SYNTHESIS AND ANTIBACTERIAL EVALUATION OF CERTAIN 1,2,4- TRIAZOLE AND THIAZOLIDINONE DERIVATIVES

Awatef E. Farag, Safinaz E. Abbas, Anwar N. Mikhael and Mona A. Abdel Messeh*.

PHARMACEUTICAL CHEMISTRY DEPARTMENT, FACULTY OF PHARMACY AND BACTERIOLOGY DEPARTMENT, FACULTY OF MEDICINE, CAIRO UNIVERSITY.

ABSTRACT

The synthesis of certain 3 - [(4- chloro - 3,5 - dimethyl - phenoxy) methyl] 4-alkyl or aryl -5 mercapto - 1,2,4 - triazoles (5a - e) is described. The preparation of these triazoles was achieved by the cyclization of the corresponding thiosemicarbazides (Af- j) using piperidine in refluxing ethanol. Also, series of thioethers (6a,b) and (7a-g) were obtained by reacting (5) with different halo- compounds .The thiazolidinone derivatives (8 a - d) were prepared by reacting (4f - j) with ethyl bromoacetate .The new compounds were proved by elemental analysis, ir and ¹H- nmr. The antibacterial activity was carried out for eight representative compounds.

INTRODUCTION AND DISCUSSION

Certain compounds containing N^4 -substituted thiosemicarbazide moieties have shown broad spectrum of chemotherapeutic activities (1), the antimicrobial activity of some thiosemicarbazides is comparable to that of penicillin (2). Also, various 1,2,4- triazole derivatives are reported to display antifungal (3,4) and antibacterial (5) effects. Furthermore, many thiazolidinones exhibit a wide range of biological activities including anticonvulsant, amaebicidal, antihistaminic and antibacterial activities (6,11).

In this work, certain 1,2,4-triazole (5a-e) and thiazolidinone derivatives (8a-d) were prepared with the objective that the new compounds may show promising antibacterial properties. The ethyl ester 2 was prepared by reacting 4- chloro-3,5-dimethylphenol 1 with ethyl chloroacetate. The corresponding acid hydrazide 3 was obtained by hydrazinolysis of 2. Reacting 3 with the appropriate isocyanate or isothiocyanate in refluxing ethyl acetate gave (4a- j). The preparation of 1,2,4- triazole derivatives (5a e) was achieved by cycliztion of the corresponding thiosemicarbazides (f - j) in refluxing ethanol and in the presence of piperidine. The thioether (6a) was prepared by reacting (5e) with chloroacetic acid in refluxing ethanol and in presence of potassium hydroxide. The other thioether derivatives (6b) and (7 a - g) were obtained by refluxing the corresponding triazoles with different halo compounds in acetone and in presence of anhydrous potassium carbonate. Thiazolidinone derivatives (8a - d) were synthesized by refluxing the thiosemicarbazides (4f-j) with ethyl bromoacetate and anhydrous sodium acetate in ethanol.

The route adopted for the preparation of the new compound was summarized in the following schemes.

Scheme 1

EXPERIMENTAL

Melting points are uncorrected and determined on Griffin melting point apparatus. Microanalyses were carried out at the Microanalytical Center, Cairo University. IR spectra were determined on Schimadu IR 435 spectrophotometer. ¹H-nmr were scanned on Jeol FX-90Q spectrophotometer.

Ethyl, 4- Chloro - 3,5-dimethylphenoxy acetate 2 and 4-chloro 3,5 - dimethylphenoxyacetic acid hydrazide 3 were previously described (12).

N 4 - alkyl or aryl - N 1 - (4 - Chloro - 3,5 - dimethylphenoxymethl carbonyl) semicarbazides or thiosemicarbazides (4 a - j) :

A mixture of compound 3 (0.01 mole, 2.3 g) and the appropriate isocyanate or isothiocyanate (0.01 mole) in ethyl acetate (30ml) was refluxed for 4-6 hours .The solid obtained was filtered , washed with ethyl acetate and crystallized from ethanol (Table 1).

