4, the soil exhibited abrupt smooth C-2Ck and 2Ck-3C1 

boundaries in P4 indicating two unlike parent material with different modes of 

deposition occurring on more stable surfaces, however, the wavy boundary 

was found between Ap-C horizons indicating same materials (Fig. 2).  
  

Prediction of soil horizonation 

Basic soil constituents affecting soil reflectance characteristics are 

anthraquic features of Vertisols, soil water, clay content, organic matter, 

and Fe–Al oxides (Bowers and Hanks, 1965). Fig. 4 shows raw reflectance 

spectra and their prediction in pedon horizonation (Fig. 2). Soil reflectance 

was generally lower in the visible range of blue and green bands (450-600 

nm) and higher in the red and near-infrared range (630-900 nm). With 

regard to FPHR analysis of pedon horizonation, the studied pedons 

qualitatively showed good alignment with field-established horizonation. 

Absorption peaks for Vertisols were higher and the percent soil reflectance 

was low (16-20%) while for Aridisols it was slightly low (20-25%) in P2 

and slightly high (32-40%) in P3. By contrast,  the soil reflectances of 

Entisols pedons were higher compared to Vertisols and Aridisols and 

varied from 35% in C layer of P4 to 75% in P8 (2Cqy2). Horizonation was 

easily identified based on the reflectance characters for each soil sample 

(horizon or layer) (Fig. 4).  

Given the raw reflectance data from FPHR (Fig. 4) vs. morphological 

horizonation (Table 1) from field survey, it is suggested that FPHR could 

be used as a tool to assist in field morphological horizon differentiation. For 

example, FPHR could be used to identify multiple argillic horizons within a 

Vertisol pedon and lithologic discontinuity in P4 at depths of 55 and 105 

cm. In summary, the results concluded that the data afforded by the use of 

FPHR sensor offer pedologists unique insights into predicted differences 

between soil horizons-differences that may be indicative of lithologic 

discontinuities and soil horizonation.  
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Fig. 4. Raw soil reflectance spectra across wavelengths spectrum used in 

            horizonation prediction for all studied pedons. 
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The authors do not endorse the strict use of FPHR elemental data for 

soil horizon establishment, irrespective of morphological features. 

However, this sensor provides pedologists with another data stream, 

quickly and easily acquired in situ, that can help identify areas of lithologic 

discontinuity    and    horizonation     within   a   given pedon, whether 

visually observable or not. Collectively, these proximal sensors can detect 

depth changes in both organic and inorganic soil constituents, many of 

which may align with changes in the parent material. Hence, the method 

may offer insight into the presence of discontinuities that may not normally 

have been detected in the field. Rather, FPHR sensor is suggested as a tool 

for detecting or enhancing field morphological horizonation. 
 

