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COMPLETE FORCE-BALANCING AND SHAKING MOMENT 

2 	 • OPTIMIZATION OF THE RGGR SPATIAL MECHANISM 

M.T. Hedaya . 

ABSTRACT 
• An RGGR spatial mechanism with constant input speed and arbitrary link 
• dimensions is considered. The coupler is a thin straight rod. The masses of 

the moving links are distributed so that the centre of their total mass is stat-
ionary throughout the mechanism cycle to insure that the resultant shaking 
force transmitted to ground due to the inertia effects on the moving links 
vanishes. This is achieved by fixing two balancing weights to the input and 
output links. The balancing weight attached to the ouput link is a solid cylinder 
with the greatest feasible length, and with the axis of rotation of the output 
link coinciding with one of the generators of its cylinderical surface. The 
parallel plane sides of this balancing weight are, in general, inclined to its 
axis. Both balancing weights are so designed that the Root-ivlean-Square shaking 
moment arising from the force-balanced mechanism is minimum. Anumerical 
example is presented. 

INTRODUCTION 
Force-balancing of a mechanism means that the forces transmitted to ground 
due to the inertia effects of the moving links are balanced or reduced to a 
pure couple. This is accomplished by distributing the masses of the moving 
links in such a manner that the centre of their total mass remains stationary 
during the mechanism motion. Berkof and Lowen [1] developed the method 
of linearly independent vectors for complete balance of the shaking force • 

• resulting from the inertia effects in planar mechanism including revolute pairs 
only. Tepper and Lowen [2] derived the conditions necessary for the application 
of this method to planar mechanisms containing both revolute and prismatic 
pairs. When a mechanism is force-balanced, the forces transmitted to ground, 
in general, are reduced to a pure couple called shaking moment. The Root-
Mean-Square shaking moment of a force-balanced four-bar planar mechanism 
was minimized by Berkof and Lowen [3,4], Carson 151 and Hains [6]. So for as 
the author is aware, force balancing with shaking moment minimization has 
riot been applied to spatial inechani sins. 

In the present paper, the principle used in the development of the method 
[ of linearly independent vectors is applied [or complete balance of the shaking I 
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force of an RGGR mechanism with arbitrary link dimensions. It is shown that, 
if the coupler is a straight thin rod, the mechanism can be force-balanced by 
attaching two balancing weights to the input and output links. The balancing 
weights are so designed that the RMS shaking moment of the force balanced 
mechanism is minimum. 

MECHANISM DESCRIPTION AND COORDINATE SYSTEMS 

Fig. 1 represents an RGGR mechanism with arbitrary link dimensions. The input 
crank AB, which is rotating at a uniform speed , and the output link DC are 
connected to ground through the Revolute pairs at A and D. The coupler BC 
is connected to the input and output links by the Globular (Spherical) pairs 

.at B and C. The axes of rotation of the input and output links are along the 
lines AE and DO respectively, and the line OE is their common normal. The 
lines BO].  and CQ3  are perpendicular to lines EA and OD respectively. 
Points G1 and G3 are the mass centres of the input crank and output link after 
attaching a balancing weight to each of them. Point G

2 is the coupler mass centre. 

Fig. 1: An RGGR mechanism with arbitrary link dimensions. 

The main space-fixed coordinate system Oxyz is located such that point E lies on 
the y-axis, and point Q1 lies in the yz-plane and has a nonnegative coordinate in 

,the z-direction. In addition to this  rnnrrlir to cItctrIrr■ 
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space-fixed coordinate system Ox'y'z' in which Oy' coincides with Oy  and Oz' is 
along the direction 0Q3. The mechanism motion is characterized by the para-
meters ai,a2,a3,11,13,12 and 13, which represent the lengthes of the linesQj B,BC,Q3C. 
EQ1 and 0Q3, the y-coordinate of point E, and the angle between the line OD 
and the z-axis respectively. The angular position of the input crank is defined 
by '1'1, which is the angle between the direction Q1B and the x-axis, whereas the 
angular position of the ouput link is specified by '1'3, which is the angle between 
the direction Q3C and the x'-axis. 

Application of Kutzbach's formula shows that the RGGR mechanism has two 
.degrees of freedom. In fact one of these degrees represents the idle freedom 
of the coupler, namely its freedom to spin about the line BC without affecting 

•the input-output relationship. In the mechanism under consideration the coupler 
is assumed to be straight rod with small cross-section, and therefore the uncon-
strained spin of the coupler has negligible effect on the mechanism dynamics. 
In order to take the advantage of this characteristic, the spin of the coupler 
about the line BC, in the present work, is assumed to be constrained by a certain 
condition which facilitates the kinematic analysis of the coupler motion. 