3- ((4- chloro -3,5 - dimethylphenoxy) methyl) 4- alkyl or aryl - 5 - mercapto - 1,2,4- triazoles (5 a- e) :

A solution of the proper thiosemicarbazide (4f-j) (0.01mole) and piperidine (1 m1) in absolute ethanol (20 ml) was refluxed for 6 hours. The reaction mixture was acidified with dilute hydrochloric acid and the precipitate obtained was filtered, washed with water and crystallized from ethanol table (2).

3- ((4 - chloro -3.5 - dimethlyphenoxy) methyl) -4- phenyl- 1.2.4- triazol -5- lymercapte acetic acid (6a) :

A mixture of the mercapto triazole 5 e (0.001 mole , 0.35g), chloroacetic acid (0.001 mole , 0.09g) and potassium hydroxide (0.002 mole , 0.11g) in absolute ethanol (30 ml) was refluxed for 6 hours. The mixture was cooled, concentrated, diluted with water and acidified with dilute hydrochloric acid. The solid obtained was filtered, washed with water and crystallized from ethanol ; m.p. 104 - 5° C; yield : 80%. Analysis C $_{19}$ H $_{18}$ CIN $_3$ O $_3$ S

	% C	%H	%N
Calcd.	56.50	4.46	10.41
Found	56	5.0	10.6

3- ((4 - Chloro - 3,5 - dimethylphenoxy) methyl) 5- ethylthio -4phenyl -1,2,4- triazole (6b):

A mixture of compound 5 e (0.001 mole , 0 .35g) ethyl iodide (0.001 mole) and anhydrous potassium carbonate (0.001mole , 0.16g) in dry acetone (30 ml) was refluxed for 18 hours . The mixture was filtered while hot, concentrated, the solid separated was washed with water and crystallized from chloroform - petroleum ether (60-80° C); m.p. 107 - 8°C, yield: 70%. Analysis for C₁₉ H₂₀ CIN₃OS

Calcd .	%C	%H	%N
	61.04	5.35	11.24
Found	60 .5	5.8	11.7

3- ((4- chloro - 3,5- dimethylphenoxy) methyl) -4-alkyl or aryl-5-(4-substituted phenylaminocarbonyl thio)-1,2,4-triazoles (7a-g):

Equimolar amounts of the proper mercaptotriazole 5, the appropriate Nsubstituted chloroacetamide derivative and anhydrous potassium carbonate (0.001 mole of each) in dry acetone (30 ml) was refluxed for 12 - 18 hours. The reaction mixture was filtered while hot. The crude solid obtained was filtered, washed with water and crystallized from ethanol (Table 3).

3- substituted -2- ((4-Chloro - 3,5 dimethylphenoxy) - acetyl hydrazone) - 1,3 - thiazolidin - 4 - one :

A mixture of the appropriate thiosemicarbazide (4f - j) (0.001 mole), ethyl bromoacetate (0.001 mole , 0. 12 ml) and fused sodium acetate ($0.004\,$ mole, $0.33\,$ g) in absolute ethanol (30 ml) was refluxed for 2 hours .The reaction mixture was filtered while hot. The solvent was removed by distilation and the residue obtained was crystallized from ethanol (Table 4).

Antibacterial Activity

Eight representative compounds (3 , 4 d , 4 h , 5 b , 6 a, 6 b, 7 g and 8 a) were tested for their antibacterial activity using the agar diffusion method(13). Testing the sensitivity of the new compounds was carried out using the disc method.

Preparation of Discs for Study :

50 mg of each compound were dissolved in 2 ml alcohol. Sterile filter paper discs (Whatman No .1) were impregnated with each solution and left to dry. Methylene blue impregnated disc was used as a control for antibacterial activity . The microorganisms used for this study were : $\underline{E.\ Coli}$ (8 strains), <u>Diphteroids</u> (7 strains), <u>Kleb. pneumonia</u> (6 strains), <u>Staph</u>. aureus (8 strains) and Staph. epidermis (6 strains).

