
Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 1

Military Technical College

Kobry El-Kobbah,

Cairo, Egypt

8th International Conference
on Electrical Engineering

ICEENG 2012

A COMPARATIVE STUDY BETWEEN SOME DESIGN ISSUES IN
DISTRIBUTED SYSTEMS MIDDLEWARE BASED ON WEB SERVICES AND

THEIR IMPACT IN FUTURE CHALLENGES

Ahmed M. Matar ∗, Khaled M. Badran ∗, Moatassem M. Abdallah ∗∗

∗ Department of Computers, M. T. C., Cairo, Egypt
∗∗ Egyptian Armed Forces

ABSTRACT
In this paper, we focus on some design issues in
distributed systems Middleware based on Web
services,and their impact in future challenges.
Middleware performance, Scalability, Manage-
ment and Ubiquity are considered some of the
most elite challenges facing the designers of future
middleware systems. Middleware performance
can degrade at some point, the scalability of the
distributed application can be difficult to control,
managing large heterogeneous applications arises
many questions, and finally, mobility and dynamic
reconfiguration of applications forms the ubiquity
challenge. As a guide for middleware designers, we
propose this comparative study between different
well known middleware systems considering our
proposed design features as points of comparison,
besides analyzing their impact on the previously
mentioned challenges.

Index Terms— Database systems, Middleware
systems, Web services, Naming, Binding

1. INTRODUCTION

1.1. Web Services and Middleware

Many people and companies have debated the ex-
act definition of web services. At a minimum,
however, a web service is any piece of software
(API) or more specifically a Web API that’s avail-
able over the Internet, identified by a URI, executed

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 2

on a remote system hosting the requested services.
Web Services support direct interactions with other
software agents using XML-based messages ex-
changed via Internet-based protocols (HTTP fa-
mously used).

A popular interpretation of Web services is
based on IBM’s Web service architecture based
on three elements; Service requester: The poten-
tial user of a service, Service provider: The entity
that implements the service and offers to carry it
out on behalf of the requester, Service registry: A
place where available services are listed and which
allows providers to advertise their services and re-
questers to query for services.

The Web service protocol stack is an evolving
set of protocols used to define, discover, and im-
plement Web services. Based on the previously
mentioned architecture, the core protocol stack
consists of four layers; service transport layer, re-
sponsible for transporting messages between ap-
plications, XML messaging layer, responsible for
encoding messages in a common XML format, ser-
vice description layer, responsible for describing
the public interface to a specific Web service, Ser-
vice Discovery layer, responsible for centralizing
services into a common registry.

Now that we explained the Web service pro-
tocol stack, let’s have a quick overview of the
mapping of these layers in real life. Simple Ob-
ject Access Protocol(SOAP) is a protocol based
on the exchange of information between multi-

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 3

ple computers in the form of XML messages,
the main advantage of SOAP is its delivery via
many transport protocols, the main focus of SOAP
is Remote Procedural Call (RPC) transported via
HTTP. SOAP is platform independent, and there-
fore enables diverse applications to communicate
with one another. Web Service Description Lan-
guage(WSDL) represents the service description
layer within the Web service protocol stack con-
taining XML grammar that enables the description
of the public interface to a web service. Universal
Description Discovery and Integration(UDDI) rep-
resents the discovery layer within the Web services
protocol stack. UDDI is a technical specification
for building a distributed directory of businesses
and Web services. At its core, UDDI consists of
two parts. First, API details for searching existing
UDDI data and secondly, API details for publishing
new data.

Web Services Design Methodology, there
are two ways to design a web service; Bottom
up method, implementing the working class in a
programming language then finding a WSDL gen-
erating tool to expose its methods as web services.
Top down method, implementing the WSDL docu-
ment then using a code generating tool to build up
the structure of the class, which is to be completed
by the web service developer.

The term middleware first appeared in the mid
1980s to describe network connection management
software. The term again gained its popularity in
the late 1980s as a solution for the problem of link-
ing newer applications to older legacy systems [1].
The appearance of the term in the late 1980s does
not deny the fact that middleware systems existed
long before that, a live example would be Messag-
ing systems that were available as products in the
late 1970s, along with the classical reference on Re-
mote Procedural Call implementation in 1984 [2].

Starting in the mid-1980s, a number of research
projects developed middleware support for dis-
tributed objects, and elaborated the main concepts
that influenced later standards and products. Early
efforts are Cronus (1986) and Eden (1985). Later
projects include Amoeba (1990), ANSAware, Ar-

juna (1995), Argus (1988), Chorus/COOL (1993),
Clouds (1989), Comandos (1994), Emerald (1988),
Gothic (1991), Guide (1991), Network Objects
(1995), SOS (1989), and Spring (1994).

