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COMPLETE FORCE-BALANCING AND SHAKING MOMENT
OPTIMIZATION OF THE RGGR SPATIAL MECHANISM

M.T. Hedaya .

ABSTRACT

“An RGGR spatial mechanism with constant input speed and arbitrary link
" dimensions is considered. The coupler is a thin straight rod. The masses of
the moving links are distributed so that the centre of their total mass is stat-
ionary throughout the mechanism cycle to insure that the resultant shaking
force transmitted to ground due to the inertia effects on the moving links
vanishes. This is achieved by fixing two balancing weights to the input and
output links. The balancing weight attached to the ouput linkis a solid cylinder
with the greatest feasible length, and with the axis of rotation of the output
link coinciding with one of the generators of its cylinderical surface. The
parallel plane sides of this balancing weight are, in gencral, inclined to its
axis. Both balancing weights are so designed that the Root-wmean-Square shaking
moment arising from the force-balanced mechanism is ininiilnum. Anumerical
example is presented.

INTRODUCTION

Force-balancing of a mechanism means that the forces transmitted to ground
due to the inertia effects of the moving links are balanced or reduced to a
pure couple. This is accomplished by distributing the inasses of the moving
links in such a manner that the centre of their total mass remains stationary
during the mechanism motion. Berkof and Lowen [l] developed the method
. of linearly independent vectors for complete balance of the shaking force
- resulting from the inertia effects in planar mechanism including revolute pairs
only. Tepper and Lowen [2] derived the conditions necessary for the application
of this method to planar mechanisms containing both revolute and prismatic
pairs. When a mechanism is force-balanced, the forces transmitted to ground,
in general, are reduced to a pure couple called shaking moment. The Root-
Mean-Square shaking moment of a force-balanced four-bar planar mechanism
was minimized by Berkof and Lowen [3,4], Carson [5] and Hains [6]. So for as
the author is aware, force balancing with shaking moment minimization has
not been applied to spatial mechanisims. g

In the present paper, the principle used in the development of the method
[ of linearly independent vectors is applied for coinplete balance of the shaking

*  Lecturer, Department of Design and Production Engineering, Faculty of
Engineering, Ain Shams University, Cairo, Cgypt. -



’I ! SECOND A.M.E. CONFERENCE

126 [ \ ML,

— — — 13

DYN-12

6 - 8 May 1986 , Cairc

r—- . ° . “"l

force of an RGGR mechanism with arbitrary link dimensions. It is shown that,
if the coupler is a straight thin rod, the mechanisin can be force-balanced by
attaching two balancing weights to the input and output links. The balancing
weights are so designed that the RMS shaking moment of the force balanced
mechanism is minimum.

MECHANISM DESCRIPTION AND COORDINATE SYSTEMS

Fig. | represents an RGGR mechanism with arbitrary link dimensions. The input
crank AB, which is rotating at a uniform speedw , and the output link DC are
.connected to ground through the Revolute pairs at A and D. The coupler BC
.is connected to the input and output links by the Globular (Spherical) pairs |
-at B and C. The axes of rotation of the input and output links are along the .
lines AE and DO respectively, and the line OE is their common normal. The -
lines BQ) and CQj3 are perpendicular to lines EA and OD respectively.
Points G| and G3 are the mass centres of the input crank and output link after
attaching a balancing weight to each of them. Point G2 is the coupler mass centre.

Fig. I: An RGGR mechanism with arbitrary link dimensions.

The main space-fixed coordinate system Oxyz is located such that point E lies on

the y-axis, and point Q lies in the yz-plane and has a nonnegative coordinate in
the z-direction. 1In addition to thic  comrdiim e g 20T R R
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— space-fixed coordinate system Ox'y'z' in which Oy' coincides with O, and O, is
along the direction OQ3. The mechanism motion is characterized by the para-
meters aj,az,as3,ly,l3,l2 and B, which represent the lengthes of the lines Q) B,BC, QC,
EQ| and OQ3, the y-coordinate of point E, and the angle between the line OD
and the z-axis respectively. The angular position of the input crank is defined
by |, which is the angle between the direction QB and the x-axis, whereas the
angular position of the ouput link is specified by I3, which is the angle between
the direction Q3C and the x'-axis.

