SYNTHESIS AND ANTI-TUBERCULAR ACTIVITY OF SOME 1,2,4-TRIAZOLE DERIVATIVES

Amal A.H. Eissa

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt

Abstract:

The synthesis of a number of bis-triazole derivatives starting from 2,2-bis-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)diphenyl amine (I) was achieved. Reactions involving its two functional groups for structural diversity was performed. Thus reacting I in DMSO, in CS₂/KOH, with acetic anhydride, chloroacetyl chloride, ethyl chloroacetate, epichlorohydrin, 2-chloro-5-nitropyridine, certain-2-chloro aromatic acids (alone or in presence of POCl₃), various α,β-unsaturated ketones and different aldehydes afforded II-XII respectively. Compounds XII_(a-h) were further cyclised in nitrobenzene to yield substituted bis-triazolothiadiazoles (XIII_{a-h}).

Compounds I-III, V, VIII, XI, XII, XIII were tested for their anti-tubercular activity. Compounds XIc and XIIIb were found to be active.

INTRODUCTION

Several bis-compounds having a diverse range of structures and pharmacological activities were synthesized and reported to have better pharmacodynamic or pharmacokinetic properties, compared to the monomers. Ethambutol is a symmetrical diamine (bis-compound), which is used routinely in the clinical treatment of TB. Also, a second generation of ethambutol analogues was identified and shown to have convincing efficacy in in-vivo models of TB when delivered orally (19,20). As indicated by recent reports (21) of WHO, there is a resurgence of TB which is one of the primary infectious diseases worldwide, even in civilized countries in Europe and North America due to its pathogenic synergy with HIV. New drugs are critically needed to combat this disease. In fact, the battle against tuberculosis which seemed to be over by 1985 is back and the discovery of effective new antitubercular drugs must surely be one of the most urgent priorities. This organism was proven to be very resilient and a tough adversary because of the emergence of multiple-drug-resistant TB organisms, a term used to describe strains that are resistant to two or more of the five first-line anti-TB drugs (isoniazide, streptomycin)⁽²²⁾ pyrizinamide

Different heterocycle-containing compounds proved to exhibit anti-TB activity (23,24). Some triazole-containing compounds were of special interest as they showed variation in activities according to the structure in which it was incorporated (25-28). In lieu of continuing the investigations for the possible activities attributed to triazoles, it deemed of interest to synthesise some new bis-triazole derivatives (see Scheme 1). This was achieved through further substitution and/or extension of the starting intermediate (I). Some of these new derivatives were tested for their antitubercular activity.

CHEMISTRY

The starting s-triazole key intermediate (I) was prepared as reported⁽²⁹⁾ under specific reaction conditions, via carbon disulphide addition to an ethanolic solution of diphenylamine-2,2'-dicarboxylic acid hydrazide, containing potassium hydroxide, followed by the subsequent addition of hydrazine hydrate. This compound (I), features a number of

functional groups and the usual tactics were applied through substitution on these groups and formation of newly added ring systems in an attempt to get compounds with better activity. Thus, two molecules of I were linked through the sulphur atom, when it was refluxed in DMSO(30,31) to give II. When this striazole derivative (I) was heated under reflux with carbon disulphide and potassium hydroxide(32-34), further cyclisation including both the amino and thiol groups took place giving an extra five-membered ring and the corresponding bis-mercaptotriazolothiadiazole compound (III) was obtained. Attempted cyclisation of I using acetic anhydride was successful giving the bis-methyltriazolothiadiazole derivative (IV). On the other hand, cyclisation using chloroacetyl chloride furnished the bis-triazolothiadiazine analogue (V) Reaction of the two thiol groups of I with ethyl chloroacetate^(35,36), epichlorohydrin^(36,37) or 2-chloro-5nitropyridine afforded the corresponding thioethers (VI-VIII) respectively. Consequently, reacting I with different o-chloro substituted aromatic acids" resulted in IX. Furthermore, when the reaction was carried out with o-chloronicotinic acid in POCl₃ (32,38) it gave X (Scheme1).

The reaction between I and different α, β-unsaturated ketones^(31,39) through Michael addition reaction furnished compounds having a triazolothiadiazepine moiety (XI), where both the amino and thiol groups of (I) were involved (Schemel). The C-NMR of XIa showed the presence of a peak at δ190 ppm indicating C=N formation.

Increasing the temperature of the reaction feading to I above the reported 40°C, led to an unambiguous product, 2-hydrazino carbonyl-2'-(4-amino-5-mercapto-1,2,4-triazol-3-yl)diphenylamine (A). which when reacted with an á,β-unsaturated ketone gave 2-{6,8-bis(p-tolyl)7,8-dihydro-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazepin-3-yl}-2'-{3,5-bis(p-tolyl)-1,4-di-hydropyridazin-6-yl}diphenylamine (B) (Scheme 2). The structure of compound B was proven by microanalysis, and mass spectrum. Schiff bases (XII) were obtained via reaction of I and various aldehydes (32,34,40). Finally, further thermal induced cyclisation of XII was carried out by reflux in nitrobenzene (40) to give XIII. (Scheme 1)