The body-fixed coordinate systems are located as follows: 
1. In the coordinate system Qiuvw, which are fixed to the input crank, the 
w-axis coincides with its axis of rotation and the u-axis is along the line Q113.  
2. The u-axis of the coordinate system G2uvw, which is fixed to the coupler, is 
along the line G2C. The v-axis is assumed to be always parallel to the xy-plane. 
This assumption constrains the spin of the coupler about the line BC, but without 
affecting the mechanism dynamics. 
3. In the coordinate system Q3uvw, which is lixed to the output link, the w-axis 
coincides with its axis of rotation and the u-axis is along the line Q3C. 

FORCE-BALANCING 

The position of the centre of the total mass of the moving links with respect 
to the origin 0 is defined by the position vector R (not shown in Fig. I), which 
is found from: 

2  
(m1  +m2  +m3  )12 g=m1 (R 1  +C1  )+m2  (R1 +A1a2 + —A2  )+m3  (R3  +C3  ) 	(1) 

where:=.nr 	mass of link (i) after the addition of the balancing weights, 
R1 ,R3  = the vectors defining the positions of points Q1  and Q3  relative 

to the origin 0, 
A I 'A2 = the vectors specifying the positions of points B and C with 

respect to points Qi and B respectively, 	 • 
C1'C3 = the vectors describing the positions of the mass centres Gland G3: 

with respect to points Qi and Q3 respectively, 
c2 	length of BG2. 

The mechanism loop equation may be written as: 
R I + Al + A2- A3 - R3 = 0' 	 (2) 

where A3 is the vector defining the position of point C relative to point Q3. Elimination of A2  between eqs. (I) and (2) yields: 
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This equation describes the trajectory of the centre of the total mass of the 

moving links in terms of the stationary vectors R1 and R3, together with the 

moving vectors AI,C1,A3 and C3. The shaking force is completely balanced 

if the link masses are distributed in such a manner that the centre of the total 

mass of the moving links remains stationary throughout a complete mechanism 

cycle, i.e. if R is constant. This requires that the coefficients of the moving 

. vectors in eq.g(3) are so adjusted that the quantities inside the last two pairs 

of square brackets in this equation vanish. This can be achieved only if each 

of these quantities vanishes individually, since the vectors Al and C1, which rotate 

with the input crank, are linearly independent of the vectors A3 and C3, which move 

with the output link. Thus, the conditions of complete balance of the shaking 

force may be expressed as: 

m
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= 0 , 	
(4) 

m2c2  
m
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+ 

a2 

A
3 

= 0 	
(5) 

These conditions may be fulfiled if the masses of the balancing weights, which 

are attached to links (1) and (3), and the body-fixed coordinates of their mass 

centres are related by: 

Mbl Ub I 	.-M01 u01 	M2 al ( 1 -)j)  

mbl vbl 	 vol ' 

mbl wbl 	 wol ' 

inb3  ub3 	-rno3  u03 - 1112 a3 	, 

mb3 vb3 -mo3 vo3 

mb3 wb3 = -mo3 wo3 • 

where: 
	

= a
2 

ca  

masses of links (1) and (3) without their balancing weights, mol' mo3 

masses of the balancing weights attached to links (1) and (3), mbl' mb3 

u
ol,  vol' w 

	u
o3' vo3'  wo3 	

body-fixed coordinates of the mass centres of 

links (1) and (3) before the addition of the balancing weights, 

ubi,vbi,wbi,ub3,vb3,wb3 = body-fixed coordinates of the mass centres of 

the balancing weights fixed to links (1) and (3). 

It is to be noticied that, the addition of the balancing weights increases the 

moments of inertia of links (1) and (3) about their axes of rotation. In the 

mechamism under consideration the moment of inertia of link (1) about its 

axis of rotation has no influence on the resulting shaking moment, since it 

is rotating at a constant speed. In order to minimize the increase in the component 

of the inertia couple of link (3) along its axis of rotation, which results from 
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to it is taken in the form of a solid circular cylinder with the greatest feasible 
length, and with the w-axis coinciding with one of the generators of its cylindr.. 
ical surface. Fig. 2 shows the balancing weight fixed to link (3), which is a 
cylinder of radius r and length L with its mass centre at point 133. The 	parallel 
plane sides of this balancing weight make an angleawith its axis. These surfaces, 
in general, have elliptical form. The plane defined by the major axes of these 
ellipses together with the axis of the balancing weight makes an angle g with 
the uw-plane fixed to link (3). The mass of this balancing weight is related 
to the products mb3 ub3  and mb3  vb3  by: 

(13) 
1/3 

mb3 	Wm3 u133)2 + (inb3 vb3)A 

where/.  is the density of the balancing weight. 