Application of Kutzbach's formula shows that the RGGR mechanism has two
.degrees of freedom. In fact one of these degrees represents the idle freedom
.of the coupler, namely its freedom to spin about the line BC without affecting
- the input-output relationship. In the mechanisimm under consideration the coupler
is assumed to be straight rod with small cross-section, and therefore the uncon-
strained spin of the coupler has negligible effect on the mechanism dynamics.
In order to take the advantage of this characteristic, the spin of the coupler
about the line BC, in the present work, is assumed to be constrained by a certain
condition which facilitates the kinematic analysis of the coupler motion.

The body-fixed coordinate systems are located as follows:

I. In the coordinate system Qjuvw, which are fixed to the input crank, the
w-axis coincides with its axis of rotation and the u-axis is along the line Q| B.

2. The u-axis of the coordinate system Gpyuvw, which is [ixed to the coupler, is
along the line G,C. The v-axis is assuined to be always parallel to the xy-plane.
This assumption constrains the spin of the coupler about the line BC, but without
affecting the mechanism dynamics.

3. In the coordinate system Qszuvw, which is fixed to the output link, the w-axis
coincides with its axis of rotation and the u-axis is along the line Q3C.

FORCE-BALANCING

The position of the centre of the total mass of the moving links with respect
to the origin O is defined by the position vector Rg (not shown in Fig. i}, which
is found from:
c
(m1+m2+m3)Rg:ml(Rl+Cl)+m2(Rl+Al+ E§A2)+m3(R3+C3) (1)
where: m, = mass of link (i) after the addition of the balancing weights,
RI’RB = the vectors defining the positions of points Q, and Q3 relative
to the origin O,
AI’AZ = the vectors specifying the positions of points B and C with
respect to points Q| and B respectively, .
CI’CB = the vectors describing the positions of the mass centres Gjand Gy |
with respect to points Q| and Q3 respectively,
2 7 length of I’;Gz.
The mechanism loop equation may be written as:
' R1+A1+A2-A3—R3=O, (2)
where A3 is the vector defining the position of point C relative to point Q3-
Elimination of A, between egs. (1) and (2) yields:

Cc
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Rg (‘r;"“ﬁ]_){[ml* — Rp+lmyr —EHIR,
B Ry il 2 2
i a6 ) m.c
2 2 2 1 2 2
+[lnlCl+ '—‘—T/\lh-[mBLB* a, /\BJ} (3)

This equation describes the trajectory of the centre of the total mass of the
moving links in terms of the stationary vectors IR} and R3, together with the
moving vectors A,C|,A3 and C3. The shaking force is completely balanced
if the link masses are distributed in such a manner that the centre of the total

. mass of the moving links remains stationary throughout a complete mechanism
cycle, i.e. if Rg is constant. This requires that the coefficients of the moving
vectors in eq.”(3) are so adjusted that the quantities inside the last two pairs ,
of square brackets in this equation vanish. This can be achieved only if each -
of these quantities vanishes individually, since the vectors A and C |, which rotate
with the input crank, are linearly independent of the vectors A3 and C3, which move
with the output link. Thus, the conditions of complete balance of the shaking
force may be expressed as:

LI

m_(a,-c.)

lnlcl +—2a22—"2'/"\l = 0 ) (4)
m2C2

m3Csy + a A3 =0 (5)

These conditions may be fulfiled if the masses of the balancing weights, which
are attached to links (1) and (3), and the body-fixed coordinates of their mass
centres are related by:

M) ubl =-mg Usp - rn2 a (l-p) , (6)
M1 Vb1 T Mot Vor @)
b1 ¥b1 T Moy Yo (8)
mb3 ub3 = —11103 u03 - rnz ag My (9)
M3 Vb3 = Moz Vo3 o (10)
b3 Wp3 = Moz Wo3 - (L1)
where:  u :Z—j , (12)

mypr My3 = masses of links (1) and (3) without their balancing weights,
Mp» My3 = masses of the balancing weights attached to links (1) and (3); .
uol’VOI’WOJ’U()3’VO3’WO3 body-fixed coordinates of the mass centres of

links (1) and (3) before the addition of the balancing weights,
Ubl’vbl’wbl’ubB’VbB’WbB = body-fixed coordinates of the mass centres of

the balancing weights fixed to links (1) and (3).

