
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

١

Military Technical College
Kobry Elkobbah,

Cairo, Egypt

5th International Conference
on Electrical Engineering

ICEENG 2006

An Implementation of the Run-Length Decode Algorithm using
FPGA

Gouda Ismail Salama*,Ph.D. Fawzy ELtothamy Hassan*,Ph.D.

Ramy Mohammed Bahy*,M.Sc., Sameh shawky Ibrahim*, B.Sc.

Abstract:
This paper presents a real time implementation of Run-Length Decode (RLD) using FPGA as
one of image decompression algorithms. The RLD algorithm is the decoder of the Run-
Length Encode. RLD can be implemented either on commercial DSP or as an ASIC but due
to the huge development in the FPGA field, it is recommended to use the FPGA technology.
The design steps from design entry to files which are needed for the download process are
developed. Also, the method of testing the downloaded design is explained.

Keyword: Run-Length Decode, FPGA, Image compression

1- Introduction:
Image compression process is the reduction of the number of bits required to represent a
digital image [1], Run-Length Encode (RLE) is considered one of a simple image
compression algorithms which depends on the reduction of the repeated image gray levels
values into only two values, the first value represents the gray level value and the second one
represents the number of repetition of this gray level value [2]. The Run-Length Decode
(RLD) is the inverse of the RLE. The RLD depends on the reconstruction of the original
image gray levels from the compressed image (gray levels values and their number of
repetitions). The RLD is required after RLE in order to reconstruct the image after the
compression process; this operation is called the decompression process. In previous work an
implementation of RLE using FPGA was developed [3]. In this paper an implementation of
RLD using FPGA is introduced as a continuation of the previous work. The speed is one of
the main factors in evaluation of a compression and decompression algorithms. In some
applications such as On-Board satellite image compression, the speed of the compression /
decompression algorithms is mandatory due to real time nature of the satellite missions
(simultaneous imaging and downlinking). Therefore, hardware-based solutions are considered
[3-4-5]. The design steps will be accomplished by using two well known packages: FPGA
advantage for HDL design, release 5.2 and Xilinx ISE, release 5.2i.
In this paper, all design steps which includes design entry, functional simulation, synthesis
and timing simulation [6] are introduced. The RLD design description is introduced in the
next section, the simulation results are explained in section 3 , testing the RLD downloaded
design is explained in section 4 and finally conclusion is presented in the last section.

* Egyptian Armed Forces

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٢

2- RLD design description
Fig.1. illustrates the main inputs and outputs to the proposed design. The function of
inputs/outputs signals are given in Table 1.

Table 1. Main Block inputs/outputs

Port Function

input_Data Enters the gray levels values to RAM 3.

input_Rep Enters the number of repetition of the gray levels values to RAM 4.

iena Enables the memories (RAM 3 and RAM 4) in order to be in writing state.

oena Enables the memories (RAM 3 and RAM 4) in order to be in reading state

addr_in Enters the values of addresses to RAM 3 and RAM 4.

Decomp_data The output decompressed data.

rst
Reset, when rst=’1’ the circuit is in reset state and no processing occurs,

when rst=’0’ the circuit is ready for processing procedures.

clk Clock, at every clock rising edge a new compressed image data is entered

Ena
Enable of the circuit (Ena=’1’ the circuit is ‘ON’ and ready for processing

steps, Ena=’0’ the cicuit is ‘OFF’ and no processing sequence occurs).

count Indicates the number of the output decompressed data.