Scanned with CamScanner

$$\begin{array}{c} CS_{2} \text{ KOH.} \\ > 50^{\circ}\text{C. NH}_{2}\text{NH}_{2} \\ + 40^{\circ}\text{C. NH}_{2}\text{NH}_{2} \\ + H_{3}\text{C.} \\ \end{array}$$

$$\begin{array}{c} CS_{2} \text{ KOH.} \\ + A \\ +$$

Scheme 2

EXPERIMENTAL

Melting points (°C, uncorrected) were recorded on an Electrothermal 1 A 9100 Digital Melting Point Apparatus. 1H NMR spectra were recorded in DMSO-D₆ on a Mercury, Varian, Oxford, 300 MHz & Jeol FX 90 Q 90 MHz Fourier Transform NMR spectrometer, using TMS as internal standard (chemical shifts in ô ppm) . Micro analytical data (C, H, N, S &/or halogen) agreed with the proposed structures within the approved ranges. Elemental analyses were carried out at the Micro analytical Center, Cairo University and few at Micro Analytical Lab., Chemistry Department, Faculty Of Science, Ain Shams University, U.V. spectra were carried out in ethanol and recorded on a Schimadzu UV 265 spectrophotometer. IR spectra as KBr pellets were recorded on a Schimadzu 435 IR -spectrophotometer. The mass spectra were recorded on a HP-Model -MS

Dimer of bis-[2-(4-amino-5-thio[1,2,4]triazol-3-yl)

A solution of I (0.4g, 0.001 mol) in dimethyl sulphoxide (5 ml), was heated under reflux for an hour. The solution was cooled and poured onto crushed-ice with stirring. The buff precipitate produced was filtered, left to dry to yield 0.33 g (83%) (crude), (a TLC was performed of (II) against (1) using ethanol : chloroform in a ratio of 5:1), which was crystallized from aqueous ethanol , $mp = 153-4^{\circ}C$ IR: vcm $^{-1}$: 3250, 3150 (NH_{2(s)} , NH_(s)), 1610, 1580, 1500 (NH, C = N , C=C). U.V.: $\lambda \max (\log \epsilon)$: 334.2 (4.3), 285 (sh) (4.56), 255 (4.90). MS: m/z = 791.6 $(M^+, 100 \%)$, Calc. = 790.9.

Calculated for $C_{32}H_{26}N_{18}S_4$: C, 48.6; H, 3.3; N, 31.9. Found: C, 49.0; H, 3.5; N, 31.5

Bis-[2-(6-mercapto[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)phenyl] amine (III):

Compound I (0.5 g, 0.0013 mol) was dissolved in a solution of potassium hydroxide (0.22 g) in absolute ethanol (5 ml), carbon disulphide (1 ml) was then added portionwise with stirring. The reaction mixture was heated under reflux for 6 hrs. and the solvent evaporated . To the remaining residue, 5ml water was added and the reaction mixture was acidified with 10% HCl till pH =1. The gelatinous precipitate produced was filtered, washed well with water, dried to give 0.6g (99%) which was recrystallised from DMF/H₂O, mp = 203-4°C. U.V.: $\lambda max (log \epsilon)$: 355 (sh) (3.98), 344 (4.02), 285 (sh) (4.35), 255 (4.68) ¹H NMR δ ppm = 5.50 (s (br.), 2H, 2SH), 7.5-8.8 (m, 2×4H, arom. 13.2 (m, protons), exchangeable).

Calculated for C₁₈H₁₁N₉S₄: C, 44.9; H, 2.3; N, 26.2. Found: C, 44.5; H, 2.6; N, 26.0

Bis-[2-(6-methyl]1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazol-3-yl)phenyl] amine (IV):

A solution of I (0.3 g, 0.00075 mol) was healed let reference. under reflux in acetic anhydride (5ml) for 5 hrs. The reaction mind reaction mixture was cooled and neutralized with dilammonium ammonium hydroxide solution. The precipitale formed was formed was collected and dried to give 0.2 g (60%). The solid was crystallized from DMF/H₂O, mp = 225-6°C, MS: m/z = 445.5 (M', 17%).

Calculated for C₂₀H₁₅N₉S₂: C, 53.9; H, 3.4 Found: C, 53.7; H, 3.7

Bis-[2-(6-0x0-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazin-3-yl) phenyl{amine (V) :

To a solution of I (0.35 g. 0.0009 mol) in absolute ethanol (5 ml), chloroacetyl chloride (0.22ml) was added and heated under reflux for 10 hrs. The solvent was concentrated then poured over ice. The precipitate formed was filtered and dried to yield 0.31g (74%). The obtained solid was recrystallized from aqueous ethanol, mp = 113-5°C. IR: vcm⁻¹: 3300 (NH_(s)), 2900 (CH_{2 (s)}), 1730 (CO (s)), 1620, 1590 (NH, C=N, C=C). U.V: λ max (loge): 329.8 (4.08), 285.0 (sh)(4.27), 255 (4.67), 251.4 (4.68).

