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ABSTRACT  

In modern fire control systems, Line of Sight (LOS) stabilization plays an 
essential and crucial part. LOS stabilization systems have a wide range of military and 
civilian applications. Their importance arises from the critical applications that employ 
these systems. Two techniques are used for the LOS stabilization systems, passive and 
active. The passive LOS stabilization systems are easy to design and are manufactured 
at a relatively low cost to be interfaced with different types of electro optical systems. 
Hence, it can be used to increase the efficiency of many armored vehicles serving in the 
armed forces, where it may be used for constructing fire control systems. The passive 
LOS stabilization systems are multi-input multi-output (MIMO) systems that are highly 
nonlinear and possess a strong coupling effect between their states. It presents a 
challenging system to control. 

In this paper the analysis of the passive LOS stabilization system with the 
development of its nonlinear mathematical model is derived. Two different types of 
control algorithms are presented. The first controller is a Linear Quadratic Gaussian 
controller (LQG). The controller presents a conventional control technique that proves 
to be stable with high transient and tracking performances. The controller is applied to 
the LOS stabilization system and the simulation results are introduced. Next, an 
intelligent fuzzy controller is introduced. The fuzzy control presents a nonlinear control 
technique that compensates the system's nonlinearity; hence, it is more appropriate to 
stabilize and control the system under consideration. The fuzzy controller is designed to 
decouple the relationship between the system state variables. The controller's 
performance is verified through simulations and results. 

Finally, comparative analysis between the two developed controllers is 
conducted. It discusses the advantages and disadvantages of each control algorithm. 

   
Keywords: Multi input multi output (MIMO), Fuzzy Model reference learning control (FMRLC), LOS 
stabilized system, non linear control, LQG/LTR.. 
 
1. FORMULATION OF SYSTEM EQUATIONS  
Figure (1) shows a gyro stabilized platform system [1]. There are generally three main 
components, a flywheel, motors and mirror system.  Two gimbals that provide two-
degree of freedom to the flywheel, Inner gimbal provides movement along the yaw axis 
and outer gimbal provides movement along the pitch axis, two torque motors are used to 
control the pitch axis and the yaw axis. A mirror that is geared to the inner gimbals 
through a 2:1 reduction drive mechanism. Figure (2) shows schematic diagram of the 
gyro-mirror LOS system. The LOS stabilization system consists of four main modules, 
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namely the rotor (R), the inner gimbal (IG), the outer gimbal (OG) and the mirror (Mr). 
The coordinate frames and the moment of inertia (MI) of each element along the 
principle axes are defined as follows: 
 i    index of three dimensional axis (1,2,3).,    vi      vehicle frame/system frame, assumed fixed       
A   MI of outer gimbal (OG) about g1 – v1,B, C, D   MI of inner gimbal (IG) about r1, r2 and r3 
E, F, G   MI of mirror about m1, m2 and m3     gi   outer gimbal frame 
ri         inner gimbal and rotor frame,     mi       mirror frame 
H     MI of rotor (R) about r1 or r2 ,   J    MI of rotor (R) about r3 

Fig.1 A passive Gyro-stabilized platform 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2 Schematic of passive LOS stabilization system 

As shown in Figure 2, the gyro mirror LOS platform has   two coordinate axis (yaw axis 
and pitch axis), one tracking pointer (mirror) and a flywheel. By defining the coordinate 
frame. The transformation matrices between the coordinate frames are given by: 
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Where 1θ  and 2θ  are angle of rotation about axis 1 and 2 respectively as shown in 
Figure (1-2). The angular velocities of the mechanical elements are as follows: 

332211 rrgR

•••

++=Ω θθθ                                              (4)                              

2211 rgIG

••
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11 gOG
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2
1 mgMr

••
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where RΩ , IGΩ , OGΩ  and MrΩ  are the angular velocities of the rotor, inner gimbal, 
outer gimbal and the mirror respectively. Using the transformation matrices shown 
above,  and its corrseponding own coordinate frame, define  the rotational kinetic 
energy for the system as a rigid body. The kinetic energy simplifies to a sum of three 
terms that is given by [3-5]: 
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where i=1,2, 3 are the principle axes of each frame. Therefore, the kinetic energy of the 
elements are 
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Assuming that the system is rigid enough such that the strain energies are negligible, the 
Lagrange’s equations thus become [12].  
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Where 
 eK  denotes the kinetic energy,  iq  denotes a generalized coordinate ( 21,θθ  and 