It is to be noticied that, the addition of the balancing weights increases the
moments of inertia of links (1) and (3) about their axes of rotation. In the
mechamism under consideration the moment of inertja of link (1) about its
axis of rotation has no influence on the resulting shaking moment, since it
Is rotating at a constant speed. In order to minimize the increase in the component

of the inertia couple of link (3) along its axis of rotation, which results from
F 5 s T e i e I - P - .
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to it is taken in the form of a solid circular cylinder with the greatest feasible
length, and with the w-axis coinciding with one of the generators of its cylindr.
ical surface. Fig. 2 shows the balancing weight fixed to link (3), which is a
cylinder of radius r and length Lwith its mass centre at point B3. The parallel
plane sides of this balancing weight make an anglexwith its axis. These surfaces,
in general, have elliptical form. The plane defined by the major axes of thgse
ellipses together with the axis of the balancing weight makes an ang'le ¥ with
the uw-plane fixed to link (3). The mass of this balancing weight is related

to the products mp3 up4 and Mp3 Vb3 by:

2 2 13
m, 5 :iﬂfL[(m3 uD3) + (mb3 VbB) J} (13) '
- where/f is the density of the balancing weight.
ju" u"
u‘
vl
\
1Y
) l W a \ '
-— v Vw,w u
B
3
v
‘ Q,
: w A
'._A L

Fig. 2: Balancing weight fixed to the output link.

The position of the balancing weight attached to link (1) relative to its link
may be determined from eqs. (6) to (8)by a reasonable assumption for its inass.
In order to specify the mass of the balancing weight fixed to link (3) and its
position relative to the link, the products m 3 Up3 and m 3 Vp3» Which are obtai -
ned from eqs. (9) and (10), are substituted 1nto eq. (13? to determine the mass
‘of the balancing weight, and then the position of its mass centre relative to
-the link is determined [rom egs. (9) to (I1), by the use ol the calculated value
of my3. The radius of the balancing weight is obtained from:

.2 2
r —vubB + Vg (14)
b3 More information about the balancing weight fixed to link (1), as well as the

angles and ¥, which are required for specifying the balancing weight attached
to link (3) completely, are obtained from the conditions necessary for minimizing
the RMS shaking moment.
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KINEMATIC ANALYSIS
POSITION

The components of R| and A| along the axes of the Oxyz coordinate system are

obtained from:

[x LT L (15)
ir ¥ - L

q 9
T " T
[Alx’Aly’Alz] = la, cos P, a, sin ¥, 0], (16)

l) /qll

. Similarly, the components of R3 and A3 along the axes of the Ox'y'z' coordinate
. system are obtained from:
- 1 l 1 T . i T *
(%G5 Y3 Zq3l = 10,0, 5], (L7 »
T _ i o i, T
[ABX" ABy" ABZ'J = [a3 cos 13, aj sin 13, 0] . (18)
The components in eq. (18) are related to the components of A3 along the main
directions by:

A3X cos B 0 sin P A3x‘
A = W0 l A

3y | ’ 3y |- (19)
A3Z -sin B 0 cos P /\32,

Eqgs. (18) and (19) yield:
U\BX’ABy’A3Z| rr-{qB(osj%( oslg,djsm IB,—LLB:ﬂnH(,os 13J . (20)

When the vectors in eq. (2) are resolved along the main directions, Agmay be
. expressed, by the use of egs. (15) to (17) and (20), as:

AZx -a, Cos‘l‘l + ay cos I3 (‘05'1'3 | 13 sin B
AZy = |-a; sin ]1 + a3 sin I3 - 12 ‘ (21)
AZZ -3, sin P cos 13 i 13 cos B - Jl
The components of A, along the main directions are related to each other by:
2 2 2 2
AZZ + AZy + AZZ = a5 (22)

By substituting the components of Ap in the foregoing equation by the expressions
given in eq. (21), the relation between the angular positions of the input and
output links may be expressed in the form:

Dl + DZ Cos‘l‘3 + J)3 sin'l‘3 0, (23)
— 2. 2.2 ‘ 2 2 2
where: Dl = l] + 12 - l3 21l l3 cos 3 + ap - ay+ ajg
—213 aj sin 3 Cos‘l‘l . 2!2 a, sin l‘l ; (24)
D2 :2513 (J1 sin[j—al cosbcosl‘l) . (25)
D3 = —Za3 (12 +a sin l‘[). (26)