Fig. 2: Balancing weight fixed to the output link. 

The position of the balancing weight attached to link (1) relative to its link 
may be determined from eqs. (6) to (8)13y a reasonable assumption for its mass. 
In order to specify the mass of the balancing weight fixed to link (3) and its 
position relative to the link, the products mh3  ub3  and mb3  vb3, which are obtai - 
ned from eqs. (9) and (10), are substituted' into eq. (13) to determine the mass 

:of the balancing weight, and then the position of its mass centre relative to 
the link is determined from eqs. (9) to (11), by the use of the calculated value 
of mb3. The radius of the balancing weight is obtained from: 

r ub3  + vb3  i12 	2 

More information about the balancing weight fixed to link (1), as well as the 
angles a and `6 , which are required for specifying the balancing weight attached 
to link (3) completely, are obtained from the conditions necessary for minimizing 
the RMS shaking moment. 

(14) 
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KINEMATIC ANALYSIS 
POSITION 

The components of R1 and A1 along the axes of the Oxyz coordinate system are 
obtained from: 

yqi , NI IT - 10, 12, I I IT , 	 (15) 
[A Ix, A ly' A lz]T = [a l costl' a l sin 	0]T. 	 (16) 

. Similarly, the components of R3 and A3  along the axes of the Ox'y'z' coordinate . system are obtained from: 

Y c/1 3, zlci3]T 	= 	[0, 0, 13]T 
(17) 

[A3x1, A3y' ,  A3z1]T 	[a3 cos 'I3'  a3 	3 sin '1' '  0]T. 	 (18) 

The components in eq. (18) are related to the components of A3 along the main 
directions by: 

(19) 

[A3x ,A3y,A3z T,-,[a3cosBcos 13, a3 sin 13 ,- a3  sinBcost3  J
T. 	 (20) 

When the vectors in eq. (2) are resolved along the main directions, A 2  may be expressed, by the use of eqs. (15) to (17) and (20), as: 
A 2x 	-a1  cos Ai + a3  cos li cos 13 i 13  sin B 
A2y  = -a l sin 1'1 + a3 sin T3 - 12 	 (21) 
A2z 	-a3 sin t3 cos 13 + 13 cos 13 - 11 

The components of A2  along the main directions are related to each other by: 
A  2 	A  2 	A  2 	2 
— 2z + — 2y -I- — 2z = a2 	 (22) 

By substituting the components of A2 in the foregoing equation by the expressions 
given in eq. (21), the relation between the angular positions of the input and 
output links may be expressed in the form: 

D I + D2 cosi3 + 1)3 sin 'I'3 = 0 , (23) 

	

2 2 2 	 2 2 where:  D I = 11 + 12 + 13 - 211 13 cos p + a /  - a2  + a2 
3 

	

-213 al sin p cos i + 212  a l  sin l'i  , 	 (24) 
D2 = 2a3 (11 sin [3 - a l  cos 13 cos li) , 	 (25) 
D3 =  -2a3 (12 + a l sin-1'1 ). 	 (26) 

When the angular position of the input crank is known, the variables D1, D2 and D3  can be determined from eqs. (24) to (26), and accordingly eq. (23) may be solved 
for 1'3. The solution, in general, yields two values for t3. The suitable value is 
chosen according to the initial mechanism position. 

Eqs. (18) 

A3x 
A3y 
A3z 
and 

:-= 

19) 

cos 13 	0 	sin 13 
0 	1 	0 
-sin [3 	0cos 13 
yield: 

A3x' 
A 3y, 
A 3z' 
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The position of the mass centre G1 relative to the origin 0 is defined by R1+C1, 

and therefore its coordinates in the Oxyz coordinate system are obtained from: 

cos 1'
1 
	-sin 1'I 

	
0 

sin '1' 	cos `PI 	0 

0 0 

u
g 1 cosT

I
-v

gl 
sin T

1 

= 1
2

+ u
gl

sinT
1

+  v
gl 

cos T
1 

I I  1 wgl 

x_.  
gl 

Yo 

gl 

v
gl 

wgl 

(27) 

Similarly, the position of the mass centre G3 w • th respect to the origin 0 is 

specified by R 3  + C3, and its coordinates in the Ox'y'z' coordinate system (28) 

obtained from:

g  
x'

3 	
0 	cos •1'

3 
-sin 1'

3 	
ug3 	

ug3 	
v
g3 

 sin'  3 
Yg3 	

0 + sin 1
3 	

cos T
3 

0 v
g3 

= ug3sin 1'3+ vg3  cos T3 	. 