Calculated for $C_{20}H_{15}N_9O_2S_2$: C, 50.3; H, 3.2; N, 26.4. Found: C, 50.4; H, 3.5; N 26.2

Bis-[2(4-amino-5-ethoxycarbonylmethylthio-[1,2,4]triazol-3-yl)phenyl] amine (VI):

A mixture of **I** (0.5 g , 0.0013 mol), ethyl chloroacetate (2.0 ml, 0.016 mol), anhydrous potassium carbonate (0.75 g) in dry acetone (120 ml) was heated under reflux for 11 hrs. with stirring , filtered , concentrated , cooled and poured over crushed ice . The oily layer produced was separated and crystallized from acetone to give 0.67g (93%), mp = 91-3°C. IR: vcm⁻¹ : 3300 (br) (NH₂₍₈₎ , NH), 2970 , 2900 (CH₂₍₈₎, CH₃₍₈₎), 1740 (CO $_{(8)}$) , 1620 , 1590, 1540 (NH, C=N, C=C). U.V.: λ max (loge): 333.0 (3.90), 295.0 (sh) (4.01), 260.0 (sh) (4.29), 242.8 (4.93). MS: m/z = 568.4 (M-1,17%), calc. = 569.7

Calculated for $C_{24}H_{27}N_9O_4S_2$: C, 50.6; H, 4.8; N, 22.1; S, 11.3. Found: C, 50.6; H, 4.7; N, 22.5; S, 11.4

Bis-[2-(4-amino-5-(2-oxiranyImethyIthio)[1,2,4]-triazol-3-yl)phenyl amine (VII):

Compound I (0.31 g, 0.008 mol) and epichlorohydrin (0.45 g) in dry absolute ethanol (30 ml) were refluxed for 7 hrs. The reaction mixture was concentrated, left in the fridge for several days to allow complete precipitation. The solid obtained was collected, left to dry to give 0.16g (41%). It was recrystallized from DMF/H₂O, mp = >350°C. IR: CH_(si), 1600, 1550, 1500 (NH, C=N, C=C). U.V.: (4.88), 1600, 1550, 1500 (NH, C=N, C=C). U.V.: (4.88), 1600, 1500 (3.94), 290.0 (sh) (4.11), 242.8 oxiranyl), 2.67 (m, 2H, CH oxiranyl), 3.90 (d, 4H, 6.88 = 8 (m, 8H, arom. protons), 9.1 (s, 1H, NH exchangeable).

Calculated for $C_{22}H_{23}N_9O_2S_2$; C, 51.9; H, 4.6; N, 24.7. Found: C, 52.2; H, 4.9; N, 24.5

Bis-[2-(4-amino-5-(5-nitropyrid-2-ylthio)-[1,2,4]-triazol-3-yl)phenyl] amine (VIII):

A mixture of I (0.4g , 0.001mol) , 2-chloro-5-nitropyridine (0.32 g, 0.002 mol), sodium acetate anhydrous (0.21g) in absolute ethanol (25ml) was heated under reflux for 12 hrs., it was then concentrated , cooled , the precipitate collected and dried to give 0.63g (97%). The precipitate was recrystallized from ethanol with a mp = 166-8°C. IR: vcm⁻¹: 3450-3350 (br) (NH₂₆₈, NH), 1600, 1580 (NH, C=N, C=C), 1520,1355 (NO₂). U.V.: λ max (log ϵ): 303.8 (4.46) , 295.0 (sh)(4.44) , 251.8 (4.42) , 239.0 (4.20). ¹H NMR : öppm = 6.95(s, 2×2H , 2NH₂ exchangeable), 7.17-10.22 (m, 15H, arom.protons +NH exchangeable)

Calculated for C₂₆H₁₉N₁₃O₄S₂: C, 48.7; H, 3.0; N, 28.4. Found: C, 49.1; H, 3.2; N, 28.1

Bis-[2-(4-amino-5-arylthio[1,2,4]triazol-3-yl)-phenyl[amine (IXa-c):

A mixture of I (0.4 g , 0.001 mol) , the appropriate chloro substituted aromatic acid (0.002 mol), anhydrous sodium acetate (0.21 g) in absolute ethanol (25 ml) , was heated under reflux for 3-15 hrs. The solution obtained was concentrated, cooled, precipitated by ice, filtered , left to dry and recrystallised from aqueous ethanol. IR: vcm³ (IXa): 3500-2700 (broad overlapped bands) (OH, NH₂, NH), 1680, 1620, 1590, 1475 (C=O, C=C, C=N). (IXb): 3500-2800 (broad overlapped bands) (OH, NH₂, NH), 1670, 1620, 1590, 1470 (C=O, C=C, C=N). (IXc): 3500-2800 (broad overlapped bands) (OH , NH₂ , NH), 1670, 1630, 1590, 1480 (C=O, C=C, C=N). MS for (IXb): calculated for C₃₀H₂₁Cl₂N₉O₄S₂= 706.6, m/z=706.2(M⁺, 84%).(See Table 1).

Bis-[2-(6-(2-pyridyl)]1,2,4]triazolo[3,4-b][1,3,4]-thiadiazol-3-yl)phenyl] amine (X):

A mixture of I (0.4 g, 0.001 mol), 2-chloronicotinic acid (0.32 g, 0.002 mol), was heated under reflux in POCl₃ (10 ml) for 5 hrs. The excess POCl₃ was distilled under vacuum and the remaining oily residue was cautiously poured over crushed ice with stirring and scratching to get a brown solid. The reaction mixture in hand was alkalinized with a 10% aqueous sodium hydroxide solution till pH = 5. The separated solid was collected, washed well with water and dried to give 0.6g (94 %) of the compound which was then crystallized from DMF/ H_2O , mp = 255-7°C. U.V.: λ max (log ϵ): 290.0 (sh)(4.31), 242.8 (5.26). MS: m/z = 639.55 (M-1), calc.= 640.55.