In literature, there are multiple definitions for
the term middleware, ranging from a software layer
between the operating system (and/or the network)
from one side , and applications from the other side;
to connect (glue) two applications together [3]. Ob-
jectWeb [4] defines middleware as ”The software
layer that lies between the operating system and ap-
plications on each side of a distributed computing
system in a network”, while Wikipedia defines mid-
dleware as ”The computer software components or
people and their applications that consists of a set
of services allowing multiple processes running on
one or more machines to interact”. A logical def-
inition for middleware is ”Middleware is the inter-
mediate software that resides on top of the oper-
ating system and communication protocols to per-
form a specific function; whether this function was;
hiding distribution, hiding heterogeneity, providing
uniform standard high-level interfaces to the appli-
cation developers and integrators, or supplying a
set of common services to perform general purpose
functions”.

In order to understand Web Services, we need
to take a look at the way middleware and enterprise
application integration technology has been evolv-
ing in the last decades. Only then, we will be able
to understand Web Services. We are going to give
a quick explanation starting from the one tier archi-
tecture to the middleware.

First, we have the fully centralized Architec-
ture, the one tier (Fig. 1a). Where users and/or
programs access the system through display termi-
nals (dumb terminals) but what is displayed and
how it appears is controlled by the server. This was
the typical architecture of mainframes offering the
advantage of centralized managing and controlling
of all the resources.

Second, we have the client - server architecture,
the two tier (Fig. 1b). This architecture evolved
from the fact that computers became more pow-

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 4

erful, this allowed the possibility of moving the
presentation layer to the client’s machine. Clients
are now independent of each other, one could have
several presentation layers depending on what each
client wants to do. This architecture offered the
advantages of using the computing power of the
client’s machines to create more sophisticated pre-
sentation layers, besides introducing the concept
of application programming interface (API) that
allowed invoking a system from the outside.

Finally, we have the simple middleware, three
tier architecture (Fig. 1c). Starting from this archi-
tecture, any application can be called a middleware.
This architecture is just another layer of indirection
between clients and other layers of the system,
introducing an additional layer of business logic
working with all underlying systems.

(a) One Tier (b) Two Tier (c) Three Tier -
Middleware

Fig. 1: Layers and tiers

Motivation for the use of middleware comes
from evolving access to information and comput-
ing resources from all across the globe into a utility,
like electric power or communication grids. On the
journey of achieving this goal, designers and de-
velopers of distributed software applications face
some solid problems in their practical life, like
reusing legacy software, managing mediation sys-
tems, developing component-based systems, and
adapting client communication through proxies.
One can summarize the previous problems into
four challenges facing the future design and devel-
opment of middleware, which are; Performance,
Scalability, Ubiquity, and Management.
As a consequence to the mentioned challenges, it
was an obvious move to analyze the architectural

aspects of middleware design, concentrating on
those aspects related to the design of distributed
systems. In this paper, we focus on the aspects
of naming, binding, coordination and security as
they are the center in middleware design. The
remainder of this paper is organized as follows.
Section 2 provides a short background and related
work discussing some real world applications us-
ing middleware, and some analyzed middleware
systems. In Section 3, we discuss some issues (re-
quirements) in the process of middleware design
and in Section 4 we present a comparison in the
form of a table between the analyzed middleware
systems and the discussed design requirements as
points of comparison. Finally, Section 5 concludes
the paper with the proper analysis and guidelines
regarding the future aspects in middleware design.

2. BACKGROUND AND RELATED WORK

In this section, we provide a short overview on two
middleware sets; real world applications currently
using middleware, and middleware systems found
in literature. We will use the latter as our case of
study.

2.1. Real World Applications using middleware

During the nineties, The TecBD laboratory at PU-
CRio developed HEROS: a Heterogeneous Database
Management System (HDBMS) [5] [6] [7] [8] [9]
[10], which allow the integration of heterogenous
database systems into a federation so that queries
and updates could be submitted transparently to
the data location, to local access paths hiding any
existing heterogeneity. Inspired by HEROS, the
SINPESQ project [11] was born, adopted by the
Brazilian ministry of environment, whose objective
was to integrate fish disembarkation data from all
the fishing colonies spread through the Brazilian
shores, lakes and rivers. Another real life applica-
tion is the ECOBASE project [12], whose objective
was to share experiences in information integra-
tion environments. Then comes the ECOHOOD
project [13], whose objective was to build a con-

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 5

figurable DBMS adapted to specific application
domains, the point here was to model systems as
an object oriented framework. Last but not least,
the SKYQUERY project [14], which is a functional
prototype used nowadays to federate astronomical
data from different heterogeneous databases using
the cross-match query, its objective was to collect
many details for multiple astronomical bodies from
different archives all over the world.