3θ ),and iQ  denotes a generalized force 1τ  and 2τ .  
Applying Lagrange’s equation (10) to equation (9) we obtain: 
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where 2sin13 θθθω
•

+
•

=s  is the rotor spin velocity. It is a constant angular velocity of the 
flywheel. Equations (11) and (12) represent the nonlinear model of the LOS 
stabilization system., the following properties of the LOS system may be inferred as 
follow [4-5]: 

Property I: The terms coefficient of 1
⋅⋅
θ  and 2

⋅⋅
θ  are positive definite. This is an 

essential property of the system. This property will be used later in the development of 
controllers. 
Property II: The cross-couplings between the axes due to θ2 terms appearing in equation 
(11) and θ1 terms appearing in (12). The magnitudes of these values are small, and thus 
the cross-coupling effects are weak. However, the inclusion of the flywheel introduces 
strong cross-coupling between the axes of the system as can be seen from the presence 
of θ3  in the last terms of equations (11) and (12). θ3 is usually in the order of thousand 
rpm. This strong cross-coupling increases the difficulty of the control problem. For the 
passive LOS stabilization system, the control requirement can be stated as: achieve a 
sufficient high bandwidth with no steady state error for step inputs and decouple the 
system such that there is minimal cross-coupling effect in the system. The ability of the 
proposed control to meet the above requirement will be considered in the following 
sections. Define the state variable, X, control signal, U, and the output vector,Y, as 
follows. 

[ ] ,, 212121
T

T

UX ττθθθθ =⎥⎦
⎤

⎢⎣
⎡=

••  and [ ]TY 21 θθ=  

2. DESIGNING REQUIREMENT 
The ultimate requirement to the compensator is, that it works "well" for real system. 
This requirement can be subdivided into the following four categories: 
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i. Nominal stability: The compensator must ensure internal stability in the controlled 
system, provided the model is correct 

ii. Nominal Performance: The compensator must minimize the error 
iii. Robust Stability: for all models the compensator must ensure internal stability 
iv. Robust performance: for all models the compensator must ensure that the error is 

within a specified bound 
 
3. ROBUST CONTROLLER 
A popular modern approach to the design of robust controller is linear quadratic 
Gaussian/loop transfer recovery (LQG/LTR) [8-10]. This approach has been used 
extensively in the design of advanced multivariable control system. LQG/LTR relies on 
the separation principle, which involves designing a full state-variable feedback and 
then an observer to provide the state estimates for feedback purposes. The result is a 
dynamic compensator that is similar to those resulting from classical control 
approaches. The importance of separation principle is that compensators can be 
designed for multivariable systems in straightforward manner by solving matrix 
equations. Suppose that we have a plant model with state-space representation as: 
           wUXX Γ++=

•

BA                                                                                       (13) 
            Y = C X+υ                                                                                                                    (14) 
U represents the vector of control signals, y is the vector of measured outputs (corrupted 
by υ) and w, υ  are ، white noise (namely zero-mean Gaussian stochastic processes).   w, 
υ  are uncorrelated in time and have covariance: 

                           0}{,0}{ >=≥=
ΤΤ

VvvEWwwE                                     (15)                                      

Assume that w, υ  are uncorrelated with each other, namely that. 0}{ =ΤwvE         (16)           
The problem is then to design a feedback-control law which minimize the cost function                                     
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Where z =Mx is some linear combination of the states, and Q=QT >0 R=RT>0 are 
weighting matrices. Note that because the states and the control are both random , the 
cost function will be random, so we minimize it on the average. The solution is given by 
the following: 
The optimal state-feedback matrix Kc is given by  
              cc PRK TB1−=           (18) 
Where Pc satisfies the algebraic Riccati equation  

01 =+−+ − QMMPRPPP cccc
TTT BBAA                                                               (19) 

And 0≥= Τ
cc PP  (generally there are many solutions to (19), but only one of them is positive-semi 

definite.)  The Kalman-filter gain matrix Kf is given by: 
1−= VPK T

ff C                                       (20) 

Where  fP  satisfies another algebraic Riccati equation 

01 =ΓΓ+−+ Τ− WPVPPP f
T

ff
T

f CCAA                                                 (21)                                       

and  0≥= Τ
ff PP        

The solution satisfies the separation principle, which states  that the problem can be 
solved in two separate stages. In this case one may still be interested in using the LQG 
theory as a method for synthesizing controllers but with the matrices W,V,Q and R 
which appear in the problem formulation considered as "tuning parameters" which are 
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to be adjusted until a satisfactory design is obtained, rather than as representation of 
aspects of the real problem.  
 