Calculated for $C_{28}H_{15}Cl_2N_{11}S_2$: C, 52.5; H, 2.4. Found: C, 52.5; H, 2.4

Table 1: Physical and analytical data of compounds IX_{a-c} and XI_{a-d}

1: Phy	sical and analytica	I data or c			Calc. Found		
Yield	Molecular	Mol. Wt.	Cryst.solvent	23.244.29) 280 (sh) (4.55), 250.4	C 56.5 56.5		
76	the first of the first of the spirit one by the same of the state of t	c27 703	170-2	(4.92), 245.0 (sn)(4.70).	H 3.6 3.6 N 19.8 20.0		
58	C ₃₀ H ₂₃ N ₆ O ₄ S ₂	637.703		334.6 (4.22), 280(sh) (4.49), 250 (sh)	C 51.0 51.0 H 3.0 3.1		
31	C30H21Cl2N0O4S2	706.601	Ethanol/H ₂ O		N 17.8 17.7 C 52.6 52.6		
		(20,678	190-2	333.6 (4.29), 280(81) (4.56), 250.4 (4.90).	H 3.3 3.3 N 24.1 24.3		
54	$C_{28}H_{21}N_{11}O_4S_2$	639.078	Ethanol/H ₂ O	312.0 (sh)(4.88), 305.0	C 71.0 70.9 H 4.5 4.3		
96	C46H35N6S2	777.978	68-70 Ethanol/H ₂ O	(4.89), 301.8 (4.89), 293.0 (4.88), 290.0 (4.82), 265.2 (4.71), 256.6 (4.74), 250 (4.73).	N 16.2 16.2		
			97-8	318.6 (4.79), 258.0 (sh)(4.77),	C 72.0 72.2 H 5.2 5.3		
96	$C_{50}H_{43}N_9S_2$	834.086	Ethanol/H ₂ O		N 15.1 15.0 C 58.7 59.0		
90	C ₄₂ H ₂₉ Cl ₂ N ₉ S ₄	858.928	111-3 Ethanol/H ₂ O	270.8 (4.99), 257.0 (sh)(4.97),	H 3.4 3.5 N 14.7 14.6		
89	C ₄₂ H ₂₉ F ₂ N ₉ S ₄	826.010	82-3 Ethanol/H ₂ O		C 61.1 61.0 H 3.5 3.6 N 15.3 15.5		
	Yield % 58 31 54 96 96	Yield % Molecular Formula 58 C36H23N6O4S2 31 C36H21Cl2N6O4S2 54 C28H21N11O4S2 96 C46H33N6S2 96 C30H43N6S2 90 C42H29Cl2N9S4	Yield % Molecular Formula Mol. Wt. 58 C36H23N6O4S2 637.703 31 C36H21Cl2N6O4S2 706.601 54 C28H21N11O4S2 639.678 96 C46H35N6S2 777.978 96 C50H43N6S2 834.086 90 C42H29Cl2N9S4 858.928	Yield % Molecular Formula Mol. Wt. m.p. C / Cryst.solvent 58 C36H23N6O4S2 637.703 170-2 Ethanol/H2O 31 C36H21Cl2N6O4S2 706.601 169-71 Ethanol/H2O 54 C28H21N11O4S2 639.678 190-2 Ethanol/H2O 96 C46H35N6S2 777.978 68-70 Ethanol/H2O 96 C50H43N6S2 834.086 97-8 Ethanol/H2O 90 C42H29Cl2N6S4 858.928 111-3 Ethanol/H2O 20 C42H29Cl2N6S4 858.928 111-3 Ethanol/H2O	Vield % Molecular Formula Wt. Cryst.solvent 58 C ₃₀ H ₂₃ N ₆ O ₄ S ₂ 637.703 170-2 Ethanol/H ₂ O 333.2 (4.29), 280 (sh) (4.55), 250.4 (4.92), 245.0 (sh)(4.90). 31 C ₃₀ H ₂₁ Cl ₂ N ₆ O ₄ S ₂ 706.601 169-71 Ethanol/H ₂ O 334.6 (4.22), 280(sh) (4.49), 250 (sh) (4.85), 242.2 (4.97). 54 C ₂₈ H ₂₁ N ₁₁ O ₄ S ₂ 639.678 190-2 Ethanol/H ₂ O 333.6 (4.29), 280(sh) (4.56), 250.4 (4.90). 96 C ₄₀ H ₃₅ N ₆ S ₂ 777.978 68-70 Ethanol/H ₂ O (4.88), 301.8 (4.89), 295.0 (4.88), 290.0 (4.82), 265.2 (4.71), 256.6 (4.74), 250 (4.73). 96 C ₅₀ H ₄₃ N ₆ S ₂ 834.086 97-8 Ethanol/H ₂ O 318.6 (4.79), 258.0 (sh)(4.77), 243.4 (5.22). 90 C ₄₂ H ₂₉ Cl ₂ N ₉ S ₄ 858.928 111-3 Ethanol/H ₂ O 346.4 (5.12), 277.4 (4.99), 270.8 (4.99), 257.0 (sh)(4.97), 239.6 (4.86).		