Fig.1. The Main Block of the RLD Algorithm

The compressed image data (gray levels values and its repetitions values) is stored in two
memories then the RLD processing is performed on this data. In Fig. 2, the details of the RLD
block are shown. It comprises:
1- Two memories (RAM 3 and RAM 4).
2- RLD processing circuit.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٣

Fig.2. The Block diagram of the RLD design

The compressed data (input_data and input_Rep are stored in RAM 3 and RAM 4
respectively) and come out when oen signal becomes '1'. During the storage operation the
iena signal equals '1' and oena signal becomes '0' i.e., the two memories (RAM 3 and RAM
4) are in writing state after then the two memories becomes in reading state this is when the
input data (input_Data and input_Rep) is written in the last address (i.e., addr_in =255 or the
memories are full of data). At every clock rising edge (clk) a new compressed data is entered
and stored in RAM 3 and RAM 4. The outputs from RAM 3 and RAM 4 (comp_data and
comp_Rep, respectively) are entered to the RLD processing circuit (RLD_processing) in order
to perform the decoding process. The comp_Rep carries the number of data repetition which
corresponds the input comp_Data. The RLD processing design procedures are written in
VHDL code.

 The RLD_processing circuit includes a special designed decreasing counter which
decremently counts the input repetition value (comp_Rep). At each clock (clk) rising edge the
counter counts (count) are decreased by one and in each decrement count the decompressed
data (Decomp_data) is coming out from the RLD processing circuit. The oena signal and
addr_in are the outputs of RLD processing circuit and at the same time the inputs to RAM 3
and RAM 4. The address of RAM 3 is connected to the address of RAM 4 as shown in Fig.2
in order to write input_Data and input_Rep with the same clock rising edge at the same
address. Once, the counter reaches zero, the oena signal becomes '1' and the addr_in
increased by one in order to exit a new value form RAM 3 and RAM 4 (comp_Data and
comp_Rep) to be entered to the RLD processing circuit (RLD_processing) to perform a new
decoding process and so on.

3- Simulation results
The functional simulation is done by using ModelSim 5.5e. The simulation example is
performed on the outputs from RLE design. Assume that the following values are the outputs
from the RLE algorithm (150 8 100 3). The input of RAM 3 (input_Data) takes the values
150 and 100 (image data or image gray levels values).

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٤

The input of RAM 4 (input_Rep) takes 8 and 3 (number of repetition of the gray levels
values). The output from RLD processing circuit (Decomp_data) is 150 150 150 150
150 150 150 150 150 100 100 100 100. The simulation results are shown in the wave
form as illustrated in Fig.3.

Fig.3. Functional simulation wave forms

The simulation results shows that, the oena signal equals zero as well as count ≠ 0 this means
that the RLD processing is still performed on the same input compressed data (comp_Data
and comp_Rep). When count reaches zero value the oena signal becomes '1' and addr_in
increased by one in order to exit a new data value from RAM 3 and RAM 4 to be processed
by RLD processing circuit.
The design synthesis is done using Leonardo Spectrum. Xilinx-SpartanII-xc2s100pq208 is
selected as FPGA chip with clock frequency 20 MHZ [7] in order to download the proposed
design. Form the synthesis step, we obtain the area report which shows that 74 CLBs are used
in the design, and the time report which indicates that the output data arrival occurred after 16
n sec (this means that the time taken to transfer from one input pixel to the next following one
is 16 n sec (ideal simulation). The design is then converted into its gates level to be ready for
timing simulation (real simulation).The place and route step is done using Xilinx ISE5.2i in
order to make the design suitable for timing simulation, where time delays between different
gates are taken into consideration. After timing simulation of the previous functionally
simulated data, it is noticed that, the output decompressed data (Decomp_data) is not exiting
exactly with the clock (clk) rising edge but delayed by 10 n sec as shown in the wave form
which is illustrated in Fig.4. The data arrival time becomes 26 n sec instead of 16 n sec, this
means that the real output data arrival time occurred after 26 n sec (not 16 n sec as in
functional simulation).