z' 	1
3 	

0 	 0 	 1 	w
g3 

1
3 

+ w
g3 g3 

The position of the mass centre G2 relative to the origin 0 is described by 

R 1  + A 	A2, and therefore its coordinates in the main coordinate system are1 

obtained from: 

(1-p)a i  cosTi  p(13  sin p+ a
3 

cos 13 cos `1'3)1 

(1-p)(12 +a 1  sint1 ) 	a 3  sin 13  

(1-p) 1 	).1(13  cot, 	- 0 3  sinr, cos • 1 3) 

VELOCITY 

By differentiating eq. (23) with respect to time, the angular velocity of the 
• output link may be written in the form: 

D4 + D5 cosi3 + D6 sin 1'3  
• 

3 	D
2 

sin '1'
3 
 - D

3 
cos 1-3 	 (30) 

where: 	D
4 

= 2a1w (1
2 

cos 1
1 

+ 1
3 

sin p sin I I ) , 	 (31) 
D5  = 2a 1  a3w cos p sinti  , 	 (32) 

D
6 

= -2a
1 

a
3
w cosi'

1 	 (33) 

The velocity of point C relative to point B is given by A2, and is expressed, by 

differentiating eq. (21) with respect to time, as: 

a l  w sin 	- a3  13 cos p sin 13 

a I  w cos 	+ a3  13  cos 1
3 	• 
	 (34) 

a
3

'i3 sin 	sin •I3 
 

This velocity can also be obtained from: 

A
2 = 	

X A
2 

, 	 (35) 

where CL is the angular velocity of the coupler. Resolution of the vectors in 

this equation along the axes of the coordinate system G2uvw yields: 

[(A2)u, (A2)v , (A2)w] 	
r, = 	a2-cl- w, a2"

„  v]T • 	 (36) 

The relation between the components of A2 along the axes of the Oxyz and G2uvw 
coordinate systems may be written in the form: 

x 
g2  

y
g2 

z
g2 

(29) 

A 2x 
A 2y 
A2z 
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A2x Ux 	Vx 	
W

x 
(A

2)u 
A2y  = U

Y 	
V

Y 	
W

y 
(A2)`  (37) 

A2z Uz 	V z 	W3 (A
2
)
w 

The elements 	of 	the 	transformation 	matrix 	included 	in 	the 	foregoing equation 
are 	the components of 	the 	unit vectors U, 	V 	and 	W, which are located along 
the axes of the G2uvw coordinate system. The components of LI along the main 
directions are obtained from: 

[U  x, U U IT  = —1  [A 	A 	A ]T
• 	 (38) x y' z a2 2x' 2y' 2z 

Since U and V are perpendicular to each other, the dot product (U . V) vanishes. 
This gives: 

Ux  V x  + U
Y  V Y 

 + Uz  Vz  = 0. 	 (39) 

The components of V along the main directions are related to each other by: 

V2 + V2 + V2 = 1 . 	 (40) x 	Y 	z 
V is parallel to the xy-plane, and therefore, 

Vz  = 0 . 	 (41) 
By the use of eqs. (39) to (41), V is expressed as: 

[V x, V y, VzJT -- h I  A2y, - A2x, 0 IT , 	 (42) 

where: h = VA2x 2 + A2y  . 	 (43) 
W is defined by the cross product (U 	V), and therefore it is given by: 

[W x  , W y  , W z ]T = a2h [A2x A2z , A2y A2z , - h
2jT . 

In eq. (37), when the components of A2 along the axes of the G2uvw coordinate sys-
tem are replaced by their expressions, which are given in eq. (36), and the 
components of U, V and W along the main directions are substituted by their 
expressions, which are presented in eqs. (38), (42) and (44), then this equation 
yields: A2z 

v 	h 
A2y 	A2x  - A2x  A 

- a2h 	 (46) 

▪ When the angular positions and velocities of the input and output links are known, 
• the components of A2  and A2  along the main directions can be determined • 

from eqs. (21) and (34) respectively, and then ̀ 'v  and 54w  may be calculated by the 
use of equations (43), (45) and (46). 