Tab	le 2: Physical and Ana	alytical		Micros	nalysis			
Cpc No		Yield %	Molecular Formula	Mol. Wt.	m.p.(°C) Cryst. solvent	U.V. λmax(logε)	Calc.	Found
XIIa	. —	57	C ₃₀ H ₂₃ N ₉ S ₂	573.705	249-50 DMF/H ₂ O	235.4 (4.37).	C 62.8 H 4.0 N 22.0	62.5 3.8 21.6
ь	cı	96	C ₃₀ H ₂₁ Cl ₂ N ₉ S ₂	642.603	165-6 Ethanol/DMF/ H ₂ O	330.0 (sh)(4.23), 280.0 (4.81), 257.6 (4.81), 238.0 (4.24).	N 19.6	56.3 3.5 19.4
c	———оснз	91	C ₃₂ H ₂₇ N ₉ O ₂ S ₂	633.757	167-9 Ethanol/H₂O	340.0 (sh)(4.44), 291.6 (4.85), 253.6 (4.80).	C 60.7 H 4.3 N 19.9	60.7 4.4 19.6
d	CH ₃	92	C ₃₄ H ₃₃ N ₁₁ S ₂ . H ₂ O	677.857	214-6 DMF/H ₂ O	358.0 (4.63), 305.0 (sh)(4.24), 253.6 (4.37).	C 60.3 H 5.2 N 22.7	
e	OH OH	95	$C_{30}H_{23}N_9O_2S_2$	605.704	169-70 DMF/Ethanol/ H ₂ O	335.6 (4.52), 295.0 (sh)(4.51), 255.4 (4.91).	C 59.5 H 3.8 N 20.8	20.5
f	OCH ₃	98	C ₃₄ H ₃₁ N ₉ O ₆ S ₂ . H ₂ O	743.825	192-4 DMF/H ₂ O	324.4 (4.98), 255.0 (sh)(4.91), 245.8 (5.01).	C 54.9 H 4.4 N 16.9	17.3
g	NO ₂	96	$C_{30}H_{21}N_{11}O_4S_2$	663.700	185-6 DMF/Ethanol/ H ₂ O	380.0 (sh)(4.50), 286.2 (5.16), 242.8 (5.42).	C 54.3 H 3.2 N 23.2	23.0
h		95	C ₂₆ H ₁₉ N ₉ O ₂ S ₂	553.627	157-9	320.0 (sh)(4.62), 288.4 (4.95), 252.0 (sh) (4.95), 243.0 (5.04).	C 56.4 H 3. N 22.8	$\begin{array}{ccc} & 3.7 \\ & 23.0 \\ & & 3 \end{array}$
I	—нс=нс— <u></u>	99	C ₃₄ H ₂₇ N ₉ S ₂	625.781	198-200 DMF/H ₂ O	299.2 (4.96), 257.0 (sh)(4.88), 242.0 (5.05).	C 65.	17

Table 3: Physical and analytical data of compounds XIIIa-h

Cpd No	3: Physical and anal	Yield %		Mol. Wt.	m.p.(°C) Cryst. solven		Calc.	unalysis Found
XIIIa		80	C ₃₀ H ₁₉ N ₉ S ₂	569,67.	3 114-6 DMF/H ₂ O	355.3 (4.21), 308.1 (4.39), 272.5 (4.66), 257.0 (4.59), 240.0 (4.49).	C 63.3 H 3.4 N 22.1 S 11.3	63.3 3.3 21.9 11.2
b	-CI	98	C ₃₀ H ₁₇ Cl ₂ N ₉ S	638.571	283-5 DMF/H ₂ O	551.0 (3.94), 372.0 (sh)(4.25), 359.6 (sh)(4.37), 309.7 (4.67), 271.3 (4.75), 257.0 (4.75), 243.0 (4.75).	C 56.4 H 2.7 N 19.7 Cl 11.1	56.4 2.6 19.4 11.2
с	-OCH3	98	C ₃₂ H ₂₃ N ₉ O ₂ S ₂	629.726	184-6 DMF/H ₂ O	558.5 (3.85), 366.8 (sh)(4.26), 359.6 (sh)(4.43), 314.0 (4.74), 257.0 (4.74), 238.0 (4.74).	C 61.0 H 3.7 N 20.0 S 10.2	61.0 3.7 19.6 10.3
d	CH ₃	95	$C_{34}H_{29}N_{11}S_2$	655.81	255-7 DMF/H ₂ O	551.5 (3.77), 362.0 (sh) (4.19), 346.8 (4.37), 292.6 (sh) (4.49), 255.6 (4.70).	C 62.3 H 4.5 N 23.5	4.4 23.1 59.0
c	OH	72	$C_{30}H_{19}N_9O_2S_2$	601.672	208-10 DMF/Ethanol/ H ₂ O	255.0 (4.70).	C 59.9 H 3.2 N 21.0 S 10.7 C 56.6	3.2 20.6 10.6 56.6
f	OCH ₃	98	C ₃₄ H ₂₇ N ₉ O ₆ S ₂	721.778	H_2O	(4.24), 306.5 (4.48), 264.1 (4.71), 257.0 (4.75), 245.0 (4.65).	H 3.8 N 17.5 S 8.9	3.7 17.6 9.0
g	-NO ₂	93	$C_{30}H_{17}N_{11}O_4S_2$		223-5 Ethanol/DMF/ H ₂ O	257.0 (4.76), 238.0 (4.76).	C 54.6 H 2.6 N 23.4 S 9.7	2.6 23.1 9.8
h		97	C ₂₆ H ₁₅ N ₉ O ₂ S ₂	540 506	(278 in a sealed tube) Ethanol/DMF/	453.7 (3.92), 363.0 (sh)(4.16), 358.2 (sh)(4.26), 271.3 (4.55), 257.0 (4.63), 242.0 (4.54).	C 56.8 H 2.8 N 22.9	2.9 22.9

Bis[2-(6,8-disubstituted[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazepin-3yl)phenyl]amine (XIa-d):

A mixture of compound I and the appropriate α , β -unsaturated ketone in a ratio of 1:2 was heated under reflux for 9-14 hrs. in the least amount of acetic acid. The mixture was left to cool, precipitated on crushed ice, the precipitate was collected, dried and crystallized from aqueous ethanol. (see Table 1). IR: $CH_{3(s)}$, 1665 (C=N of thiadiazepine ring), 1605, 1575, 1500 (NH, C=N, C=C).