Prediction of soil variables 

 To further validate the efficiency of the FPHR sensor, twelve soil 

variables including fractions of clay, silt, and sand, SOC, pH, EC, soil 

available water, gypsum, CaCO3, Fe2O3, Al2O3, and SiO2 were correlated 

with soil reflectance at different bands. Summary statistics of Pearson 

correlation coefficients between soil variables and correlation coefficients 

between soil variables and reflectance spectra at each band are provided in 

Tables 2 and 3, respectively. Significant correlations existed among soil 

variables. Clay was strongly correlated with A.W. (r=0.83), SOC (r=0.87), 

Fe2O3(r=0.72), Al2O3 (r=-0.51) (Table 2). Sand content was negatively 

correlated with clay (r=-0.79), SOC (r=-0.55), and EC (r=-0.39), and 

positively with SiO2 (r=0.88), Al2O3(r=47), silt (r=0.42), gypsum (r=0.33), 

and CaCO3 (r=0.29) (Table 2). The results in Table 3 revealed that the soil 

constituents correlated well with the reflectance at different bands based on 

the absorption and reflection characteristics of each soil constituent by 

using the correlation coefficient (r). Correlation coefficients between soil 

variables and reflectance spectra showed both positive and negative 

correlations at various wavelengths across the calculated bands from the 

spectrum (Table 3). Clay content correlated negatively with reflectance 

within the visible range while other soil fractions (silt and sand) correlated 

positively. The highest negatively significant correlations were found at 

green bands for clay content (r = -0.93) and SOC (r = -0.83), and at NIR 

band for A.W. (r = -0.91), Fe2O3 (r = -0.89), and Al2O3 (r = -0.89). By 

contrast, the highest positively significant correlations were observed for 

sand (r = 0.87 at green band), silt (r = 0.67 at blue band), gypsum (r= 0.78 

at red band), CaCO3 (r = 67 at red band), and SiO2 (r = 0.64 at green band).  
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While the lowest significant correlation was obtained for pH (r = -0.51 at NIR 

band and EC (r = 0.34 at the green band). Bilgili et al. (2010) evaluated the 

visible-near infrared reflectance spectroscopy (VNIR) for prediction of diverse 

soil properties related to four different soil series of the Entisol soil group within a 

single field in northern Turkey. Bowers and Hanks (1965) similarly reported a 

decrease in reflectance with increasing particle size. 

Reflectance measurements in the laboratory have been used to develop 

predictive equations for the twelve soil variables at various wavelengths as 

presented in Fig.5. The spectral features of clays were most prevalent in the blue 

and green regions (Table 3) where distinctive absorption bands can be used to 

provide quantitative information on clay minerals. In general, the results 

concluded that finer soil texture presented as being darker than coarse-textured 

soils, and consequently soil with sand or silt (> 0.002 mm) had higher spectral  
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Fig. 5. Regression between measured values and reflectance predictions at            

VNIR for all soil variables. 
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reflectance than clay minerals (< 0.002 mm). Regression between soil measured 

attributes and VNIR predictions for all soil variables was presented in Fig. 5 

showing the most significantly correlated band for each soil property by using 

regression analyses. The best predictive models were obtained for clay content (R
2
 = 

0.93), SiO2 (R
2
 = 0.86), Al2O3 (R

2
 = 0.85), A.W. (R

2
 = 0.79), CaCO3 (R

2
 = 0.79), 

gypsum (R
2
 = 0.75), Fe2O3 (R

2
 = 0.71), sand (R

2
 = 0.69), silt (R

2
 = 0.54), and SOC (R

2
 

= 0.51). The results showed that most of the spectral responses in the reflective 

spectrum were significantly related to iron oxide content and soil organic carbon 

(SOC) that was accurately predicted in the NIR region using reflectance 

spectroscopy due to their absorption features and the ability to absorb water 

and nutrients which decreased the reflectance characteristics by this sensor. 

The silica constituent had a similar trend of sand content (Fig. 5), where the 

reflectance characteristics of soil were increased due to the presence of a silica 

component (Bq horizon in P3) (Fig. 2). Inadequate models (R
2
 < 0.50) were 

obtained for pH and EC (Fig. 5). The poor predictions of pH and EC could be 

attributable to a narrow chemical range, the high skewness of these variables in 

data sets (Table 1), or poor correlations with primary soil variables such as 

CaCO3, clay content and organic matter that are more directly assessed by 

VNIR region. Similar poor predictability for EC and pH was found by Chang 

et al. (2001), Viscarra  Rossel et al. (2006), and Bilgili et al. (2010). Although 

this property may be inherently poorly predicted by VNIR spectroscopy, 

Shepherd and Walsh (2002) achieved good predictions for pH with R
2
 = 0.83 

using soils from eastern and southern Africa.  

The results showed that FPHR sensor at VNIR region could classify 

various soil parameters successfully, assisting with soil management and 

understanding soil parameter status. Some soil parameters cannot be predicted 

precisely by the VNIR method, but they can still be classified with reasonable 

agreement. This can be especially helpful for soil variables that do not have 

direct relationships with reflectance. 
 