When the angular position of the input crank is known, the variables Dy, Dy and D
can be determined from egs. (24) to (26), and accordingly eq. (23) may be solved
for /3. The solution, in general, yields two values for t3. The suitable value is
chosen according to the initial mechanism position.
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The position of the mass centre G| relative to the origin O is defined by R} +C,
and therefore its coordinates in the Oxyz coordinate system are obtained from:

xgl 0 Cos'l‘l -sin'l'l 0 ugl uglcos’l’l—vgl Sln’Pl

Yol | 5 Ly [+|sinT, ~cos ¥, 0 Vet IF 12+uglsm‘f‘l+vgl cos T, |- (27)
7 | 0 0 1] |w I, w

gl 1 gl I gl

Similarly, the position of the mass centre G3 with respect to the origin O is
specified by R3 + C3, and its coordinates in the Ox'y'z' coordinate system are

obtained from:
u ,cosl,-v _sin ’1'3

. ><'g3 0] [cos ‘1‘3 -sln'l’3 0 ug3 o3 37Vg3 -
Vo3 |7 0 l+|sin 13 cos TB 0 vg3 = ug3sm ‘1’3+ v83 cos ‘1’3 : (28) -
283 13 0 0 | ng l3 + Wg3

The position of the mass centre G; relative to the origin O is described by
R1+Al+}1 AZ’ and therefore its coordinates in the main coordinate system are

obtained from:

- t + ull. si
X (1 p)al cosT) + ufly sin p+ay cos P cos “PB)

g2 , _

Yg2 |7 (l~p)(12+a’ Sm‘l[) + 4 a.3 sin‘ly (29)
ZgZ (1-p) Il ' }1(13 cos |3 —;13sm,k Cos '1‘3)

VELOCITY

By differentiating eq. (23) with respect to time, the angular velocity of the
-output link may be written in the form:
3 . Du + D5 cos‘l3 + D6 sin 13 o)
- 1 cg> - s &3 L
3 D, sin 13 D3 cos 13

where: D, = 2alw (l2 cos’ly + 13 sin P sin l'l) ; (31)
Dg = 2a; ajw cos B sin‘ty (32)
D6 = —2a1 azw cos"l‘l . (33)

The velocity of point C relative to point B is given by Az, and is expressed, by
differentiating eq. (21) with respect to time, as:

/,\2x aw sm'l'1 -3, I‘3lcos B sin 1‘3
f_\Zy = -al‘us cos Iy + a3’l'3 cos 1'3 . (34)
/\22 a, Ty sin 3 sin '13

This velocity can also be obtained from:

where$2 is the angular velocity of the coupler. Resolution of the vectors in
this equation along the axes of the coordinate system Gouvw yields:
: ; y T T
(A (Agly, (ARl = [0, ay5t a7 . (36)
The relation between the components of A, along the axes of the Oxyz and Gpuvw
coordinate systems may be written in the form:
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/\ZX Ux Vx \\.\' ] ("‘\Z)U
i = \¢ A . 37
Asy U, v . (_ 2y (37)
Asy, u, Y W (/\z)w

The elements of the transformation matrix included in the foregoing equation
are the components of the unit vectors U, V and W, which are located along
the axes of the Gouvw coordinate system. The components of U along the main
directions are obtained fromn:

: T _

=== [/ A A

U Ups U1 =5 [Agr Boy
. Since U and V are perpendicular to each other, the dot product (U . V) vanishes.
This gives:

T
22J ‘ (38)

U v, +U V +U V_=0. (39)
X X y 'y z z
The components of V along the main directions arc related to each other by:
2 2 2
VX+Vy+szl. (40)
V is parallel to the xy-plane, and therefore,
v, = 0. (41)
By the use of egs. (39) to (41), V is expressed as:
T 1, T
[VX’ Vyy VZJ h |/\2yv = /\2,\’ Ul ] (42)
a2, A2
where: h = VAZX + /\Zy : (43)
. W is defined by the cross product (U - V), and thercfore it is given by: X
N _ ; ’ 24T .
[Wx, Wy’ \VZ] = azh [/\Zx '\22’ f\zy '\22’ - h™]" . (44) .