¹H-NMR (XIa) ôppm: 2.51(d, 2 × 2H, CH₂), 5.7-^{5.85(m,2} x 1H, S-CH), 7.06-8.15 (m, 2×14H, aromatic), 9.57 (s (br), 1H, NH, exchangeable). (XIc) δppm: 2.51(d, 2x2H, CH₂), 5.8-6.05 (m, 2x1H, S-CH), 7.16-8.25 (m, 2×11H, aromatic), 9.59 (s (br), 1H, NH, exchangeable). 13 C-NMR (**XIa**) (DMSO-d₆): 39.45, 41.2, 122.92, 129.17, 129.45, 129.51, 129.59, 131.28, 133.37, 133.76, 135.37, 138.32, 144.67, 190.00. MS: for (**XIc**)= (calculated for C₄₂H₂₉Cl₂N₉S₄ = 858.93), m/z = 858.45 (M⁺)

Bis-[2-(5-mercapto-4-arylideneamino-[1,2,4]-triazol-3-yl) phenyl]amine (XHa-i):

The appropriate aldehyde (0.0028 mol) was added to a hot solution of I (0.0013 mol) in acetic acid (7 ml). The solution was refluxed for 2-8 hrs., concentrated, the precipitate filtered, allowed to dry then crystallized from the appropriate solvent. (See

Table 2). IR vcm^{-1} : (XIIa): 3382 (NH), 2774 (SH), 1604,1576,1550(NH, C = N, C=C).(XIIe): 3600 (OH), 3450 (NH), 1630,1615, 1600(NH, C=N, C=C).

Bis[2-(6-aryl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl) phenyl[amine (XIIIa-h):

The Schiff bases XII were heated under reflux in nitrobenzene with stirring for 2-3 hrs. Excess nitrobenzene was distilled under vacuum till dryness with the aid of ethanol. The dried residue was crystallized from the suitable solvent. (See Table 3) IR v cm⁻¹: (XIIIa): 3300 (NH), 1658, 1587, 1500(NH, C=N , C=C). (XIIIf): 3400-3250 (br)(OH, NH), 2950 (CH_{3(a)}), 1595, 1570 (NH, C=N , C=C). MS: for (XIIIa): (calculated for C_{30} H₁₉ N₉ S₂ = 569.67), m/z = 571 (M'+2). MS: for (XIIIh): (calculated for C_{26} H₁₈N₉O₂S₂ = 549.60), m/z = 551.95 (M'+2, 7%).

Antitubercular Activity:

Evaluation of antimycobacterial activity -in vitrowas carried out through a primary screening conducted at 6.25 µg/ml (or molar equivalent of the highest molecular weight compound in a series of congeners) against Mycobacterium tuberculosis H₃₇ Rv (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA)(41-43). The Alamar blue oxidation-reduction dye is a general indicator of cellular growth and/or viability; the blue, nonfluorescent, oxidized form becomes pink and fluorescent upon reduction. Growth can therefore be measured with a fluorometer or spectrophotometer or determined by a visual color change.

Antimicrobial susceptibility testing was performed in black, clear-bottomed, 96-well microplates. Initial drug dilutions were prepared in either dimethyl sulphoxide or distilled deionised water and subsequent twofold dilutions were performed in 0.1ml of 7H9GC (no Tween 80) in the microplates. BACTEC 12B inocula were initially diluted 1:2 in 7H9GC and 0.1ml was added to the wells. Wells containing drug only were used to detect autoflourescence of compounds. Additional control wells consisted of bacteria only (B) and medium only (M). Plates were incubated at 37°C. Starting at day 4 of incubation, 20µl of alamar blue solution and 12.5 ml of 20% Tween 80 were added to one B well and one M well and plates were reincubated at 37°C. Wells were observed at 12 and 24 hrs for color change from blue to pink and the fluorescence measured. Compounds demonstrating about 90% inhibition in the primary screen were retested at lower concentrations against M. tuberculosis H37Rv to determine the actual minimum inhibitory concentration (MIC) using MABA (Table 4).

The MIC is defined as the lowest concentration effecting a reduction in fluorescence of 90% relative to controls. Concurrent with the determination of MICs, compounds were tested for cytotoxicity (IC50)

in VERO cells at concentrations < 6.25 mg/ml or 10×the MIC for M. tuberculosis H37Rv (solubility in media permitting). After 72 hours exposure, viability is assessed on the basis of cellular conversion of MIT into a formazan product using the Promega Cell Titer 96 Non-radioactive Cell Proliferation Assay.