3.1 Loop Transfer Recovery (LTR) Method 
LQR has excellent stability margins (infinite gain margin and 60 degree phase margin). 
We know that LQR is usually, considered impractical because it requires that all states 
be available for feedback. Doyle and Stein[11 ] showed, under certain conditions, that 
LQG can asymptotically recover the LQR properties. One of the proplems with LQG is 
that it requires statistical information of the noise processes. In most cases, however , 
this information is either unavailable or is costly and impractical. Mathematical 
arguments and simulations had shown that the LQG design parameters (Γ ,Q  ) have 
strong influence on the performance of the system. It was suggested that because Г and 
Q initial values are not usually available, they should be used instead as tuning 
parameters to improve system performance. Let the transfer function of the LQG 
compensator shown in 
 Figure 3 be K(s). The return ratio at point 1 is then  
               ( ) ( ) ( ) ( ) BAICCBAI ff

11 −− −++−−= sKKKsKsGsK cc                              (22) 
     Let    ( ) ( ) 11  and  )()( −− +−=Ψ−= cKssss BAIAIφ                                               (23)                             
             [ ] BCCI ff φ1−Ψ+Ψ−= KKKKG c                                                                  (24) 

Now suppose that we obtain Kf  by choosing the covariance matrix W                 
                   Σ+= qWW o                                                                                                               (25) 

Where 0≥Σ=Σ T , and q is a real, positive parameter. Here oW  could be an estimate of 
the true process-noise (w) covariance, for example; in order to obtain LTR we shall 
need to increase q to arbitrarily large values. Substituting for W in (21), we obtain 

   0CCAA f
T

ff
T

f =ΓΣΓ+
ΓΓ

+−+
−

T
T

o

q
W

q
PVP

q
P

q
P 1

                                                 (26) 

As q is increased, so the Kalman filter is being 'told' that an increasing proportion of the 
variance in the plant output is due to state variations, and a decreasing proportion to 
measurement errors[8-9].  The preceding suggests the following procedure for design. 
Choose the LQR parameters such that the LQR loop transfer function (also called the 
target feedback loop) has desirable time and /or frequency domain properties. Design an 
observer with parameters specified before. Increase the tuning parameter q until the 
resulting loop transfer function is as close as possible to the target Because the loop 
transfer function of LQG approaches that of LQR, it will asymptotically recover it 
properties. 

Fig. 3 The LQG Compensator Structure of  LOS system 
 

Fig. 4  Fuzzy Controller structure  for LOS 
system 

 
4. FUZZY CONTROL 
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Fuzzy system theory was first introduced to the research community in 1965 by Zadah 
[13]. Fuzzy set theory can be considered as a development of the classical set theory. In 
his fuzzy theory, Zadah assumes a gradual transition from one set to another. 
Accordingly, better presentation of different variable can be obtained with minimal 
number of sets. Hence classical sets are a simplified case of fuzzy sets where sets the 
membership level takes only two values, zero or one. 
 
4.1 Limitation of Conventional Controllers 
Conventional controllers can not used in all applications because it has a lot of 
restrictions: (1) Plant nonlinearity: Nonlinear models are computational intensive and 
have complex stability problem. (2) Plant uncertainty: A plant does not have accurate 
models due to uncertainty and lack of prefect knowledge. (3) Uncertainty in 
measurements and difficult to model.  However Fuzzy Control is used in different 
research and industrial due to its advantages: ( 1)Ability to translate imprecise /vague 
knowledge of human experts. (2) Smooth and robust controller behavior. 
 