In eq. (37), when the componentsof A; along the axes of the Gouvw  coordinate sys-
tem are replaced by their expressions, which are given in eq. (36), and the
components of U, V and W along the main directions are substituted by their
expressions, which are presented in eqs. (38), (42) and (44), then this equation
yields: :

A
27
‘,f.v = —h ’. ) ([4‘5)
A A - A A
2 2X 2x 2
CREEE a C (46)

- When the angular positions and velocities of the input and output links are known,

* the components of A, and A, along the main directions can be determined
from egs. (21) and (34) respectively, and then«y and s, may be calculated by the
use of equations (43), (45) and (46).

ACCELERATION
By differentiating eq. (20) with respect to time, the angular acceleration of

the output link may be put in the form:
D, + Dy, cos I, + D, sinl
7 8 3 9 3

'l‘ = : - ’ (47)
3 DZ sml3 [‘)3(,.05 I3

where: D, = ZaIf«.vz (I, sinBcosl, -1, sinl,),
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o Dg = 2a;azm” cos B cos ll~l3(D2 13+ “a azw cos ll) , (48)
Dy = 2ajazw” sin 1 -1 (Dyl5+4a azm cos P sin®)) . (49)

The accelerations of the mass centres G|, G and G3 are expressed by double dif-
ferentiation of egs. (27), (29) and (28) with respect to time, as:

% | -u_, cosly v osin
gl 2 gl I gl |
ygl “w -ugl sin Iy - Vgl cos 1| (50)
z 0
. gl
) % .1 [(u-1)w?a, cosl -pa cosp(l, sint +1% cos ™
. g2 ““*21 e Tl 373 3
ng =|(p-1) ui a sm ll +pa, !'132cos'l' -T,% sin T’3) , (51)
z82 pay sin P (’1‘3 sin 713 B '1‘3 cos 13)
o - A L2 . w 3 . )
ng —ug3 ‘(.13 sin 13 + lg cos 13) + vg3_ (l3 sin 1432 13 cos '13)
y'gZ , Ug3(l3 cos 1‘3—13 sin i3)—v83(13 sin 13 + P3 cos 1‘3) . (52)
z 0
| BZ]

DYNAMIC ANALYSIS

The angular momentum of link (1), after the addition of its balancing weight,
with respect to point Q|, is given by:

_I:llu Ilu _lluv _llwu v —leu
. Elv = ey Dy _llvw 0 ji=oe hirgawd * (53)
. H -1 -1 | Iy I
lw I wu lvw 1w lw

The matrix included in the foregoing equation is the inertia dyadic of the input
crank, with its balancing weight included, taken with reference to its body-fixed
coordinate system. The total moment of the inertia forces acting on this link
with respect to point Q| is equal and opposite to the rate of change of its angular
momentum with respect to the same reference point Q»and therefore it is given by:

— d " -
Mo {E (Hlu) (0 [Hlu
_ |d = _
1\Vllv T 7| dt (Hlv) - 01X Hlv ’ (54)
g d ,— —
i le HT(HIW) ] W _leJ

where d (Fllu)/dt, d(ﬁl\,)_/dt ard d(l_-'l'lw)[_dt are the time derivatives of the agni-
tudes of the components H,, H|, and H),, respectively. When the origin O is
taken a reference point, the resultant moment of these inertia forces is obtained

from:
Mlx cos'l’l -sin l'l 0 l_\ljlu qu. xgl
Mly =[sin cos 1| 0 i‘lv -m Yar | X Vgl (55)
Mlz 0 0 | le qu_ zgl

By the use of egs. (15), (50) and (53) to (55), the components of M| along the axes

mdk Gl FNL AT ™D o o inin ol a e B R
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Mlx _llwu“ Slnll_ll\’\\f - (,osll mlllygl
2 | 2. .
Mly 5 10 ...\ cos by -1, .« sml1 mlllxgl . (56)
Mlz mll2 Xgl

Similarly, the components of M3, which is the resultant moment of the inertia
forces acting on link (3), after the addition of its balancing weight, with respect
to the origin O, along the axes of the Ox'y'z' coordinate system, is expressed as:

Yoo ap _Z soeds Y i il 1-2 3 !
MBx' leu([B(‘OSIB 1351r\13) IBVW(1351n[3+[3c05]3)+rr1313yg3
. | G g el SRR N v ;
i M3y' = 13wu“_351n[3+i5 cosi3)+13VW(13L0513 13 51n13) 111313xg3 . (57):
M s P ¢
Szt 3w 3

The later components are related to the components of M3 along the main direc-
tions by:

] » [ <i j
M3x cos |3 f) sin |3 MBx'
/ = ( [ A
My, 0 1 ) My, (58)
i _cj E 0 A/
LMBZJ sin 3 0 cos B [\132,
Egs. (57) and (58) yield :
[ A y _ s B R i
My |||313yg3(us‘5 13_“11351nl’u » l%wu('%u(l}('%l} I3 sin I3)
M3y‘ = 111313 Xg3+ 13wu“35m134 l3 cos 13)
. ! ; ' . w2 . =
o, 1‘_ ' ~ ~ )‘ N . . 1 »
_l\/\BZJ :11313 y83 sin | ]3\\*‘ 13(,05| d3wu sml'R(E3 sml3 l3 Cos 13) .
" Lgyy 0 B,y 5'?2‘3 v g s by
+ lew (l3 605.13—13 sm.lg) . (59)
lew sin ] (l3 sin I3 + 13 (*05‘13)

The coupler is a straight rod with a small cross-section, and therefore all its
moments and products of inertia with respect to its body-fixed coordinate system
may be ignored, except its moments of inertia about the axes v and w. Hence,
its angular momentum, with reference to its mass centre G2 is given by:

ot o = 4T .l

Lrlzu, H H = 1 [0ys g

- i (60)

2v’ W
- where I = 1, = I, . The angular momentum of the coupler with respect to the -

. origin O is obtained from:

rHZx Ux Vx wx E2LJT XgZ kgl
sz = Uy Vy \\"y EZ" m, ng N4 ygl ) 61)
_HZ/. J [Jx V/. " z HZ\V 7’;;2 2gl
Egs. (60) and (61) yields:
HZx h Vx’“ v+wx w yg2 2g2 ) 5lg2 ZgZ
sz - \/y V+\“‘Jyv wltms ZgZ kgz— 282 x82 ) (62)

H Vo +W_s X

27 > vz Xg2 Yoo = X 5 Yo
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The resultant moment of the inertia forces acting on the coupler, with respect
to the origin O, is expressed, by differentiating the components of H, in the
foregoing equation with respect to time, as:

v x +W i Z -y .z
MZx quv+Yxﬂv+wx w”_vx W ng ZgZ ng g2 153}
- ! A s g o
sz =-1 VyD‘v+Yynv+\Vy°(w+Wy - m, 7;;2 ?('uz ng XgZ 5
MZZ vzdv}vznv'wzdw'wzn’w ng ng ) xg2 ng

wherew,, and«, are the time derivatives of the magnitudes of the components
s, ands, respectively. These derivatives, as well as the components of V and
* W, are expressed, by the use of egs. (38) and (42) to (46), as:

: Yy * (hz Agy *+ gy Aoy ’f\zz)/hz ’ (64) -
\'/y = (" A, + Ay Ay AN (65)
\'{Z =0, ‘ , _ , (66)
Wx - (ag A2)( '_AZZ * hz AZZ {}\ZX)/aZ ™ (67)
\:Vy = (a% A-Zy Ay, +h" A, /\Zy)/a2 h”, (68)
W= A7Z"A22/a2 h T (69)
N, - (h22/\22 * A, /\Z-‘Z)lh, . . ‘ : (70)
Ay Lh (AZyAZX_/\Zx A2y)'l\2z/\2z('\2y/\Zx-AZXAZy)VaZh ' (71)

In order to findthe components of .2.\2, which are included in eqgs. (70) and (71),
eq. (34) is differentiated with respect to tine.
This gives:

: AZX l,.:.zcosll—aj‘costj(‘i}z c0513+13sinl'3)

' e Il 2w e n - '
A2y =|aw s1nll+a3(l3c0513 l3 smlB) (72)
2 . . 2 ; e .
AZZ a,sin p(l3 cos!3+1351n13)