ACCELERATION 

By differentiating eq. (20) with respect to time, the angular acceleration of 
the output link may be put in the form: 

D7 + D8 cos 13 + D9 sin 13 

(44)  

5/. (45)  

1 - 3 	D2  s in 13  - D3  cos 13 	9 

where: 	ID7  = 2a1 ,..) 2  (11  sin t cos I , - L, sin I,) , 

(47) 
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D8  = 2 al  a3  032 cos ti cos I I  -13(D2  I3 + 4 al  a3  wi cos I I) , 	 (48) 

D9  = 2a1 a3w2 sin 	-13 (D3  l3+ 4 al  a3 w cos 13 sin I'd . 	 (49) 

The accelerations of the mass centres GI, G2 and G3 are expressed by double dif- 

g  1 

.2g1 

x g2 

1 

iig2 
2g2 

Xg3 
j.(' gz 
igz 

= 

r 

= w2 

(p-1)tii

(p-1) 

p a3  

-ug3  

u 	.. g5 
0 

-ugl 	cos 	1 1 	1 	vgl 	sin 	1 1  

-Lig, 	sin 1'1 	- 	vgl 	cos 11 
0 

2 ai  cos11 -pa3cos0(13  

a1 sin 1.'1  +p a3 (13 cost 

sin 13 (13 sin13  + 	cos 

(1.3  sin13  + 132  cos 1'3) + vg3  

(1'.i cos l'3  - 1' 2 sin 1' ) - v 
5 	5 	3 	g3 

sin 13 +132 cos y 

3 -1'32  sin T3) 

`13) 

(13 	sin l'3  -1'3  

(13  si2nt +;1' 2  cos 3 	3 	3 

' 

cos 1'3) 

l' ) 3 

(50)  

(51)  

(52)  

DYNAMIC ANALYSIS 

The angular momentum of link (1), after the addition of its balancing weight, 
with respect to point Qi, is given by: 

I
lu 	

-I 
 I uv 
	-I

I wu 	
0 	-T wu  

= -1
1uv 	

I
I v -I

lvw 	0 	=60 -I
I vw • 
	 (53) 

-11wu -1 lvw 	I
lw 	 I I w  

coordinate system. The total moment of the inertia forces acting on this link 
with respect to point Q1 is equal and opposite to the rate of change of its angular 

crank, with its balancing weight included, taken with reference to its body-fixed 

momentum with respect to the same 

The matrix included in the foregoing equation is the inertia dyadic of the input 

 Mlu 	
(-- 	

0 
d 
dt " 

/_i 
'Iu'1 

	reference point Q1,and therefore it is given by: 
Hlu 

WI lv = - d — cTi (Filv) 	- 	0 X 1711v 	 (54) 
d (41  
dt '"lw'

1  rvI lw 	 r 0 	ri lw 

where d (R I 	d (17-li v)/dt and d(H w)/dt are the tune derivatives of the inagni- Pcit' 
tudes of the components Hiu, H I v  and H 1 w  respectively. When the origin 0 is 
taken a reference point, the resultant moment of these inertia forces is obtained 
from: 

Mix cos11 -sin 11 0 &/I 

Mly 1 1  sin cos 11  0 711v 

[ql 
-m1 	yql 

r<gl 
(55) 

M I z 0 0 1 7.\1 1w  zqi  Zgi  

ferentiation of eqs. (27), (29) and (28) with respect to time, as: 

By the use of eqs. (15), (50) and (53) to (55), the components of MI along the axes 
rsf 	 :— 
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2  -1lwu oi sin 1-1 - I I vw s ,,2 cos li +m l I I jrigl 

I lwu (02 cos 1'1 - 11 vw
2 sin'l l - m I 1 1 X g1 

m l 12 X g1 

Similarly, the components of M3, which is the resultant moment of the inertia 
forces acting on link (3), after the addition of its balancing weight, with respect 
to the origin 0, along the axes of the Ox'y'z' coordinate system, is expressed as: 

I 	(1' co0 	 sinl-  + .2  

	

3wu 3 	3 3 	3)-I  3vw 3 	3 3c°s  1)+n/ 313g3 

I 	(1-' 	+'1' 2  coa )+1 	(i' cosi 	2siril' )-rin 1 X' 

	

3wu 3 	3 3 	3 3vw 3 	3 3 	3 	3 3 g3 

- -13w +3 

The later components are related to the components of M3 along the main direc-
tions by: 

cos 13 

0 

-sin 13 

0 

1 

0 

sin 	13 

0 

cos p 

M 3x' 

3y11 
M 3z' 

Eqs. (57) and (58) y .eld 

 

II 313  yg3cos13-13w 1 3 sin1S s 13wu cos1W 3cosl -I' 2  sin l' ) [ 
3 	3 

= m313  Zg3 + I3wu  (13  sin 13  + 132  cos 13) 

-m 31 3  yg3 sin13-13w  1'3  cos 1S !13wu  sig(i3  sin 1*3-13 cos l3) 

. 
- 13vw  cos 13 (13  sin l'3  + 132  cos 13) 