4.2 Fuzzy Control Structure  
  Fuzzy control theory can be found in many text books a and papers [13,14]. However 
the controller is composed of four elements as follow: 
i. Fuzzyfication interface: it converts the crisp inputs to linguistic values that are easy 

to manipulate through controller's components. 
ii. Rule-base: It is a set of If-then rules that describes the knowledge of the experts of 

how to control the process. 
iii. Inference mechanism: It is mechanism that uses the fuzzified inputs together with 

the rule-base to form the fuzzy control action. 
iv. Defuzzification interface: it converts the fuzzy conclusion into a crisp value suitable 

to be used as an input to the process. 
 
4.3 LOS Fuzzy Control 
A full matrix fuzzy controller is designed to control the two state variables ( 1θ , 2θ ) of 
the LOS system considering the strong coupling effect the system possesses. Two fuzzy 
controllers are used as direct controllers (forward path between 1θ - 1τ and 2θ - 2τ ) while 
the other two controllers are used to decouple the cross relationship between 1θ - 1τ and 

2θ - 2τ . Figure (4) shows the controller structure. The four controllers are MISO fuzzy 
controllers with two inputs representing the error and the change rate of the error. The 
inputs are given by the following equations. 

( ) ( ) ( )KTKTKTe 11
1

θθθ −=
∗ , ( ) ( ) ( )( )

T
TKeKTe

KTc
1

11

1

−−
= θθ

θ
                   (27) 

( ) ( ) ( )KTKTKTe 222 θθθ −=
∗ ,   ( ) ( ) ( )( )

T
TKeKTe

KTc
122

2
1

−−
= θθ

θ
                   (28) 

Where e , c represent the error and the change rate of error respectively and 
∗

θ  ,θ  
represent the desired and measured angles respectively. Five membership functions are 
used for each input and output of the four fuzzy controllers. Larger number of 
membership functions would not enhance the controller performance dramatically; 
however it will increase the complication of the design process. On the other hand, 
fewer number of the membership functions will significantly affect the controller 
performance negatively. Skewed triangular membership functions are used for inputs of 
the four fuzzy controllers.  
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For the outputs, singletone membership functions are used. The singletone membership 
function simplifies the defuzzification when used for crisp outputs.  Finally, the rules at 
rule-base of the fuzzy controller were formed by examining the linearized model of the 
LOS system in addition to the open loop analysis; the rule base was formed according to 
the following facts:  
The coupling effect dominates the characteristics of the system; hence, to move one 
gimbal, the controller is required to generate a sufficiently high torque about the gimbal 
perpendicular axis rather than its axis[13]. Appling a positive torque to the yaw channel 
will vary both angles positively. Meanwhile, a positive torque in the pitch channel 
implies a negative variation in the yaw angle and positive one in the pitch angle. The 
rule base was constructed so that it represents a human expert in the loop. For instance, 
one rule that a human may use to control the system is "if the pitch angle is less than the 
set point ( 2θe is positive) then 1τ should be positive" an other rule that would represent 
more detailed information is "if that angle is less than the set point and approaching that 
point very fast a negative torque may be applied to make shore that we don’t over shoot 
the set point. The rule base are indicated in table (1).  
 
5. SIMULATION RESULTS 
 
A prototype for the passive LOS stabilization system has the parameters as 
follows[7,14]:  A (Kgm2) = 0.0392, B (Kgm2) = 0.0211, C (Kgm2) = 0.0153, D (Kgm2) 
= 0.0049,  E (Kgm2) = 0.0019,  F (Kgm2) = 0.0018, G (Kgm2) = 0.0036, H (Kgm2) = 
0.0057, J (Kgm2) = 0.0089, ωs (rad/s) = 800. 
Series of rectangular inputs for both 1θ (yaw)  and 2θ  (pitch) are applied to the system so 
that 1θ and 2θ  have different frequencies. The pulses frequencies are set to different 
values for each channel to examine the coupling effect at different operating conditions. 
The LQG/LTR controller was applied to the nonlinear model. It can be noted that the 
system developed undesirable oscillation. The phase plane is shown in Figure (5). It 
shows that the system has a high coupling effect (see subplots c, d, e, and f) where a 
variation in one channel developed oscillation in the opposite channel.  
Figure (6a,b) represents the phase plan of the yaw and pitch channels respectively when 
step changes applied to both channels simultaneously. Figure (6 c,d) shows the coupling 
effect on yaw channel when step change is applied to pitch channel and vise versa in 
Figure (6 e,f). It can be noted that the control algorithm provides an asymptotically 
stable system that approaches the equilibrium point in all cases. The coupling effect is 
minimal even when applying simultaneous changes in both channels. For performance 
comparison purposes and system qualification. They are: (1) Integral absolute error 
(IAE i ) is used to evaluate the system tracking performance (2) Integral square error 
(ISE i ) is similar to (IAE) however it discriminates between systems that have close 
(IAE). (3) Integral time multiple Absolute error (ITAE i ) is used to evaluate system 
performance with the time. (4) Integral absolute control action (IACA i ) is used to 
evaluate the efficiency of the system.  Table (2) shows that better results were achieved 
using the fuzzy controller especially after sufficient learning period.  Also by reviewing 
the IAE and ISE of the fuzzy controller, they show that fuzzy controller gives much 
better performances 
 