RESULTS

Compound 6a showed a marked activity against Staph. epidermis (6 strains) and Diphteroids (7 strains), whereas the other chosen compounds were inactive against the tested microorganisms.

Table (1):

Compd	Compd X R			M.P.ºC		Microanalysis(%		
No.			Yield %		Formula	Calcd.		Found
4- a	0	-СН(СН ₃) ₂	90	193-4	C ₁₄ H ₂₀ ClN ₃ O ₃		3.58 6.37	
		* * \$				N 1	3.39	13.0
ь	0	n-C ₄ H ₉	87	148-9	C ₁₅ H ₂₂ CIN ₃ O ₃	Н	4.96 6.71 12.82	1
Ċ	0	С6Н11	90	182-3	C ₁₇ H ₂₄ ClN ₃ O ₃	Н	6.78 6.78	57.8 6.8 11.4
d	0	С ₆ Н ₅	95	180-1	C ₁₇ H ₁₈ ClN ₃ O ₃	H	58.70 5.17 12.08	5.4
e	0	4-CIC ₆ H ₄	90	242-3	C ₁₇ H ₁₇ Cl ₂ N ₃ O	7,1	53.40 4.41 10.91	53.4 4.8 10.6

Table (1) Continued:

Compd X	X R	Yield % M.P.ºC	Molecular	Microanal	ysis(%)		
No.					Formula	Calcd.	Found
f	S	CH ₃	85	186-7	C ₁₂ H ₁₆ CIN ₃ O ₂ S	C 47.76	47.5
						H 5.30	5.6
- 1			e g			N 13.93	14.1
g	s	С ₂ Н ₅	90	180-1	C ₁₃ H ₁₈ ClN ₃ O ₂ S	C 49.44	49.0
			, ,	100 1		Н 5.70	5.7
- 1						N 13.31	12.9
h	s	C ₆ H ₁₁	85	200-1	C ₁₇ H ₂₄ ClN ₃ O ₂ S	C 55.20	55.7
		0 11	05	200-1	., 2,	Н 6.49	6.0
						N 11.36	11.7
i	s	СН2-СН=СН2	80	166-7	C ₁₄ H ₁₈ ClN ₃ O ₂ S	C 51.29	51.3
. 1	3		80	100-7		H 5.49	5.7
, ,		*				N 12.82	12.4
	s	C ₆ H ₅		167-8	C ₁₇ H ₁₈ ClN ₃ O ₂ S	C 56.12	55.7
j	3	62	90	107-0	1, 10	H 4.95	4.8
						N 11.55	11.5
						1 1 1 1 1 1 1 1 1 1	

IR (KBr, cm⁻¹) of compound 4-j: NH (3200) and CO (1680).

¹H-nmr (DMSO, δ ppm) of compound 4-g:

^{1.10 (}t, 3H, CH₂CH₃); 2.40 (s, 6H, 2CH₃); 3.60(q, 2H, CH₂CH₃); 4.75 (S, 2H, OCH₂),

^{7.15 (}S, 2H, aromatic proton of the phenoxy residue); 8.40 (S, 1H NH) and 9.50 (S, 1H, NH).

Table (2):

Compd	R	Yield %	M.P.ºC	Molecular	Microanaly Calcd.		sis(%)
No.				Formula			Found
5- a	CH ₃	85	190-1	C ₁₂ H ₁₄ CIN ₃ OS	C	50.79	50.5
					Н	4.93	5.0
					N	14.81	14.5
ъ	C ₂ H ₅	80	144-5	C ₁₃ H ₁₆ ClN ₃ OS	С	52.43	52.8
					H	5.37	5.4
					N	14.11	13.8
С	CH ₂ -CH=CH ₂	75	143-4	C ₁₄ H ₁₆ ClN ₃ OS	C	54.28	54.5
	. "				Н	5.16	5.0
					N	13.57	13.3
đ	C ₆ H ₁₁	80	204-5	C ₁₇ H ₂₂ ClN ₃ OS	C	58.03	58.2
	. 1				H	6.25	6.4
					N	11.94	12.3
е	C ₆ H ₅	85	178-9	C ₁₇ H ₁₆ ClN ₃ OS	C	59.04	58.6
					Н	4.6	
				to the many	N	12.1	