In conclusion 

Traditionally, field soil horizonation has relied on qualitative and semi-

quantitative data to somewhat subjectively establish horizons with unique 

features within a given pedon. This process is affected by a range of factors, 

including the surveyor’s experience and knowledge, surveyed locations, 

weather, field conditions, water table depth, and so on. Use of the FPHR 

sensor, which quickly determines elemental concentrations on-site, can 

provide pedologists and field soil scientists with quantitative data useful in 

differentiating soil horizons. In this study, eight pedons were fully described in 
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the field and the horizons were distinguished via traditional morphological 

description with horizons differentiated by visual examination and hand 

texturing. Use of FPHR sensor is a promising tool for quantitatively 

differentiating soil horizons as an enhancement to traditional soil 

morphological horizonation, or in soils with little observable morphological 

variability. The method is applicable to a wide range of settings including field 

use directly on an exposed pedon and analysis of samples in the laboratory. 

Furthermore, this study focused on the use of FPHR sensor for predicting 

such as clay, sand, silt, SiO2, Fe2O3, Al2O3, gypsum, CaCO3, A.W, pH, EC, 

and SOC were well predicted using hyperspectral VNIR spectroscopy. The 

results were generally in line with those of the other studies, even though they 

were conducted at different scales and in other geographic regions. The 

comparison of actual lab results and the FPHR estimations showed that in the 

hyperspectral VNIR region provided the better prediction results for almost all 

variables. Considering the high spatial variability, and the expensive and time-

consuming measurements of soil properties, VNIR spectroscopy proved to be 

a useful method to substitute or complement traditional soil analyses and 

reduce the number of samples to be analyzed for precision management 

applications in fields. FPHR is rapid, timely, less expensive, non-destructive, 

straightforward and sometimes more accurate than conventional analysis.  

It can also be used as auxiliary information in combination with spatial 

statistic methods to improve the estimation quality of the parameters and 

characterization of soil constituents. Further investigations are required to 

comprehensively evaluate the FPHR under a wider range of soils. 
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الحعرف  ًالفائق ف ًلة لحطبيق جقنية الأسحشعار الطيفمحاو  

 على بعض صفات الحربة

خليل عادل عبدالحميد علىان
1

، محمد عزت عبدالهادي
1
محمد كمال عبدالفحاحو  ،

2  
1
 .، ٓصرخ، ٓرًس ثحٞس اُصحراء، اُوبٛرحاُصحرا٣ٝ ٢، شؼجخ ٓصبدر ا٤ُٔبٙ ٝالأراظ٢ُٞجهطْ اُج٤دٝ 
2
 .ٙ ، ٤ًِخ اُسراػخ، جبٓؼخ اُسهبز٣ن، اُسهبز٣ن، ٓصرٝا٤ُٔب ٢هطْ الأراظ 

 Field Portableأُحٔتٍٞ  اُحوِت٢ دف ٛتاا اُجحتش رو٤ت٤ْ هتدرح جٜتبز ا٤ُٜجرضتج٤ٌزرٝ راد٣تٞٓزرضتزٜإ

Hyperspectral Radiometer (FPHR)  كتبم ر٤٤ٔتس ا٥ ٢خبصتخ كت رشتي٤  اُزرثتخ ٓٞركُٞٞج٤تب   ٢كت

اُ٘طت أُئ٣ٞخ  ٢ٝٛ ٢ٌُٔٞٗبد الأضبض٤خ ُلأراظجؼط اُ ٢أٌُ ، ًٝاُي اُزود٣ر٢اُزشي٤ص٤خ ُِوطبع الأرظ

، ِٓٞحتخ اُزرثتخ، ، حٔٞظتخ اُزرثتخ١اُرَٓ(، اٌُرثٕٞ اُؼعٞ –اُطِذ  –ٖٓ: ٓلصٞلاد اُزرثخ )اُط٤ٖ  ٌُل  

٤ُ٘ٓٞتّٞ، ٝاُطت٤ٌِب. ٛتاا اُجٜتبز ٛتٞ أحتد أًبض٤د اُحد٣تد ٝالأٓبء اُزرثخ ا٤ُٔطر، اُججص، ًرثٞٗبد اٌُبُط٤ّٞ،  

 Hyperspectral Remote Sensorsجؼتد كتب ن الأغ٤تبف اُ ٓتٖأجٜسح ػِْ الإضزشؼبر  ٢بد اُحد٣ضخ كاُزو٤٘