Table 4: Antitubercular Activity

Compd. No MIC(ug/ml) % Int							
	The state of the s	% Inh.					
I	> 6.25	-18					
Ш	> 6.25	10					
Ш	> 6.25	-39					
V	> 6.25	22					
VIII	> 6.25	-23					
XI a	> 6.25	79					
С	< 6.25	94					
XII a	> 6.25	-40					
b	> 6.25	-40					
С	> 6.25	-47					
d	> 6.25	-75					
ее	> 6.25	-58					
f	> 6.25	4					
g	> 6.25	16					
h	> 6.25	-30					
I	> 6.25	-8					
XIII a	> 6.25	11					
b	> 6.25	83					
с	> 6.25	16					
d	> 6.25	16					
e	> 6.25	16					
f	> 6.25	32					
g	> 6,25	5					
h	> 6,25	31					

Acknowledgement:

The Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) provided Antimycobacterial data through a research and development contract with the U.S. National Institute of Allergy and Infectious Diseases. Deepest regards and thanks to Robert C. Reynolds, Ph.D. Manager, Medicinal Chemistry in TAACF.

REFERENCES

- Mann, J; Baron, A; Opoku-Boahen, Y; Johansson, E; Parkinson, G; Kelland, L.R. and Neidle, S; J. Med. Chem. 44, 138 (2001).
- Muhlman, A; Classon, B; Hallberg, A, and Samuelsson, B.; J. Med. Chem. 44, 3402 (2001).
- 3. Spicer, J. A; Gamage, S.A; Rewcastle, G.W; Finlay, G. J; Bridewell, D. J. A; Baguley, B.C. and Denny, W.A; J. Med. Chem. 43, 1350 (2000).
- 4. BoteroCid, H. M; Trankle, C; Baumann, K; pick, R; Mies-Klomfass, E; Klaus-Mohr, E. Holzgrabe, U; J. Med. Chem. 43, 2155 (2000).

5. Gamage, S. A; Spicer, J. A; Atwell, G. J; Finlay, G. J; Baguley, B.C. and Denny, W. A; J, Med. Chem. 42, 2383 (1999).

Amai A. G.

Bridger, G. J. Skertj, R. T. Padmanabhan, S. Martelluci, S.A; Henson, G. W; Struyf, Wittrouw, M; Schols, D, and De-Clereq, E; J. Med. Chem. 42, 3971 (1999).

Rosa, J. C; Galanakis, D; Ganellin, C. R; Dunn, P. M and Jenkinson, D. H; J. Med. Chem. 41, 2

8 Maduskuie, Jr., T. P; McNamara, K. J; Yu Ru; Knabb, R. M. and Stouten, PF. W; J. Med. Chem. 41, 53 (1998).

9 Boykin, D. W; Kumar, A; Ge Xiao; Wilson, W. D; Bender, B. C; McCurdy, D. R; Hall, J. E. and Tidwell, R. R; J. Med. Chem. 41, 124 (1998).

10. Shaw, K. J; Guilford, W. J; Dallas, J. L; Koovakkat, S. K; McCarrick, M. A; Liang, A; Light, D.R. and Morrissey, M. M; J. Med. Chem. 41, 3551 (1998).

II. Sundberg, R. J; Biswas, S; Murthi, K.K. and Rowe, D. J. Med. Chem. 41, 4317 (1998).

12. Vennerstrom, J.L.; Ager, Jr., A. L.; Dorn, A; Andersen, S.L.; Gerena, L.; Ridley, R.G. and Milhous, W. K; J. Med. Chem. 41, 4360 (1998).

13. Reddy, V. K; Valasinas, A; Sarkar, A; Basu, H.S; Marton, L. J. and Frydman, B; J. Med. Chem. 41, 4723 (1998).

14. Brana, M. F; Castellano, J. M; Perron, D; Maher, C; Conlon, D; Bousquet, P. F; George, J; Qian, X. D. and Robinson, S. P; J. Med. Chem. 40, 449 (1997).

15. Kancko, M; Saito, Y; Saito, H; Matsumoto, T; Matsuda, Y; Vaught, J. L; Dionne, C.A; Angeles, T. S; Glicksman, M, A; Neff, N. T; Rotella, D. P; Kauer, J. C; Mallamo, J.P; Hudkins, R.L. and Murakata, C. J. Med. Chem. 40, 1863 (1997).

16. Brevitt, S. E. and Tan, E. W; J. Med. Chem. 40, ²⁰³⁵ (1997).

17. Melnick, M; Reich, S. H; Lewis, K. K; Mitchell, Jr., L. J; Nguyen, D; Trippe, A. J; Dawson, H; Davies II, J. F. Appelt, K; Wu, B; Musick, L; Gehlhaar, D. K; Webber, S; Shetty, B; Kosa, M; Kahil, D. and Andrada, D. J. Med. Chem. 39, 2795 (1996).

18. Gazit, A; Osherov, N; Gilon, C. and Levitzki, A; J. Med. Chem. 39, 4905 (1996).

19. Lee, R. E; Protopova, M. N; Crooks, E. T; Voskuil, M, Wilson, M; Schoolnik, G. K. and Barry III, C. E; No 151; The 219th ACS National Meeting, San

Francisco, CA, March 26-30 (2000).

Barry, C. E. Lee, R. E. and Protopova, M; No 299; Chicago, IL, The 222nd ACS National Meeting, Chicago, IL,

August 26-30, (2001).