¹H-nmr (DMSO, δ ppm) of compound 5-d:

^{1.60 - 2.00 (}m, 10 H, C_6H_{11}); 2.40 (S, 6H, 2CH₃); 4.80 (m, 1H, C_6H_{11});

^{5.20 (}S. 2H, OCH₂) and 7.00 (S, 2H, aromatic protons of the phenoxy residue)

Zag. J. Pharm. Sci, Vol 2, No 1, June 1993.

Table (3):

H₃C CI CH₃ N-N SCH₂CONH

Compd p		Yield %	(7a-g) M.P. ⁰ C	Molecular	Mie	croanaly	sis(%)
K				Formula	C	alcd.	Found
CH ₂	Br	90	191-2	C ₂₀ H ₂₀ BrClN ₄ O ₂ S	С	48.43	48.8
			the second		Н	4.03	4.0
	7 GHy Loui	esta '	/ 4.1	a harring	N	11.30	11.6
CH ₂	CH₃	95	180-1	C21H23CIN4O2S	С	58.53	58.6
511-3	3				Н	5.34	5.4
		-			N	13.01	13.4
CH2-CH=CH2	Br	98	198-9	C ₂₂ H ₂₂ BrClN ₄ O ₂ S	С	50.62	50.9
C112-011-01-2					Н	4.21	4.7
		1	(2) (1)		N	10.73	10.4
CH-CH=CH-	CI	98	190-1	C22H22Cl2N4O2S	С	55.34	55.6
C112-C11-C112			ľ.		Н	4.61	5.2
				1	N	11.74	11.4
CH CH-CH-	CHa	95	163-4	C ₂₃ H ₂₅ ClN ₄ O ₂ S	C	60.46	60.1
. Cn2-Cn-Cn2	05	,,,		1	H	5.47	5.5
l I	1				N	12.26	11.9
C 11	R.	98	197-8	C25H22BrClN4O2S	C	53.81	54.0
C6H5	D,	70	- 1	Target in the second	Н	3.94	4.3
					N	10.04	10.4
W *	CII	05	183-4	C26H25CIN4O2S	C	63.35	63.3
C ₆ H ₅	СПЗ	93	103 4		Н	5.07	5.4
					N	11.37	11.3
	CH ₂ -CH≃CH ₂	CH ₃ Br CH ₃ CH ₃ CH ₂ -CH=CH ₂ Br CH ₂ -CH=CH ₂ CI CH ₂ -CH=CH ₂ CH_3 C ₆ H ₅ Br	CH ₃ Br 90 CH ₃ CH ₃ 95 CH ₂ -CH=CH ₂ Br 98 CH ₂ -CH=CH ₂ Cl 98 CH ₂ -CH=CH ₂ CH ₃ 95 CH ₂ -CH=CH ₂ CH ₃ 95	R R'' Yield % M.P.°C CH ₃ Br 90 191-2 CH ₃ CH ₃ 95 180-1 CH ₂ -CH=CH ₂ Br 98 198-9 CH ₂ -CH=CH ₂ CI 98 190-1 CH ₂ -CH=CH ₂ CH ₃ 95 163-4 C ₆ H ₅ Br 98 197-8	R R'' Yield % M.P.ºC Molecular Formula CH3 Br 90 191-2 C20H20BrCIN4O2S CH3 95 180-1 C21H23CIN4O2S CH2-CH=CH2 Br 98 198-9 C22H22BrCIN4O2S CH2-CH=CH2 CI 98 190-1 C22H22Cl2N4O2S CH2-CH=CH2 CH3 95 163-4 C23H25CIN4O2S CG6H5 Br 98 197-8 C25H22BrCIN4O2S	R R'' Yield % M.P.OC Molecular Formula Miccolor Formula CH3 Br 90 191-2 C20H20BrCIN4O2S CHBNAO2S CH3 CH3 95 180-1 C21H23CIN4O2S CHBNAO2S CH2-CH=CH2 Br 98 198-9 C22H22BrCIN4O2S CHBNAO2S CH2-CH=CH2 C1 98 190-1 C22H22Cl2N4O2S CHBNAO2S CH2-CH=CH2 CH3 95 163-4 C23H25ClN4O2S CHBNAO2S CH4 N C25H22BrClN4O2S CHBNAO2S CHBNAO2S CHBNAO2S CH4 C6H5 CH3 95 183-4 C26H25ClN4O2S CHBNAO2S	R R'' Yield % M.P.OC Molecular Formula Microanaly Calcd. CH3 Br 90 191-2 C20H20BrClN4O2S C 48.43 H 4.03 N 11.30 CH3 CH3 95 180-1 C21H23ClN4O2S C 58.53 H 5.34 N 13.01 CH2-CH=CH2 Br 98 198-9 C22H22BrClN4O2S C 50.62 H 4.21 N 10.73 CH2-CH=CH2 CI 98 190-1 C22H22Cl2N4O2S C 55.34 H 4.61 N 11.74 CH2-CH=CH2 CH3 95 163-4 C23H25ClN4O2S C 60.46 H 5.47 N 12.26 C6H5 Br 98 197-8 C25H22BrClN4O2S C 53.81 H 3.94 N 10.04 C6H5 CH3 95 183-4 C26H25ClN4O2S C 63.35 H 5.07