2.2. Analyzed middleware systems

1. The Araneus Web-base management sys-
tem [15] is a system developed at the Uni-
versity of Roma Tri. The main objective of
the system is to handle both highly structured
data, in relational or object oriented database
systems, and semi structured data, in web
sites. In order to accomplish this task, the
system consists of three main modules, each
module is dedicated for a specific job. The
most important component in the system that
co-ordinates between the three modules is
the ADM Object Manager.
First, the DBMS interface which uses the
standard SQL-based protocol JDBC to com-
municate with a (remote/local) DBMS. Ac-
cessing the DBMS allows the manipulation
and storage of structured data, although the
DBMS is not part of the system, but the sys-
tem relies on the DBMS to handle tables.
Second, the ULIXES language which is used
to query web sites by using a Navigational
Algebra. Querying a web site outside the
control domain of the system requires an
ADM description through the analysis of the
site’s content. Then wrapping the system to
extract semi structured data from the pages
of the web site using a suitable wrapper from
the wrapper library. EDITOR and MIN-
ERVA tools are used to generate the required
wrappers because they allow searching and
restructuring of semi structured documents.
Finally, the PENELOPE which is used for
creating and maintaining new web sites in-

side the control domain of the system. ADM
views are defined using PDL (PENELOPE
Definition Language) and maintained using
PML (PENELOPE Manipulation Language).
The Module supports both the pull and push
techniques for web page creation.

2. Strudel: A Web-site management sys-
tem [16] is a system developed at AT&T
Labs. The Main objective of the system is
also to handle structured and semi structured
data like Araneus. The Main differences be-
tween the two systems are, that STRUDEL
provides a tool for the integration of data
from different sources because it does not
require the storage of all data in one single
repository, in each level in STRUDEL data
is viewed as a graph. The system consists of
four main modules.
First, the Mediator accepts data from dif-
ferent wrappers and generates a data graph,
the wrappers transforms external source’s
data into STRUDEL objects and collections
understood by the mediator and translates
STRUDEL queries into jobs understood by
the source. If the sources contain semi struc-
tured data the mediator communicates with
the Query Processor
Second, the Query Processor whose main
function is to generate query execution plans
for both structured and semi structured data.
Third, the STRUDEL’s Site Management
that receives the data graph from the Media-
tor along with the query execution plan from
the Query Processor and forms the site graph.
The STRUDEL data graph is the same as the
site graph but the latter contains information
on how to display each node’s contents in
HTML. Finally, the HTML Generator that
transforms a site graph into a browsable
graph of HTML pages.

3. Le Select: A Middleware System for Pub-
lishing Autonomous and Heterogeneous

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 6

Information Sources [17]is a system de-
veloped at INRIA, which is a framework
prototype whose objective is to access data
of heterogeneous nature and to invoke data
processing programs over Internet/intranet
environments. Le Select approach is similar
to STRUDEL in the cases of fully distributed
architecture(No global schema and No global
repository) , and connection to multiple data
sources through Java-based wrappers with
additional XML definition files.
Data can be viewed in Le Select through a
standard web browser, in the form of tuples
in a relational database. Regardless of the
native format of the data, wrappers transform
the data into a relational format that can be
viewed by users, then through the media-
tor several connections to the wrappers are
made, and integration of the received data is
then made in the form of tuples.

4. Scaling access to heterogeneous data sources
with DISCO [18] is a system also developed
at INRIA. The main objective of the system
was to focus on the solution of three prob-
lems; fragile mediators, weak data sources,
and graceless failure for unavailable data
sources.
The first problem, fragile mediators, faces
the Database Administrators (DBAs). For
proper execution of a mediator, the DBA
must define the mediator schema, in addition
to some data sources and their local schemas.
Finally, mapping the mediator schema to
the data source’s local schemas via database
views. The problem here lies upon the in-
troduction of a new data source, a new local
schema should be added, and accordingly
the view definition must also change to cope
with the new data source. In some cases,
the schema of the whole mediator have to
be changed in order to accept this new data
source. DISCO handles this problem by pre-
senting the system architecture, that permits
DBAs to develop and implement mediators