ٌلتبءح ثرلبص٤َ أًضر ُز٤٤ٔس ٝرشي٤  أٌُٞٗبد الأرظ٤خ أُيزِلتخ ثٌتَ ضتُٜٞخ ٝثطترػخ كب وتخ ٝ ٣٢ؼط ١اُا

 خغتٞاٍ أُٞج٤تالأ ٓتدٟ ٓتٖ ٢هتراءح )ه٘تبح غ٤ل٤تخ(  ُِؼ٤٘تخ اُٞاحتدح كت 212ػب٤ُخ ح٤ش ُٚ اُودرح ػ٠ِ رطتج٤َ 

ٔ  اُزرثتتخ  ػ٤٘تتبدخز٤تترد ػتتدد ٓتتٖ ٗتتبٗٞٓزر. أ   1903ُتت٠ إ ٣226زتتراٝام ٓتتٖ  ٔضِتتخ ٥كتتبم ثؼتتط اُوطبػتتبد اُ

ٓ  أُزٌٞٗخ رحذ اُظرٝف الأرظ٤خ  تاُشجخ اُجبكخ ُٔ٘بغن  ٔضِتخ ُيزِلخ ػجتر ٓصتر اُط   ٓ ٔتدٟ ٝاضتغ ل٠ِ ُزٌتٕٞ 

إ٠ُ اُر٤ِٓخ   Aridisolsبُٔزٞضطخٓرٝرا  ث Vertisolsاُط٤٘٤خ اُضو٤ِخ رزراٝم ٖٓ  ٢ٝاُز ٢أٗٞاع الأراظٖٓ 

ًتتبٓل  ٓتتغ ااُزوتتد٣ر  ٓٞركُٞٞج٤تتب   ٝصتتلب  الأرظتت٤خ رتتْ ٝصتتق اُوطبػتتبد  .Entisolsاُيل٤لتتخ حد٣ضتتخ اُزٌتت٣ٖٞ 

ِذ الإٗؼٌبضتتبد اُط٤ل٤تتخ ٓؼٔتت ٤ِب   ٢أُؼِٔتت تتجن ثجٜتتبز ا٤ُٜجرضتتج٤ٌزرٝ  حٌُتتَ ػ٤٘تتخ ػِتت٠ حتتد ُٜتتاٙ أٌُٞٗتتبد. ضت

، ٝٓتٖ صتْ حطتبة ٓتٖ اُي٤تّٞ ٣٢تّٞ صتحٞ ٓشتٔص ختبُ ٢ٖٓ اُؼ٤٘تخ كت ضْ 39ػ٠ِ ٓطبكخ  FPHRراد٣ٞٓزر 

ررجتبغ ثت٤ٖ اُصتلبد . إجتراء اُزحِت٤لد الإحصتب ٤خ ُٔؼركتخ ٓتدٟ ٓؼ٣ٞ٘تخ الإاُ٘طجخ أُئ٣ٞتخ ُٜتاٙ الأٗؼٌبضتبد

ودرح ٖٓ جٜخ ٝالإأُٞركُٞٞج٤  ٔ ٔ طجِخ خ ٝأٌُٞٗبد اُ ُتي ٓتٖ ٖٓ جٜتخ أخترٟ ٝ ثبُجٜبز ٗؼٌبضبد اُط٤ل٤خ اُ

  ٗحدار.ٍ حطبة ٓؼبٓلد الإررجبغ ٝالإخل

 ٜبٗؼٌبضتتبد اُط٤ل٤تتخ ُِزرثتتخ ٝثتت٤ٖ صتتلبرأُئ٣ٞتتخ ُإ٘طتتت رجتتبغ ٝص٤تتن ثتت٤ٖ اُ٘تتبى إرإٔ ٛ   أوضحححث النحححائ 

ٓتٖ ختلٍ  ر٤٤ٔتس فكتبم اُزرثتخ ُِوطتبع الأرظت٢ ٖٓ ػدٓٚ، ح٤ش رْ كبم اُزشي٤ص٤خأُٞركُٞٞج٤خ ٝر٣ٌٖٞ ا٥