DERIVATION OF THE SHAKING MOMENT EXPRESSION

The shaking moinent, with respect to a reference point, is defined as the resultant
moment, with respect to the reference point, transmitted to ground due to the
inertia effects of the moving links. This moment may be obtained by sumiming
the moments of the inertia forces acting on the moving links about the reference
point , since the reaction forces and couples at all joints appear in pairs of
. equal magnitudes and opposite directions. Force-balancing of the mechanism under .
. consideration implies that the inertia lorces acting on the moving links  are °
balanced or reduced to a pure couple, and therefore the shaking moment is invari-
ant of the reference point. In the present work, the expression defining the shaking
moment is derived by summing the moments of the inertia forces acting on
links (1), (2) and (3), with respect to the origin O. As mentioned above, the balanc-
' ing weights attached to links (1) and (3) are designed to yield the minimum shaking
St moment, but without changing their masses or the positions of their mass centres,
which have been determined by the force-balancing conditions. Hence, the shaking
moment is expressed in terms the unknown inertia parameters of links (1) and
(3), with their balancing weights, which are included in egs. (56) and (59). In order
to simplify the resulting expression, these parameters are denoted as follows:
9 = 1. - J =1
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When the components of M| and M3 are
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substituted by
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expressions

1

given

in egs. (56) and (59), the components of the shaking moment along the main
directions may be put in the form:

M_ =,

X

" where:

— — b=
|

- -f

4
1/_0 fxi Jl :
4

3
i ¥
7 fziji .
1=0
|

-rnllzzglﬂnlilyglﬂ\l

2

+m,l

x 3

i L o
'mlllxglﬂ“Zy m313><83 ,
mll2xgl;w22_m |
fy2 = —w” sin l'l .

_fx2 = ' COS l1 .
sz =0,

T,osin 1 +°1: 2 cos ‘1

3 3 3 3
¥ s b, - ]'2 sin |

- 3 COS -3 3 < 3 2
[y4 cos |3,

._fyu sin B ,

y3 cos b .,
fy3 sin P .

3yg3cosb—13wl'35mp )

3 By'gB Sm‘B_I3W 13cos|3 ,

(73)
(74)

(75)

(76).
(77)
(78)
(79)
(80)
(81)
(82)

(83)

(84)
(85)
(86) .
(87)
(83)

When the angular position of the input crank is known, the f coefficients, which
are defined in the above equations, can be calculated by the following procedure.

I. Calculate ‘I3, I3 and 13 from egs. (23) to (26), (30) to (33) and (47) to (49).

2.
3.

Calculate
Calculate
to (52).

Calculate
Calculate h
Calculate
Calculate
Calculate
Calculate

4.
-5
- 6.
7.
8.
9.

from eq. (43).

the coordinates of G, from eq. (29).
the components of the accelerations of Gy, Gy and G3 from egs. (50)

MINIMIZATION OF THE RMS SHAKING MOMENT

The magnitude of the shaking moment is given by:

M :V[AZ + M2, M2,
b4 AV 7

the components of Ao, Az and A5 from eqs.(21),(34) and (72).

the components of V, Woandsfrom cqs. (42) and (44) to (46).
the components of V, W, andx from cqgs. (64) to (71).

the components of My from eq. (63).
the f coefficients from eqs. (77) to (88).

Thus, eqgs. (73) to (75) define ti
input crank position, as linear f

e components of the shaking moment, at a known
unctions of the unknown products of inertia Jj to Jy.

(29)
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Substitution by egs. (73) to (75) yields :
4 4
2 B —
M- = ;gg E;b (fxi ij + fyi fyj i fzi fzj) Ji Jj " (90)
The RMS shaking moment M, is obtained from:
2.1 A2
N'Ir = 5T 0[ M d'l‘l . (91)
By the use of eq. (90), Mf can be written in the form:
4 4
72 — —
M =, - F.3J1. 3., (92) .
r i =0 U7
| 211
where:  F. =z of (Fi T * fi £+ £, 1,0 A1) (93)

Eq. (92) gives M as a function of the unknowns J| to Jy. Inorder to find the
values of these unknowns which produce the minimum shaking moment, eq. (92)
is differentiated partially with respect to each of the unknowns and the deriva-
tives are put equal to zero. This gives:

Fil Jl - F12 32 + Fj3 33 + Fm J, = -Fio (i=1,2,3,4). (94)
Double partial differentiation of ME with respect to cach of the unknowns yields:
pATR.
0 Mr
=2F..~ (i=1,2,3,4). (95)
bJZ 1§} ’

i
From egs. (93) and (95), it can be seen that d° M?/b]iz is always nonnegative, and
therefore the values of the unknowns J) to Jy, which are obtained by solving the
four equations represented by eq. (94), correspond to the minimum shaking moment.