IR (KBr, cm⁻¹) of compound 7b: NH (3250) and CO (1680).

 $^{^{1}}$ H-nmr (DMSO, δ ppm) of compound 7a: 2.40 (S, 6H, 2CH₃); 380 (S, 3H, NCH₃); 4.10 (S, 2H, SCH2CO); 5.40 (S, 2H, OCH2); 7.20 (S, 2H, aromatic protons of the phenoxy residue); 7.60 - 7.80 . (d, 4H, aromatic protons of 4-Br phenyl C₆H₄) and 10.80 (S, 1H, NH)

Table (4):

$$O_{CH_2} - C - NH - N = N - R$$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$
 $O_{CH_2} - C - NH - N = N - R$

Compd R		Yield % M.P.OC		Molecular	Microanalysis(%)		
No.	.`			Formula	Calcd.		Found
8- a	CH ₃	70	192-3	C14H16ClN3O3S	C	49.19	49.6
11 "					H	4.68	5.0
					N	12.29	12.5
- b	CH ₂ -CH=CH ₂	75	174-5	C ₁₆ H ₁₈ ClN ₃ O ₃ S	С	52.24	52.8
- ["					Н	4.89	5.4
			1		N	11.42	11.0
- c	C2H5	75	184-5	C ₁₅ H ₁₈ ClN ₃ O ₃ S	С	50.63	50.3
11 = 1					Н	5.06	5.4
					N	11.81	11.5
- d	C ₆ H ₅	80	177-8	C ₁₉ H ₁₈ CiN ₃ O ₃	C	56.51	56.2
					Н	4.4	6 4.5
					N	10.4	1 10.8
							1

IR (KBr, Cm-1) of compound, 8a: NH (3250) and CO (1680, 1720).

2.20 (S, 6H, 2CH₃); 380 (S, 2H, CH₂ of thiazolidinone); 4.40 (q, CH₂, CH₂):

4.90 (S. 2H, OCH₂); 7.00 (S. 2H, aromatic protons of the phenoxy residue) and 9,50 (S, 1H, NH).