independently, limiting the impact of addi-
tion of a new data source to mediators.
The second problem, weak data sources,
faces the Database Implementors (DBIs).
When an application sends a query to the
mediator to be executed, the mediator trans-
forms it into multiple sub-queries each cor-
responding to wrapper controlling a data
source, along with the production of a certain
composition query. The wrapper receives the
sub-query, translating it and sending it to the
data source for computation. Then the wrap-
per receives the answer, transforming it to the
proper format and sends it back to the medi-
ator. The mediator along with the produced
composition query integrates the answers re-
ceived from the different wrappers, then the
answer is sent to the calling application. For
proper query execution, the mediator must
cope with the multiple functionalities of each
wrapper, whether it supports projection or
selection operations ... etc. DISCO copes
with this problem by providing a wrapper
language and a wrapper interface to ease the
construction of wrappers with their specific
functionalities, the mediator then must issue
a sub-query to the wrapper within the domain
of its functionalities
The third problem, graceless failure for un-
available data sources, faces Application
Programmers (APs). In the absence of repli-
cation schemes, if a sub-query is issued to
an underlying data source that’s not avail-
able, the mediator fails to process the query.
DISCO provides new semantics for query
processing if a data source is unavailable
during query evaluation; a partially evalu-
ated query is used to provide a partial answer
to the user issuing the query.

5. Integrating and accessing heterogeneous
information sources in TSIMMIS is a sys-
tem developed at Stanford university. TSIM-
MIS stands for The Stanford - IBM Manager
of Multiple Information Sources, whose goal

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 7

is to develop tools to ease the rapid integra-
tion of heterogeneous information sources
that may include structured and unstructured
data. As mentioned earlier in previous sys-
tems, there is no global database or global
schema to hold information about integrated
objects.
The system is based on the OEM (object ex-
change model) and composed of four main
components; mediators, translators, mediator
generator, and translator generator. Transla-
tors are mainly wrappers that logically con-
verts the underlying data objects to a com-
mon information model, in which, each data
object is described (or tagged) with labels,
types, values, and an optional identifier. Me-
diators co-ordinate the execution of queries
between multiple translators. Mediator Gen-
erators, are used generate mediators automat-
ically or semi automatic. Likewise, translator
generators are used to generate translators
with specific functionalities that guarantee
the successful execution of the issued query.

6. Experiences in federated databases: from
IRO-DB to MIRO-Web is a system devel-
oped at GMD. From the beginning of 1994
to the end of 1996, the IRO-DB ESPRIT
has developed tools for accessing relational,
object-oriented databases in an integrated
way.
The system is based on the ODMG stan-
dard as pivot model and language. The sys-
tem consists of three main layers; the local
layer, consisting of multiple Local Database
Adapters (LDAs). Since the system is based
on ODMG then the model uses OQL (Ob-
ject Query Language), the function of the
adapters is so much similar to the wrapper’s,
exporting local schemas (relational or Object
Oriented) of the data sources into ODMG
schemas, and OQL queries into local data
source query language.
The inter-operable layer, supporting inte-
grated views on the imported schemas. The

integrated views are derived ODMG classes
with many to many relationships. The in-
teractive tool Integrator Workbench; helps
in designing integrated views. Eventually,
the derived classes and their associated rela-
tionships are instantiated by means of OQL
queries.
The communication layer, contains Remote
Object Access (ROA) modules, from which
object oriented remote data access services
can be implemented. The object manager
integrates the ROA protocol with the inter-
operable layer, to give the ability of collec-
tions manipulation. Through the previously
mentioned integration, it is possible retrieve
collections of objects stored on local sites by
invoking of primitive OQL/CLI.

7. The Garlic project is a system developed
by IBM members of the database group in
Computer Science. The goal of Garlic is to
enable distributed large-scale multimedia in-
formation systems; large scale involves lots
of data with multimedia taken as far as possi-
ble to mean data of many types. The bulk of
the data in the world is not stored in database
management systems. There are many spe-
cialized systems emerging to store and search
for particular data types, including image
management systems, etc. However, many
applications can benefit from combining in-
formation from these various systems.
The System differs in the execution proce-
dure of sub-queries within the wrappers. Up
till now, the function of the wrapper was to
execute the sub-query received by the medi-
ator and make the necessary transformation
between local and global. In this system,
the sub-query is not directly executed upon
receival, a query execution plan along with
some associated properties is returned to the
mediator instead of the answer. The mediator
accepts these plans from multiple wrappers
and adds some operators to form the global
query execution plan. Using this technique,

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 8

allows the mediator to have full knowledge
of the current actual wrapper functionalities
before forming the global query execution
plan.

8. MOCHA: A self extensible database mid-
dleware system for distributed data sources
is a system developed at Maryland university.
MOCHA stands for Middleware Based On a
Code SHipping Architecture, like other sys-
tems, the main objective is to scale large
environments connecting data sources dis-
tributed over a computer network. Unlike
most researches on database middleware sys-
tems focusing on the problems of translation
and semantic integration for multiple data
sources, the MOCHA system focuses on two
main problems.
The first problem, the deployment of appli-
cation specific functionality. The definition
of the word self-extensible middleware sys-
tem means automatically deploying applica-
tion specific functionalities needed for proper
query processing. MOCHA derives its func-
tionality from its name by shipping Java code
on demand containing new capabilities to the
remote sites.
The second problem, the efficient processing
of queries with user defined operators. Rely-
ing on the first solution, having automatically
deployed the code, MOCHA produces effi-
cient execution plans using the shipped code
that acts as a filter on the data sources.