Fig.4. Timing simulation wave forms

After finishing synthesis and timing simulation steps, an EDIF (Electronic Digital
Interchange Format) file is obtained; this file is used for downloading the design on the
selected chip.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٥

4- Testing the RLD design
The FPGA board which include the FPGA chip (Xilinx-SpartanII-xc2s100pq208) has a serial
port connector (RS232)[7]. Testing the downloaded design is done through the serial port. A
design of an UART (Universal Asynchronous Receiver/ Transmitter) should be added to the
RLD processing circuit in order to be adapted with the serial port data transfer protocol as
illustrated in Fig. 5. The output compressed image data which is obtained from the RLE
circuit is transmitted from PC via serial port (bit by bit) to the downloaded UART. The
UART converts the received serial data from serial port into parallel data form which is
entered to the RLD design where, all inputs and outputs to the RLD design are parallel data
(bus of 8-bit). The output parallel data from the downloaded RLD design is converted into
serial form by the downloaded UART and then transmitted through the serial port to the PC.
The data received by the PC is saved in another file (original image file). It should be noticed
that the data included in this file is exactly the same image data (gray levels values) of the
original image.

Fig.5. Block diagram of UART design with the RLD processing circuit

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٦

The UART consists of receiver (UART_Rx) and transmitter (UART_TX) as shown in Fig.6.
The UART_Rx receives the serial data (sin) coming from PC via the serial port and converts
them into parallel form (data_out). The data_out represents the input data to the input
selector (in_selector) then to the RLD processing circuit (RLD_Processing). A start bit (0)
and a stop bit (1) should be added to each eight bit of the input serial data (Pixel value). This
means that the frame of input data consists of ten bits (a start bit, a stop bit and the and in
between 8-bits which represent the input pixel value). The intr signal equals '0' during
entering the bits of the pixel value (8-bit) and then converts to '1' at the end of entering the
pixel value in order to declare that another pixel value has to be entered. The design
procedures of the receiver and transmitter of the UART are written in VHDL code.

Fig.6. Block diagram of UART Rx / Tx

The rate of data transmission to and from FPGA chip according to the crystal oscillator which
is located on the FPGA board is 25 Mbit/sec.[7]. The serial port transmits and receives data to
and from FPGA with baud rate of 300 bit/sec., for this reason the clock dividers should be
designed to adapt the serial port to be suitable to transmit and receive data. The division of 25
MHZ to be 300 HZ produces fraction number which is so difficult to be simulated and
implemented on FPGA so, the crystal oscillator is replaced by another one of 30 MHZ in
order to simplify the division process.

The clock divider (clk_divider2) receives the clock of FPGA board (clk_brd) which is
30 MHZ as illustrated in Fig.5 and converts it to a clock of 4800 HZ (clkfast) which is sixteen
times faster than the baud rate (300 HZ). The function of clkfast is to check the correctness of
the input received data (sin) by the UART_Rx. As shown in Fig.7. With each clock rising edge
of clkfast (at least eight rising edge), if the corresponding input data value is ‘1’ then the input
data (sin) certainly is ‘1’ and vice versa. The clkfast can be named as data verification clock.

Fig.7. Input data verification through clkfast

Rising
edge

Falling
edge Input data through

serial port with
clock rate of 300 HZ

The data verification
clock (clkfast= 4800 HZ)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٧

The clock divider (clk_divider1) divides the clkfast which is 4800 HZ by 16 to produce the
clock Baud (clkbaud) which is used for transmitting the output compressed data from the
RLE processing circuit through the UART receiver (UART_Rx) to the PC via serial port. The
design procedures of the clock dividers (clk_divider1 and clk_divider2) are written by VHDL
code.

 The input selector (In_Selector) selects whether the output data (comp_data) or their
repetitions (comp_rep) is first transmitted to the RLD processing circuit (RLD_pocessing). It
is proposed that the comp_data is transmitted at first then the comp_rep is transmitted. The
enable signal (ena) equals ‘1’ only when comp_data and comp_rep are ready for RLD
processing circuit i.e., the RLD_processing has been received both of comp_data and
comp_rep. The output decompressed image data from the RLD processing circuit is stored in
a RAM where, the FPGA chip (Xilinx-SpartanII-xc2s100pq208) contains two RAM blocks
[7]. The RAM size is proposed to be 256 byte i.e., it can store 256 gray levels values from the
decompressed image data.