ثت٤ٖ اُزح٤ِلد الإحصب ٤خ  أشبردًٔب  .ٓغ اُٞصق اُحو٢ِ ثصٞرح ٓؼ٣ٞ٘خ بشذرٔ ٢ٝاُزالإٗؼٌبضبد اُط٤ل٤خ 

ًتبٕ  Correlation Coefficientررجتبغ إٔ ٓؼبٓتَ الإُت٠ ٗؼٌبضبد اُط٤ل٤خ ٌٝٓٞٗبد اُزرثخ أُدرٝضتخ إالإ

ْ كوتد رت، ٝالإٓزصتب  ٌُتَ ٌٓتٕٞ، ٝث٘تبء  ػ٤ِتٚ٘تبء  ػِت٠ خصتب   الإٗؼٌتبش ث   ٝ إ٣جبث٤تب  أ ٓؼ٣ٞ٘ب ضٞاء ضتِج٤ب  

غتٞاٍ أُٞج٤تخ ُحطتبة ضتبش الأأػتلٙ، ػِت٠ أأُتاًٞر  ٢إخز٤بر ثؼط الإٗؼٌبضبد اُط٤ل٤خ ٖٓ أُتدٟ اُط٤لت

ًبٗتذ أًضتر  ٢ٝاُزت   Blue, Green, Red, Near-infrared (NIR):٢ٝٛت (Bands)اُو٘تٞاد اُط٤ل٤تخ 

ررجبغتب  إ ثتخ ٓتٖ اُطت٤ٖٓحزتٟٞ اُزر رتجػرإ. ػ٠ِ ضتج٤َ أُضتبٍ، كوتد ثصلبد اُزرثخ أُيزِلخ ٝإررجبغب   حطبض٤خ  

إررتجػ ، ث٤٘ٔتب Green Band اُيعتراءختلٍ اُو٘تبح اُط٤ل٤تخ  (r=-0.93)ٗؼٌبضتبد اُط٤ل٤تخ ضِج٤ب  ٓغ الإه٣ٞب 

ٝاُيعتراء  Blue Band (r=0.67اُو٘تٞاد اُط٤ل٤تخ اُسرهتبء )ًتل  ٓتٖ اُطِذ ٝاُرَٓ إ٣جبث٤ب  خلٍ  ٢ٌٗٞٓ

(r=0.87) Green Band ِٖٓٞحخ ٝحٔٞظتخ اُزرثتخ. ٢ررجبغ ظؼ٤لب  ك٠ حبُزًبٕ الإ ػ٠ِ اُزرر٤ت، ك٠ ح٤ 

ٓ   اُٜ٘ب٣خ، ٢ٝك ٘ح٤٘بد الإٗؼٌبضبد اُط٤ل٤خ ٓغ ا٤ٌُٔبد أُيزِلخ ُيصب   اُزرثتخ رْ ػرض اُ٘زب ج ٖٓ خلٍ 

ٓ   ٢أُودرح، ٝاُز   .ُٜاٙ أٌُٞٗبد ٢ُِزود٣ر أٌُ   Regression Equationsٗحدار لإؼبدلاد ارعٔ٘ذ 

ػ٠ِ رشتي٤   FPHR اضخ هدرح رٌُ٘ٞٞج٤ب الاضزشؼبر ٖٓ اُجؼد ًض٤ر الأغ٤بفأًدد ٛاح اُدر الحىصية:

ُتجؼط  ، ًتاُي هتدررٜب ػِت٠ اُزو٤ت٤ْ أٌُتLayers٢ٓتٖ اُطجوتبد اُج٤ُٞٞج٤تخ   Horizonsكبم اُج٤دٝج٤٘٤خا٥

 إدارح ٢هد رؼزجر ٓرجغ لإٗشبء هبػدح ث٤بٗبد ػٖ حصر رِي أُٞارد ٓٔتب ٣ل٤تد كت ٢أُيزِلخ ٝاُزاُزرثخ  خٞا 

 .ٓبد أُيزِلخضزيداُإ  ٢ثصٞرح ده٤وخ ثجبٗت رو٤٤ْ الأراظ سرػ٤خٔاُزرثخ اُ