3. DESIGN ISSUES IN MIDDLEWARE
SYSTEMS

In this section we are going to discuss some of the
major requirements (issues) that must be present in
any data integration middleware system.

Approach, or rather scientific approach refers
to a skeleton of techniques for investigating phe-
nomena, whether these techniques rounds up to
acquiring new knowledge, or correcting and in-
tegrating previous knowledge. To be termed sci-

entific, an approach of inquiry must be based on
gathering observable changes, empirical and mea-
surable evidence subject to specific principles of
reasoning.
Integrated data model, A data model in software
engineering is an abstract model that documents
and organizes data for communication between
team members and is used as a plan for developing
applications, specifically how data is stored and ac-
cessed. In Our Case, the word ”data model” refers
to the model that co-ordinates communication and
processing between the different entities of the sys-
tem. The word ”integrated” means the transparency
regarding system functionalities.
Query language, Query languages are computer
languages used to make queries into databases and
information systems. Broadly, query languages can
be classified according to whether they are database
query languages or information retrieval query lan-
guages
Query processing, Query processing is the way
user’s queries are processed by the computing sys-
tem. The most famous query processing technique,
currently used by a wide variety of database en-
gines; is the traditional query processing via SQL.
Naming In a computing system, a name is an infor-
mation associated with an object in the system(the
name identifies the object) in order to fulfill two
functions. First, identification, that provides a way
to distinguish the object in question from other ob-
jects in the system. Second, providing and access
path to the object through its name.

Binding is the process of interconnecting a set
of objects in a computer system. For a given object
in the system, provided that it has a name assigned
to it, through the given name, an access path can
be created to the object. The main purpose of bind-
ing, is to link, associate objects to each other inside
the system.i.e., the association, or link, created be-
tween the bound objects, is also called a binding.
The purpose of binding is to create an access path
through which an object may be reached from an-
other object.
Co-ordination refers to the methods and tools that

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 9

P.
O

.C

S
po

ns
or

St
ru

de
l

A
T

an
d

T
L

ab
s

M
ed

ia
to

r
G

ra
ph

of
H

T
M

L
pa

ge
s

St
ru

Q
l

A
ra

ne
us

R
om

a
T

re
U

ni
ve

rs
it

y

M
ed

ia
to

r
R

el
at

io
na

l

L
e

S
el

ec
t

IN
R

IA
D

IS
C

O
IN

R
IA

T
SI

M
M

IS
St

an
fo

rd
U

ni
ve

rs
it

y

M
ed

ia
to

r
O

E
M

M
ir

o-
W

eb
G

M
D

G
ar

li
c

IB
M

M
O

C
H

A
M

ar
yl

an
d

U
ni

ve
rs

it
y

M
W

R
el

at
io

na
l

-
O

.O

SQ
L

A
pp

ro
ac

h

In
te

gr
at

ed
D

at
a

m
od

el

M
ed

ia
to

r
R

el
at

io
na

l
M

ed
ia

to
r

O
.O

M
ed

ia
to

r
R

el
at

io
na

l
-

O
.O

SQ
L

R
D

B
M

S
O

.O

H
T

M
L

In
te

rf
ac

e

N
/C

S
Q

L
O

Q
L

O
E

M
-Q

L
O

Q
L

Q
ue

ry
la

ng
ua

ge

B
as

ed
on

in
fo

re
tr

ie
va

ls
ys

te
m

s

G
ra

ph
M

ap
pi

ng

W
ra

pp
er

s

T
ra

di
ti

on
al

T
ra

di
ti

on
al

S
ta

nd
ar

d
se

t
of

su
b-

qu
er

ie
s

O
E

M

N
/C

T
ra

di
ti

on
al

T
ra

di
ti

on
al

Q
ue

ry
pr

oc
es

si
ng

A
D

M
ob

je
ct

m
an

ag
er

W
ra

pp
er

L
ib

ra
ry

,
JD

B
C

,H
T

T
P

Se
rv

er

M
ed

ia
to

r

T
up

le
s

in
re

la
ti

on
al

ta
bl

es

W
ra

pp
er

s

O
D

M
G

2.
0

O
D

M
G

O
D

M
G

C
at

al
og

N
am

in
g

W
ra

pp
er

s
T

ra
ns

la
to

rs
(W

ra
pp

er
s)

M
ed

ia
to

r

L
D

A
(l

oc
al

la
ye

r)

M
ed

ia
to

r
(i

nt
er

op
er

ab
le

la
ye

r)