+ I3vw  (13 cos 13  - 2  sin 13) 	• 

+ I3vw  sin 13 (1.3  sin 13 + 13' 2cos`13) 

 

M3x 
M3 y 

M 3z ' 

 

(59) 

The coupler is a straight rod with a small cross-section, and therefore all its 
moments and products of inertia with respect to its body-fixed coordinate system 
may be ignored, except its moments of inertia about the axes v and w. Hence, 
its angular momentum, with reference to its mass centre G2  is given by: 

[H2u' H2v' H 2w]T = 1 [0,, v ,s_ w 	
, 	 (60) 

where I = Iv  = Iw  . The angular momentum of the coupler with respect to the • 
origin 0 is obtained from: 

H 2x 	U x 	V x 	W x H 2u 
H 2y 	U y 	V 	W 	-1 2v im 2 Y 	y 
H 2z , H  z 	V z 	W z 	11 2w_ 

Eqs. (60) and 	yields: 

H 2x 
H 2y  =1 

H 2z 

V +W x;, 
	xw 

V 	+W s 	+ y v y 	rnw 	2 
V +W z' 	w 

•yg2 Zg2 	(g2 zg2 
zg2 Zg2 - ig2 xg2 • 

xe2 Yet *e2 yp2 

( 6 2 ) 

  

M lx 

M 1 y (56) 

M ax,  

M3y' 
M3z' 

(57). 

M 3x 
M3y 
M3z 

- 
	 (58) 

    

x g2 
yg2 

g2 

 

Ygl 
zg I 

(61) 
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The resultant moment of the inertia forces acting on the coupler, with respect 
to the origin 0, is expressed, by differentiating the components of H2 in the 
foregoing equation with respect to time, as:  
M2x

cx 	+ W 	+ n- " 
xvxv xw xw 

M2y  =-I V 	+W 	+W 	-r n2 y wyw r12 
M2z 	

V r,c t V 	W 04. 	W ZVZV ZW ZW 

Y  2 2  2 - 	2 z  2 

g2 g2 - g2 xg2 
x
g 2 

Y
g 2 
 Xg2 yg2 

(63) 

 

   

wheree(v  andixw  are the time derivatives of the magnitudes of the components 
s? v  andsz.w  respectively. These derivatives, as well as the components of V and 
W, are expressed, by the use of eqs. (38) and (42) to (46), as: 

i/ x = (h2 A2y  + A2y A2z A2z )/h3  , 	 (64) 

Vy = -(h`, 2\2x + A2x A2z A2z)/h""
3 
 , 	 (65) 

Vz = 0 , 	 (66) 

2x 2z 	2z 2x2 3  \k/ x  = (a2  A 	A 	+ h2 
A 	A  )/a h3 

y 	2 = (a2 A2y A2z +h2 A2z A2y)/a2  h3  , 	 (68) 

Wz = A2z A2z/a2 h , 	 (69) 

av  = (112 A2z  f A2z A2zh, 	
(70) 

, 

w - 1(11`(A2y A2x A2x A2y ), A2z  A 2z (\2y A2x -A2x A2y )1/a2  h3  (71) 

In order to findthe components of A2, which are included in eqs. (70) and (71), 
eq. (34) is differentiated with respect to time. 
This gives:.  - 	 • 

• Azx 	
2 cosli-a3cosp(132  cos13+13sin13) 

A2y = a1l,,2  sinl'i+a3(13cosl'3-132  sinl3) • 

A2z 	a3sin 13(132  cos1'3+13sini3) 

DERIVATION OF THE SHAKING MOMENT EXPRESSION 

The shaking moment, with respect to a reference point, is defined as the resultant 
moment, with respect to the reference point, transmitted to ground due to the 
inertia effects of the moving links. This moment may be obtained by summing 
the moments of the inertia forces acting on the moving links about the reference 
point , since the reaction forces and couples at all joints appear in pairs of 
equal magnitudes and opposite directions. Force-balancing of the mechanism under 
consideration implies that the inertia lorces acting on the moving links are 
balanced or reduced to a pure couple, and therefore the shaking moment is invari-
ant of the reference point. In the present work, the expression defining the shaking 
moment is derived by summing the moments of the inertia forces acting on 
links (1), (2) and (3), with respect to the origin 0. As mentioned above, the balanc-
ing weights attached to links (1) and (3) are designed to yield the minimum shaking 
moment, but without changing their masses or the positions of their mass centres, 
which have been determined by the force-balancing conditions. Hence, the shaking 
moment is expressed in terms the unknown inertia parameters of links (1) and 
(3), with their balancing weights, which are included in eqs. (56) and (59). In order 
to simplify the resulting expression, these parameters are denoted as follows: 

1. = 1. 	 = I. 