6. CONCLUSION 
In this paper the analysis of the passive LOS stabilization system with the development 
of its nonlinear mathematical model  is derived. LQG/LTR control algorithm is 
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discussed and its design procedure is presented.  The controller is implemented and the 
simulation results are introduced. The results show that the controllers provided an 
acceptable performance; however, a high overshoot is experienced.  Multi-input Multi-
output fuzzy controller was implemented to control the (LOS) system and minimize the 
coupling effect between system states. The structure of controller was introduced. 
Simulations were performed to examine the system transient and tracking performances.   
The controller was able to form the control surface that decouples the relation between 
the control states 1θ , 2θ  and the corresponding control actions τ1, τ2 and compensate for 
the system's nonlinearity.  Some of the controller parameters were not optimally 
selected; even through the system was asymptotically stable with high tracking and 
transient performances.  The study shows that the fuzzy controller provides a more 
stable system with less sensitivity to the coupling effect. It also shows that the fuzzy 
controller is more efficient and has a high performance than other algorithms. 
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Figure (5) Phase plot of LOS system using LQG/LTR (a) and (b) for channel one and two respectively 
when applying step inputs to the two channels simultaneously, (c) coupling effect of channel two on 
channel one (d) no coupling effect on channel two (e) no coupling effect on channel one (f) coupling 
effect of channel one on channel two. 

 

Rule base for the yaw angle direct controller C11  

     e 
c 

NB NS ZE PS PB 

NB PS PB NB ZE PS 
NS NS NB NB PB PS 
ZE PS PO ZE PB NS 
PS NS ZE PS PB NB 
PB PB ZE PB PS NB 

Rule base for the yaw angle direct controller C22 

     e 
c 

NB NS ZE PS PB 

NB NS PB PB PS NS 
NS PS PB PS NB NS 
ZE NB PS ZE NS PS 
PS PB PB NS ZE PB 
PB NB PB NS NS PB 

Rule base for the yaw angle direct controller C21 

     e 
c 

NB NS ZE PS PB 

NB PS PS NB NS PS 
NS NS ZE NS ZE PS 
ZE PB PS ZE NS NS 
PS NB PB PS PB NB 
PB PB PB PS NS NB 

Rule base for the yaw angle direct controller C12 

     e 
c 

NB NS ZE PS PB 

NB NS NS PS PS NS 
NS PS PB ZE PS NS 
ZE NB NB ZE PS PS 
PS PB ZE NS PS PB 
PB NB NB NS PS PB 

Table  1:  Rule-bases of the full matrix fuzzy controller for the LOS stabilization system 
(NB: Negative big, NS: Negative, ZE: Zero, PS: Positive, PB: Positive big) 
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Figure ( 6) Phase plane of LOS system using full matrix fuzzy controller (a) and (b) for channel one and 
two respectively when applying step inputs to the two channels simultaneously, (c) coupling effect of 
channel two on channel one (d) no coupling effect on channel two (e) no coupling effect on channel one 
(f) coupling effect of channel one on channel two 
 

IACA ISE ITAE IAE 

τ2 τ1 pitch yaw pitch yaw pitch Yaw 
Controller 

3681.1 6646.9 20.6 12.2 3636.8 2746.5 338 195.3 FC full 
matrix 

5484.3 8869.6 18.2 12.8 13626 12254 396 365.8 
LQGR 

nonlinear 
model 

Table 2:  Comparison Results For Pulsed Reference Signal 