N
/C

W
ra

pp
er

s
(O

ve
rV

ie
w

s)

M
ed

ia
to

r

D
A

P
B

in
di

ng

M
ed

ia
to

r
M

ed
ia

to
r

M
ed

ia
to

r
Q

P
C

C
o-

or
di

na
ti

on

N
/C

N
/C

N
/C

A
dm

in
is

tr
at

io
n

In
te

rf
ac

e
N

/C
N

/C
S

ec
ur

it
y

M
an

ag
er

cl
as

pr
ov

id
ed

by
JA

V
A

S
ec

ur
it

y

Ta
bl

e
1:

R
es

ul
ts

of
A

na
ly

si
s

allow several entities to cooperate towards achiev-
ing a common goal. A coordination model provides
a framework to handle this cooperation, by defin-
ing three elements; the coordination entities, the
coordination media, the coordination rules. The
main objective of coordination is to integrate (glue)
several separate activities into a whole. Security
is enforced in the middleware by utilizing many
security features such as; authentication (verifying
identities), authorization (handling credentials),
protecting messages from unauthorized modifica-
tion or disclosure, and managing access policies.
In addition, abstraction, portability, and automation
can be maintained by careful positioning of the se-
curity functionalities, and if the needs be access
control, audit policies, and cryptography; flexibil-
ity and inter-operability can be enhanced.

4. TABULATION OF DATA INTEGRATION
MIDDLEWARE SYSTEMS AND

REQUIREMENTS

In this section we are going to tabulate the previ-
ously mentioned data integration middleware sys-
tems against the stated requirements to provide a
comparative view of the investigation. In the table,
each value describes one of the previously men-
tioned systems in a given aspect, as shown in Table
1.

4.1. Table Terminology

As mentioned in the above table, there are some
terms that might be anonymous to the reader. In this
section, we provide a more detailed explanation of
these terms.

• Mediator, a mediator is a neutral party who
assists in negotiations and conflict resolution
in a process known as mediation.

• RDBMS a database management system in
which data is stored in the form of tables, and

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 10

relationship among the data, which is also
stored in the form of tables

• Middleware (MW) is a software layer resid-
ing on top of the operating system that con-
nects different components or applications.

• SQL (Structured Query Language) is a database
computer language designed for managing
data in a relational database management
system (RDBMS), based upon relational al-
gebra and calculus.

• OEM (Object Exchange Model) is a self-
describing common model for heterogeneous
information exchange.

• OEM-QL (Object Exchange Model - Query
Language) is the logic-based language for
OEM that matches object patterns, gener-
ate variable bindings, construct new OEM
objects from new ones.

• OQL (Object Query Language) is a query
language standard for object-oriented databases
modeled after SQL. OQL was developed by
the Object Data Management Group (ODMG).

• ADM (Araneus Data Model) is used to define
a logical scheme for the web site by present-
ing common features of pages of the same
type.

• ODMG (Object Data Management Group)
is a group whose main objective is to put
a set of specifications for both object and
object-relational databases, for developers
to write applications that maps object and
object-relational databases to products.

1. ODL (Object Definition Language) is
used to define the object types that con-
form to the ODMG Object Model.

2. OQL (Object Query Language) is a
declarative (nonprocedural) language
for query and updating. It used SQL
as basis, where possible, though OQL

supports more powerful object-oriented
capabilities.

• ODMG V 2.0, is the industry standard for
persistent object storage. It builds upon ex-
isting database, object, and programming
language standards to simplify object storage
and to ensure application portability.

• Wrapper is a program that extracts content of
a particular information source and translates
it into a relational form.

• JDBC (Java Database Connectivity) is an
API that defines how a client may access a
database. It provides methods for querying
and updating data in a database.

• LDA (Local Database Adapters) a compo-
nent that sits on top of database servers, con-
structing the local layer (the first layer in the
IRO-DB architecture).

• QPC (Query Processing Coordinator) is the
middle-tier component that controls the exe-
cution off all the queries and commands re-
ceived from the client applications in MOCHA.
The QPC can be reached through a well
known Uniform Resource Locator (URL).

• DAP (Data Access Provider) whose role
is to provide the QPC with a uniform ac-
cess mechanism to a remote data source in
MOCHA.

• N/C: not clear in the published paper.

5. ANALYSIS AND RECOMMENDATIONS

From the previous comparison, it is compelling to
guide the computer engineers to use which system
and in what conditions. In this section, we are
going to assume multiple computer environments,
each requiring one of the challenges as its prime
dominant feature, then state which middleware
system can fit best in this case.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 11

5.1. Naming

Naming in any middleware system can be done us-
ing one of the following techniques:

• Naming context, by organizing the names-
pace of the middleware.