 $^{^1}$ H-nmr (DMSO. δ ppm) of the same compound; 1.80 (t, 3H, CH $_2$ CH $_3$);

REFERENCES

- 1- Mohsen, A.; Omar, M.E. and Habib, N.S.; Pharmazie 33, 18 (1978).
- 2- Mohsen , A.; Oomar , M.E., shams El Din , S.A., ghobashy , A,A . and khalil , M.A.; Eur J. Med. Chem., 16, 7780 (1981).
- 3- Modi, K.F.; krishnokumar , N., Mehta, H.J., padhya, A.C. and Somasekhara, S.; J. Indian Chem. Soc., 54 (7), 741 (1977).
- 4- Ali, A., Hall, R. and Fletcher, R.A.; Can. J. Bot., 57, 458 (1979) .C. A. 90, 198741 (1979).
- 5- Van Reet , G., Heeres , J. and Wals L. (Janssen Pharmaceutica, N.V.) ; U.S. patent 4 ,160,838 (Cl. 424 , 269 ; AOIN 9/22) 10 Jul. 1979. C.A . 91 , 175361z (1979).
- 6- Kumar , R., Gupta, T.K.and Parmer , S.S .; J . Pract . Chem ., 312 , 201 (1970).
- 7- Parmer , S.S., Dwivedi C., Chaudhari, A. and Gupta, T.K.; J. Med. Chem. 15, 99 (1972).
- 8- Chaudhri, S.K., Verma, M., Chaturvedi, A.K. and Parmer S.S.; J. Pharm. Sci. 21, 614 - 17 (1975).
- 9- Patel , D.R., Satpanthi , P.S., Patel , P.B, and Trivedi , J.J; J. Inst. Chem. Calcutta., 48, 305 (1976), C. A. 87, 68220 (1977).
- 10- Meher, S.S., Naik ,S., Behera, P.K. and Nayak, A.; J. Indian Chem. S∞., <u>58</u>, 274 (1981).
- 11- Akerblom , Eb.; <u>J. Med.Chem.,17</u> , 609 (1974).
- 12- Abbas S.E; El Ansary, S.L. and Mikhael A.N; Egypt. J. Pharm. Sci;
- 13- Collins , C.H; " <u>Microbiological Methods</u> ", Butter Worths, London , p. 92 (1964).

تشييد وتقييم النشاط المضاد للميكروبات لبعض مشتقات الداري والثيازوليدينون عواطف السعيد فرج ، صافيناز السيد عباس ، انور نصر ميخائيل منى عبد الوهاب عبد المسيح* قسم الكيمياء الصيدلية ، كلية الصيدلة * وقسم البكتريولوجي كلية الطب جامعة القاهرة ، مصر

تم في هذا البحث تحضير بعض السيمي والثيوسيمي كاربازايد (4a - j) وذلك لتفاعل الهيدرازيد (3) مع بعض الأيزوسيانيت والأيزوثيوسيانيت ، وقد استخدم الثيوسيمي كاربازيد (4f - j) كمركب وسيط لتحضير كل من الـ ٢ . ٢ - تريازول (5a - e) والثيازوليدينونات (4a - d) .

هذا وقد نم تحضير مجموعة الـ ٢.١، ٤ - تريازول (5 a - e) بتفاعل (4f -j) مع البيبريدين . كما تم أيضاً تحضير بعض الثيوايثر (6a- b) ، (7a- g) وذلك بتفاعل (5a-e) مع بعض المركبات الهالوجينية .

أما مجموعة الثيازوليدينون (8 a - d) فقد تم الحصول عليها بتفاعل (4f-j) مع الأيثيل برومواسيتات والصوديوم اسيتات .

وقد تم اجراء اختيار ثمان من المركبات الجديدة لدراسة تأثيرها كمضاد للميكروبات وقد تم اجراء اختيار ثمان من المركبات الجديدة لدراسة تأثيرها كمضاد للميكروبات Staph- epidermis والـ وقسد ثبت أن المركب (6a) له تأثير واضح ضد الـ Staph- epidermis والـ Diphteroids