270 The 270 The 28 Kauffman, J. and Kelley, C. J; No 270; The 221st ACS National Meeting, San Diego,

¹² Jones, P. B.; Parrish, N. M; Houston, T. A; Stapon, A; Bancal A; Parrish, N. M; Houston, T. A; Stapon, T. Dunsend, C. A; J. Med. Chem. 12. Dick, J. D and Townsend, C. A; J. Med. Chem. 43, 3304 (2000).

23. Parekh, H. H; Doshi, R. K. and Parikh, K; No 149; The 219th ACS National Meeting, San Francisco,

24. Parekh, H. H; Parikh, A, R. and Parikh, K; No 150; The 219th ACS National Meeting, San Francisco,

25. Baraldi, P. G; Cacciari, B; Spalluto, G; Bergonzoni, M; Dionisotti, S; Ongini, E; Varani, K. and Borea, P. A; J. Med. Chem. 41, 2126 (1998).

26. Kim, Y-C; De Zwart, M; Chang, L; Moro, S; K. von Frijtag Drabbe Kiinzel, J; Melman, N; Ijzerman, Ad. P. and Jacobson, K. A; J. Med. Chem. 41, 2835 (1998).

27. Akahoshi, F; Takeda, S; Okada, T; Kajii, M; Nishimura, H; Sugiura, M; Inoue, Y; Fukaya, C; Naito, Y; Imagawa, T. and Nakamura, N; J. Med. Chem. 41, 2985 (1998).

28. Maxwell, J. R; Wasdahl, D. A; Wolfson, A. C. and Stenberg, V. I; J. Med. Chem. 27, 1565 (1984).

29. Eissa, A. A. H.; Bull. Fac. Pharm. Cairo Univ., 36, 99 (1998).

30. Yiannios, C. N. and Karabinos, J. V; J. Org. Chem., 28, 3246 (1963).

31. El-Emam, A. A.; Sulfur Letters, 12, 201 (1991).

32. El-Emam, A. A; Moustafa, M. A; Bayoumi, S. M. and El-Ashmawy, M. B; Journal of the Chinese Chemical Society, 36, 353 (1989).

33. Shehata, A; Moustafa, M. A; Abdelal, A. M. and El-Emam, A. A; Oriental Journal of Chemistry, 8, 304 (1992).

34. El-Ansary, S. L; Hussein, M. M; Aly, E. I and Hassan, A. B; Bull. Fac. Pharm. Cairo Univ., 32, 375 (1994).

35. El-Ansary, S. L; Aly, E. I. and Halem, M. A; Egypt. J. Pharm. Sci., 33, 379 (1992).

36. Ibrahim, M. K; Abdel Hamide, S. G. and Khalifa, M. M; Egypt. J. Pharm. Sci., 40, 1 (1999).

37. Ghoneim, K. M; El-Basil, S; Osman, A. N. and Said, M; Egypt. J. Pharm. Sci., 31, 169 (1990).

38. Eisa, H. M; El-Emam, A. A; Moustafa, M. A. and El-Kerdawy, M. M; Journal of the Chinese Chemical Society, 35, 393 (1988).

39. Moustafa, M. A; Gincinah, M. M; Bayomi, S. M. and Ismaicl, A. M; Arch. Pharm. Res., 13, 347 (1990).

40. El-Emam, A. A. Moustafa, M. A. El-Subbagh, H. I. and El-Ashmawy, M. B; Monatshefte für Chemie, 121, 221 (1990).

41. Skinner, P. S; Furney, S. K; Jacobs, M. R; Klopman, G; Ellner, J. J. and Orme, I. M: Antimicrobial Agents and Chemotherapy, 38, 2557 (1994).

42. Kelly, B. P; Furney, S. K; Jessen, M. T. and Orme, I. M; Antimicrobial Agents and Chemotherapy, 40, 2809 (1996).

43. Collins, L. A. and Franzblau, S. G; Antimicrobial Agents and Chemotherapy, 41, 1004 (1997).

Received: April 24, 2002 Accepted: May 30, 2002

تشييا، وإخبار العمالية ضارمرض الدمرين لمشغان-١٠،٥-١٠ الرابار ولل أمل عبد العليم عيسى قسم الكيمياء الصيدلية، كلية الصيدلة، جاسعة الفاعر :

السعرن مسن الاسمرافس الانتهازية المنتشرة و الاصابة به في از دياد في موضى نص المناعة المكانسية بالتحديد المحابئ فالاحتياج التي مركبات جنيدة لعلاجه مطلوب دائما، لهذا ثم في هذا البحث تعضير عدد من الموكبات التي تعقويه على حافتين من حقات التريازول باستخدام مجموعتي الأمينو والثيول الموجودتين في الموكب ١٠٢٠ شني (١-مبلو الله مركبو عدد من الموكبات الاا مشير (١ مينيل مناو كمايد، مح كارينية الكربون مركبو عدد البوتامسيوم. الهيدرايد حمض العليك، كلوريد الناورو أسينيل، كلورو خلات الانتفاء الاينو، الاوروو عمن المليك، كلوريد الناورو أسينيل، كلورو خلات الانتفاء الايوسود التوسطوريد التحديد التوسطوريد التوسطوريد المتسبعة في الوضع الفاء بينا، والدهيدات مختلفة لإعطاء الموكبات المدال . وقد تم خلفة الموابدات المداليات ا

معظم المركسيات تم الكشف عن فاعليتها ضد مرض الدرن. وقد وجد أن المركبات رقم XIc, XIIIb الها نشاط ضد الميكروب المستخدم .