• Name resolution, finding the object associ-
ated with a cartain name.

The following systems use name contexts;
Strudel, Araneus, Disco, TSIMMIS, Miro-web
and the Garlic project. While LE SELECT and
MOCHA use name resolution.

Considering a computer environment whose
dominant feature is performance (first challenge),
the use of naming contexts in this environment
enhances performance. Naming contexts relaxes
the latency criterion, unlike name resolution that
introduces a significant delay in the resolution of
the name to its physical path, regarding requests
for a remote service. Using name contexts helps in
speeding up the navigation through the namespace.

Considering a computer environment whose
dominant feature is scalability (second challenge),
the use of naming contexts in this environment in-
creases scalability. The scalability requirement for
a certain service, rises from the fact of maintaining
acceptable performance with an increasing service
size. At some point, a service might be managing
a large number of objects spanning world wide, in
addition to the creation of new objects at high rate
that requires multiple merge operations, resulting
in a large namespace. Naming contexts is effective
in these cases providing a better performance via
grouping related objects, and shortening the names
of objects.

Considering a computer environment whose
dominant feature is management (third challenge),
the use of naming contexts in this environment el-
evates management. Managing large applications
that are heterogeneous, widely distributed and in

permanent evolution may be hard. Name contexts
deals with this challenge by choosing names inde-
pendently in different contexts, in other words, the
same name can be used reused in different contexts.

Considering a computer environment whose
dominant feature is ubiquity (fourth challenge),
the use of name contexts provides better ubiquity
than name resolution. As for Ubiquity, mobility
and dynamic reconfiguration will become domi-
nant features, requiring permanent adaptation of
the applications. In order to maintain the same
performance of the service, the service needs to
be adaptable. Name contexts provide adaptability
through the creation of mount points, or soft links
between different contexts.

5.2. Binding

Binding can be achieved through the use of one of
two basic techniques:

• Name substitution, replacing an unbound
name by another name containing more in-
formation on the target of the binding.

• Indirection, replacing an unbound name by
(the address of) a descriptor that contains (or
points to) the target object.

The following systems use name substitution;
Strudel, LE SELECT, DISCO, TSIMMIS and
the Garlic project, while Araneus, Miro-web and
MOCHA use indirection.

Performance can be slightly enhanced using
name substitution over indirection. At most cases,
name substitution replaces the name of the vari-
able identifier by its memory location allocated to
the variable, unlike indirection that calls the object
descriptor, enforcing the cost of at least one extra
indirection.

Scalability can be increased using name sub-
stitution. Name substitution relaxes the feature of
flexibility to normal via static binding of objects,

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 12

consequently decreasing the binding time of the
system to objects.

Management can be alleviated through name
substitution. Having a static bind to the object al-
lows all time management and perhaps control on
the given object. In the case of managing mobile
objects, indirection proves to be better in locating a
moving object.

Ubiquity can be improved via the use of indi-
rection over name substitution. Indirection derives
its ubiquitous power from the use of dynamic bind-
ing to a mobile object, hence permitting dynamic
reconfiguration. Another powerful point for indi-
rection mechanisms is delayed binding, deferring
the decision of how to reach the mobile object to
last possible moment.

5.3. Co-ordination

A coordination model consists of three main com-
ponents; the coordination entities, the coordination
media, and the coordination rules.

Coordination exists in one of three common
patterns:

• Observer pattern, it involves the ”observed”
object and an unspecified number of indepen-
dent ”observing” objects.

• Publish - Subscribe pattern, it’s a more gen-
eral form of the observer pattern, in which
two roles are defined. A publisher (event
source) from which events are generated and
selectively transmitted to subscriber(s) (event
sink)

• Shared data space, it identifies a form of
communication between uncoupled objects,
using a single information space organized
as a set of tuples.

All of the previously mentioned systems use
the ”Publish - Subscribe” pattern. So any of these
systems can be used in any computer environ-
ment to produce the coordination efficiency. To

increase scalability of the system, the event me-
diator (publisher) for the environment should not
be implemented as a single server, but as multiple
co-operating servers.

Note: In order to increase the scalability of
the system, the event mediator for the environment
should not be implemented as a single server, but
as multiple co-operating servers, unlike the QPC,
which is the single point of failure in the MOCHA
system.

5.4. Security

Though security is an important aspect in the eval-
uation process of a given middleware, it has been
mentioned in only two of the previous systems;
MOCHA and DISCO, and discussed in details in
MOCHA. Although it was not clear in the pub-
lished papers of the other middleware systems,
how the security mechanism works, it may be jus-
tified that the security feature comes with an extra
overhead that each time an operation (which the
administrator defines as dangerous) is attempted, a
call to the security manager will be made to deter-
mine if the operation can proceed or not.