 The address selector circuit (addr_slct) selects whether the decompressed image data
is written in the RAM or read from the RAM. The RAM address (RAM addr) takes the value
of addr_w when the RAM is in writing state and in this case the write enable signal (we)
becomes '1'. The RAM address takes the value of addr_r when the RAM is in reading state
and in this case the we signal becomes '0'. The address selector works only when ready signal
(rdy) equals '1' which means that the output decompressed data (din) from the RLD
processing circuit is ready to be written in the RAM. The signal Send equals '0' in case of
writing the decompressed data in the RAM (we='1') and equals '1' in case of reading the
decompressed data from the RAM (we='0').

 The output selector (Out_Selector) works only when send signal equals '1', the send
signal equals '1' to read the decompressed data (RAM_dout) from the RAM. The UART
transmitter serially transmits the output decompressed data which stored in the RAM
addresses (256 addresses) via serial port to the PC, i.e., sout represents the output
decompressed data in a serial form. The data_in represents the output data from the output
selector which entered to the UART_Tx and loaded in a register when shift_load signal equals
'0' and clk_enable equals '1' (clk_enable is considered the enable signal of the UART
transmitter). The shift_load signal converts to '1' during data transmission process via a serial
port. The clk_enable and shift_load signals become '0' at the end of each data transmission.
The xmitmt signal works as a flag where, it equals '0' through data transmission from
UART_Tx to PC and equals '1' at the end of each data transmission, in this case the addr_r is
increased by one in order to read the next data stored in the RAM.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 4 -

٨

5- Conclusion
From the area report and time report obtained from the synthesis step, the hardware utilization
of the selected FPGA chip is given in Table 2 and the real data arrival time is given in Table
3.

Table 2. FPGA area report for RLD design

 Used Available Utilization
CLBs 74 1200 6.17%
IOs 44 140 31.43

Function Generators 133 2400 5.45%
Dffs or Latches 32 3120 1.02%

Table 3. FPGA time report after timing simulation for RLD design

Data required Time (n sec.) 50

Data arrival time (n sec.) 26
Slack (n sec.) 24

From are report, it is clear that the RLD design fits the downloaded target device (Xilinx-
SpartanII-xc2s100pq208) since, the design doesn’t exceed the available hardware resources
(CLBs, IOs, Dffs, and function generators).
From the time report, it is clear that the RLD design has a positive slack time equals to 24 n
sec. This means that the downloaded design on the selected FPGA chip (Xilinx-SpartanII-
xc2s100pq208) can work properly until 41.7 Mhz without errors in output values.

5- References:

[1] Rafel C.Gonzalez , Richard E.Woods, "Digital image processing", Second edition,
university of Tennesse, MedData Interactive, (2002).

[2] Guy E.Blelloch ,"Introduction to Data compression ", computer science department,
Carnegie Mellon University, October 16,(2001).

[3] Gouda Ismail Salama, Fawzy Eltohamy Hassan, Mohammed Sharawy Ibrahim,
Ramy Mohammed Bahy, “An Implementation of the Run-Length Encode Algorithm
using FPGA ”, 11TH international conference on Aerospace Science & Aviation
Technology, Military Technical College, Kobry El-Koba, Cairo, Egypt, 17-19 May
2005.

[4] Tom Kaminski, “A Hardware Implementation of Arithmetic Compression”, Final
Report for 24.433 Thesis Project for the faculty of Computer Engineering at the
University of Manitoba”,March, (2001).

[5] R M Susilo, T R Bretschneider, "On Real time Satellite Image Compression of X-
sat", School of computer engineering, Nanyang Technological University, 2003.

[6] Desigining with FPGA Advantage, Mentor Grahic, student workbook, software
V5.2, January (2002).

[7] Memec Spartan II “LC Users Guide V1.0”, July 21, (2003).