DESIGN OF THE BALANCING WEIGHTS

After finding the products of inertia Is,,, and I3y, which refer to link (3) with its
balancing, the corresponding products of inertia 3wy @nd Ih3yw, which belong to
the balancing weight only, are determined. The later values are employed in
calculating the angles and ¥, which are necessary for specifying the balancing
weight. Referring to Fig. 2, B3 is the mass centre of the balancing weight,
and B3u"v"w" is an auxiliary coordinate system fixed to link (3) and located
such that, the w'"-axis coincides with the axis of the balancing weight and the
u"-axis lies in the plane containing the rmajor axes of the elliptical plane sides
of the balancing weight. Bju'v'w' is another auxiliary coordinate system fixed to
link (3). In this coordinate system the w'-axis coincides with the w'-axis, whereas
the u'-axis is parallel to the u-axis. I3y, and Ib3yw a@re related to the inertia
products of the balancing weight with reference to the B3u'v'w' coordinate system
by:

(96)

(97)

bawu  'b3w'w' ' Mb3 Wp3 Yp3 0
| =1 + m v W, o .
b3vw b3v'w' b3 "b3 "b3

The later inertia products can be expressed in terins of the inertia products
of the balancing weight with respect to the Bau"v"w" coordinate system as:

= | , COs ¥ - ] (98)

Ib3w'u' b3w'"u' b3w",m SIN°
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The inertia products l}bw”u" and ]3bv"w" are given by:

m r
b3

- - 10C
]I)3w"u" 4 tanX ’ (100)
Iy = 0 ¢ (101)

From egs. (96) to (101): - rz

o - tan | - - e ——— (102)

g V“b3wu"“b3 W3 Up3) *Ub3yw ™3 Vb3 Wp3

| -im v W .

. 5 o g ]b3vw b3 'b3 %b3 a3

biwu "'b3 Vb3 Ub3

Knowing the anglesx and¥ , the balancing weight attached to link (3) is specified.
The balanchig weight fixed to link (1) may be designed in a similar way, or
in any form which gives I}, and I, the values obtained by the solution of
eq. (94).

EXAMPLE

The proposed method was applied to an RGGR mechanisin with the following
dimensionless parameters.

ll/al =5 Iz/al 0.9 13‘/al =5
= o = =
B = 80 az/al =6 aB/al = ff
Ugl/al = 0.5 Y] 3 Wy 0 - :levw =0
: mz/mol = 3 (tz/a1 = 3 l/molal =9
m03lmo1 =4 ug3/a1 = 2 vg3 = wg3 =D
Ionu:IOB\'w:O [OBW/mOl 4 =
The force-balancing conditions were applied with mbl/molzz and fL=m l/a?. This
gave: 0
Ubl/al = -1 Vo = W = 0 -
mbB/mol:S.S UbB/aI :—1.6245 V3= Wp3 = 0
r/al = 1.645 Ibawf(mola]),— 34.56
The shaking moment optimization yielded:
2. 4y
llwu/(molal)A 59.94 Ilvw/(mol al)» -55.75
K = 28.5° ¥ = 226.6°
By the addition of these balancing weights, the shaking force was completly
balanced, and RMS shaking moment was reduced from 22.38 My ™ 2 al?— to
14.25 m 2 a-l", i.e. to 649% of its initial value.

CONCLUSIONS

The following conclusions may be drawn regarding the force-balancing and shaking
moment optimization of an RGGR mechanism with arbitrary link masses and
dimensions, except its coupler which is assumed to be a thin straight rod .

I. The shaking force can be balanced completely by attaching two balancing
weights to the input and output links.
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weights, and therefore more conditions are necessary for specifying the balancing
weights completely.

3.

Complete balancing of the shaking force is independent of the input speed,

since the total mass centre of the moving links remains stationary during the
mechanism motion.

4.

When the input crank is rotating at a uniform speed, its moment of inertia

about its axis of rotation has no influence on the resulting shaking moment, and
the optimization of the shaking moment defincs its inertia products Ibiwu @andlp)vw
only.

3.
Tt

The output link, is assumed to be moving at a variable speed, and therefore
is taken as a cylinder located such that one of the gencrators of its cylindrical

. surface coincides with the axis of rotation of the output link. This condition

specifying this balancing weight completely. The inclination of the parallel plane
sides of this balancing weight allow-for adjusting its inertia products I3y and Ih3vw,
to minimize the RMS shaking motinent, without affecting its inertia moment Ih3y -

1.

2.
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