• In the DISCO middleware system, it has
been mentioned that there are different oper-
ations for Database Administrators (DBAs),
Database Implementers (DBIs) and Appli-
cation Programmers (APs), and it has been
also mentioned that there is an administra-
tion interface, from these two points we can
conclude that there is a security mechanism
present in the system, but not thoroughly
discussed.

• In the MOCHA middleware system, it has
been mentioned that the SecurityManager
class provided by Java is used to implement
security policies on the clients, QPC, and
DAP by means of administrators.

Enforcing security on middleware systems
serves in challenge of management.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 13

6. REFERENCES

[1] “Middleware, wikipedia,” http:
//www-caravel.inria.fr/

˜xhumari/LeSelect/.

[2] R. O. Duda, P. E. Hart, and D. G. Stork,
Middleware Architecture with Patterns and
Frameworks, Sacha Krakowiak, Feb. 2009.

[3] Toni A Bishop and Ramesh K Karne, “A sur-
vey of middleware,” Technical Report Com-
puter Information Science Dept Towson Uni-
versity, vol. 10, no. 5, 2000.

[4] Sacha Krakowiak, “Objectweb - what’s mid-
dleware,” 2005, http://middleware.
objectweb.org/.

[5] Elvira Uchôa, Sérgio Lifschitz, and Rubens
Melo, “HEROS: A heterogeneous object ori-
ented database system,” in Database and Ex-
pert Systems Applications, 1998, vol. 1460,
pp. 435–447.

[6] Elvira Ucha, Srgio Lifschitz, and Rubens
Melo, “HEROS: A heterogeneous object ori-
ented database system,” in DEXA Conference
and Workshop Programme, Vienna,Austria,
1998.

[7] Elvira Ucha and Rubens Melo, “HEROS:
a framework for heterogeneous database sys-
tems integration,” in DEXA Conference and
Workshop Programme, Italy, 1999.

[8] Alvaro C.P Barbosa and Rubens Melo, “Us-
ing HDBMS to access and dispose web infor-
mation,” Technical report, PUC-Rio, Brazil,
Portuguese, 1999.

[9] Alvaro C.P Barbosa and Asterio Tanaka, “Us-
ing HDBMS as an heterogeneous environ-
mental information integrator,” Technical re-
port, PUC-Rio, Brazil, Portuguese, 1999.

[10] C.H.C. Duarte, Esther Pacitti, S.D. Silva, and
Rubens Melo, “HEROS: A heterogeneous

object oriented database system,” in Pro-
ceedings of the VIII Brazilian Symposium on
Databases, Paraba, Brasil, 1993, pp. 383–
394.

[11] “The sinpesq project,” http://sinpesq.
mpa.gov.br/pndpa/web/, year = 2011.

[12] Luc Bouganim, Maria Claudia Cavalcanti,
Franoise Fabret, Maria Luiza Campos, Fra-
nois Llirbat, Marta Mattoso, Rubens Melo,
Ana Maria Moura, Esther Pacitti, Fabio
Porto, Margareth Simoes, Eric Simon, As-
terio Tanaka, and Patrick Valduriez, “The
ECOBASE project: database and web tech-
nologies for environmental information sys-
tems,” Sigmod Record, vol. 30, pp. 70–75,
2001.

[13] Rubens Melo, Fabio Porto, F. Lima, and Al-
varo C.P Barbosa, “ECOHOOD: Construct-
ing configured dbmss based on frameworks,”
in Proceedings of the XIII Brazilian Sympo-
sium on Databases, Paran, Brazil, 1998, pp.
39–51.

[14] Tanu Malik, Alexander S. Szalay, Tamas Bu-
davari, and Ani Thakar, “SkyQuery: A web
service approach to federate databases,” in
Conference on Innovative Data Systems Re-
search, 2003.

[15] G. Mecca, P. Atzeni, A. Masci, Merialdo, and
G. P. Sindoni, “The Araneus web-base man-
agement system,” in ACM SIGMOD Inter-
national Conference on Management of Data,
Seattle, USA, may 1998.

[16] M. Fernandez, D. Florescu, and Jaewoo et al.
Kang, “STRUDEL:a web-site management
system,” in ACM SIGMOD International
Conference on Management of Data, Arizona,
USA, may 1997.

[17] “LE SELECT: a middleware system
for publishing autonomous and het-
erogeneous information sources,” 1999,

http://middleware
http://sinpesq

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE179 - 14

http://www-caravel.inria.fr/

˜xhumari/LeSelect/.

[18] A. Tomasic, L. Raschid, and P. Valduriez,
“Scaling access to heterogeneous data source
with DISCO,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 10, no. 5, pp.
808–823, Sept. 1998.

http://www-caravel.inria.fr/