(72) 
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When the components of MI 
in eqs. (56) and (59), the 
directions may be put in the 

4 

and M3 are substituted by the expressions given 
components of the shaking moment along the main 
form: 

M = :2_, 	f 	J 	• 	 (73) Mx 	- xi i 1=0 
4 

M -,- 	f J. • 	 (74) 
y i-7-6 YI I  

4 
M z = i 	f zi  . 1 J. • 	 (75) 

where: 	J0  - 1 , 
i=0 

(76): 
fx0=  -m1 12igl+m1 1 1 Sig1+13/2x+m3I3Yg3cos13-13wlisinp , 	 (77) 
f = -m I X' +M -m I X' 	 (78) y0 	1 I gl 	2y 	3 3 g3 , 
fz0-- mI  I2 Xgl +M2z -m3 I3g Y' 3  sinI3-13w  13  cos 13  , 	 (79) 
fxl = f y2 = -w

2 
 sin tI , 	 (80) 

fyl =  -fx2 = 'e
2 cos'11  , 	 (81) 

f
zl = fz2 = 0 , 	 (82) 

f y3= '1'3 sin 13 + '132  cos '1'3 , 	 (83) 

f y4 --- '1'3 cos 13 - 132  sin 13 , 	 (84) 
fx3-- f  y4 cos 13 , 	 (85). 

• f z3 =-fy4 sin 13 , 	 (86): 
fx4 =  -f y3 cos fi , 	 (87) 
f
z4 =  f y3 sin 13 . 	 (88) 

When the angular position of the input crank is known, the f coefficients, which 
are defined in the above equations, can be calculated by the following procedure. 
1. Calculate •I3, 13 and 13 from eqs. (23) to (26), (30) to (33) and (47) to (49). 
2. Calculate the coordinates of G2 from eq. (29). 
3. Calculate the components of the accelerations of GI, G2 and G3 from eqs. (50) 

to (52). 
4. Calculate the components of A2, A2 and A2 from eqs.(21),(34) and (72). 
5. Calculate h from eq. (43). 

• 6. Calculate the components of V, W andit front eqs. (42) and (44) to (46). 
7. Calculate the components ol V, W, ands front eqs. (64) to (71). 
8. Calculate the components of M2 from eq. (63). 
9. Calculate the f coefficients from eqs. (77) to (88). 

Thus, eqs. (73) to (75) define the components of the shaking moment, at a 

M  zilm2 + m2 4.  m2 
X 	V 	7 

input crank position, as linear functions of the unknown products of inertia Ji to 34. 

MINIMIZATION OF THE RMS SHAKING MOMENT 
The magnitude of the shaking moment is given by: 

known 

(89) 
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Substitution by eqs. (73) to (75) yields : 
4 	4 

	J j  
j-70 (fxi f xj 	yl yj 	Z1 f zj) 1 	 (90) 

The RMS shaking moment Mr  is obtained from: 
2 to2 ,  1 	f 1T  h4 d.12 

r 2TT 	1 0 
By the use of eq. (90), Mr  can be written in the form: 

4 4 2 -- M = 	, 	F.. J. J. , r  
i=0 j=u 	ij 	j 

277 

217 of x xj 	zi zj 	TI  . 	 (93) where: 	F.. = 	(f i  f.+ 	 . f Y. +f.f.)d  

Eq. (92) gives Mr2  as a function of the unknowns Jj to 34. In order to find the 
values of these unknowns which produce the minimum shaking moment, eq. (92) 
is differentiated partially with respect to each of the unknowns and the deriva-
tives are put equal to zero. This gives: 

F. J + F. J + F. J + F. 	= -F. il 1 	 0=1,2,3,4)• 	 (94) 12 2 13 3 i4 4 	10 
 Double partial differentiation of Mr  with respect to each of the unknowns yields: 

b2 M2 

b3. 2 	 -2 F 	 (95)  

• From eqs. (93) and (95), it can be seen that b2 Mr /b3i2 
 is always nonnegative, and .• 

therefore the values of the unknowns J.j to J/j, which are obtained by solving the 
four equations represented by eq. (94), correspond to the minimum shaking moment. 

DESIGN OF THE BALANCING WEIGHTS 

After finding the products of inertia 13wu  and 13vw, which refer to link (3) with its 
balancing, the corresponding products of inertia 1b3wu  and 1b3vw, which belong to 
the balancing weight only, are determined. The later values are employed in 
calculating the angles t.' and) , which are necessary for specifying the balancing 
weight. Referring to Fig. 2, 133 is the mass centre of the balancing weight, 
and B3u"v"w" is an auxiliary coordinate system fixed to link (3) and located 
such that, the w"-axis coincides with the axis of the balancing weight and the 
u"-axis lies in the plane containing the major axes of the elliptical plane sides 

• of the balancing weight. B3u'v'w' is another auxiliary coordinate system fixed to 
. link (3). In this coordinate system the w'-axis coincides with the w"-axis, whereas 
the u'-axis is parallel to the u-axis. 1b3wu  and 1b3vw  are related to the inertia 
products of the balancing weight with reference to the B3u'v'w' coordinate system 
by: 

1b3wu 	i b3w'u' 	mb3 Wb 3 "b3 ' 	 (96) 
1 	I 	 (97) + m v w  • b3vw b3v'w' 	b3 b3 b3  

The later inertia products can be expressed in terms of the inertia products 
of the balancing weight with respect to the I33u"v"w" coordinate system as: 

1b3wv  = 1b3w,v, cosl- 1b3w„,,„ sin , 	 (98) 

(91)  

(92)  
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4  \i(lb3wu-mb3 wb3 ub 	(1b3vw-ifib3 vb3 wb3)  

• -1 1b3vw -mb3 vb3 wb3  
\1( = tan 

ib3wii-rub3 wb3 ub3 

Knowing the anglesc< andX , the balancing weight attached to link (3) is specified. 
The balanchig weight fixed to link (1) may be designed in a similar way, or 
in any form which gives Iiwu  and Iivw  the values obtained by the solution of 
eq. (94). 

EXAMPLE 
The proposed method was applied to an RGGR mechanism with the following 
dimensionless parameters. 

1 1 /al = 5 	 1 2/al . 0.5 	 13/al = 5 

= 80° 	a2/al = 6 	 a3/al = 4 

ugl /a1  = 0.5 	v
gl 	gl - 0 
	 I 1 wu = I1 vw = 0 

c2/a t  3 
m2/mol = 3 	2l 	 = 9  

mo3/11nol 7.  4 	uo/al  = 2 	 vg3  = wg3  = 0 

I
o3wu=1o3vw

=0 	Io3w /mol a
2
1  =22 

The force-balancing conditions were applied with mbl/m01=2  and fL =mol l la • This 
gave: 

ubl/al = -1 	
vbl 	wbl = 

m
b3

/in
ol

=8.5 
	ub3/a1  = -1.645 	

vb3 wb3 
dal  = 1.645 
	

Ib3w /(mol 1 a2)- 34.56 

The shaking moment optimization yielded: 

I lwu /(mol a2). -59.94  1 
1:4 = 28.5° 

IIvw /(mol 1 a2). -55.75 

Y = 226.6° 

13y the addition of these balancing weights, the shaking force was completly 
balanced, and RMS shaking moment was reduced from 22.38 m01  03 2  alt 	to 
14.25 mol oi 2 	i.e. to 6496 of its initial value. 

CONCLUSIONS 
The following conclusions may he drawn regarding the force-balancing and shaking 
moment optimization of an RGGR mechanism with arbitrary link masses and 
dimensions, except its coupler which is assumed to be a thin straight rod . 
1. The shaking force can be balanced completely by attaching two balancing 
weights to the input and output links. 

The inertia products 13bw„u„ and I3bv„w„ are given by: 
m

b3 
 r2 

1 b3w"u" 	- 4 tan-'c ' 

1b3v"w" = 0 . 

From eqs. (96) to (101): 2 
-1 	 rilb3 r c<= tan 2 ' 

(I 00) 

(101)  

(102)  

(103). 



 

DYN-12[139 I 

 

SECOND A.M.E. COUP' 

6 - 8 May 19E6 , :.tire 

r 

 

• • 	• 

 

weights, and therefore more conditions are necessary for specifying the balancing 
weights completely. 
3. Complete balancing of the shaking force is independent of the input speed, 
since the total mass centre of the moving links remains stationary during the 
mechanism motion. 
4. When the input crank is rotating at a uniform speed, its moment of inertia 
about its axis of rotation has no influence on the resulting shaking moment, and 
the optimization of the shaking moment defines its inertia products lbj wu  and Ibivw  
only. 
5. The output link, is assumed to be moving at a variable speed, and therefore 
' it is taken as a cylinder located such that one of the generators of its cylindrical 
• surface coincides with the axis of rotation of the output link. This condition • 

together with the conditions of the shaking moment optimization are used for 
specifying this balancing weight completely. The inclination of the parallel plane 
sides of this balancing weight allow-for adjusting its inertia products 1b3wu  and1b3vw,  
to minimize the RMS shaking moment, without affecting its inertia moment 1b3w. 
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