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ABSTRACT 

The development of control technology has been directed toward the design • 
of more accurate, more reliable, more adaptive and responsive control sys-
tems. 

 
 To accomplish such goal some artificial intelligence features should 

be incorporated in the design. Information identification,recognition and 
sorting are the corner stones of artificial intelligence. Since the only 
intelligent creature is the human being,therefore we have to immitate his 
pattern of thinking to get a job done. The present article is an attempt to 
define the sequence of events carried out by a human brain to perform a 
certain task and to identify their mathematical methodology counterparts. 
It is believed that following the presented approaches an intelligent control 
system may be constructed. 

Introduction  

It has been recognized during the last decade that conventional control 
systems analysis by itself whether in the frequency domain, time domain or 
modal space will not be adequate to meet the demands of advanced and sophis-

ticated aerospace systems. Due to the mathematical difficulties encountered 
•Then employing any approach of control methodologies,many idealistic and 
perfect conditions assumptions are to be made. These simplifying assumptions• 
in some cases will alter considerably the desired performance of the contro-

lled plant. Adaptive control techniques, robust controllers, self tuned cont-
rollers and the introduction of artificial intelligence logics in control 
schemes are significant steps forward toward the design of a reliable and 
accurate control system. An ideal control system should perform in an inte-
lligent manner. It has to be firmly understood that intelligence is a feature 
given by GOD to humanbeings only. No man made system will ever match or 
duplicate human intelligence. All what we have to do is to try to represent 
human intelligence by a sequence of logic steps carried out by a normal 

humanbeing in order to accomplish a certain task,then we have to identify the 
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suitable mathematical methodology that produces as close as possible the 
outcome of each human logic step. A control system incorporating such feat-
ures is undoubtly an intelligent control system. Fig. 1 shows the sequence 
of human logic steps and their mathematical methodologies counterparts. 
In the following sections the components of the proposed intelligent control 
system are introduced. 

I. Measurements  

The rigid body dynamics of aerospace vehicles are modeled by six degrees of 
freedom mathematical equations. Treatment of flexible effects requires add-
itional mathematical representations. The basic measurement devices used 
-are afferent types of gyroscopes,accelerometers,air data probes,star tra-
cking probes,...,etc.. For each sensor the functional relation between the 
measurements and the plant states together with the sensor noise is adeq-
uatly represented by; 

z = h(x) + v 	 (1) 

In the above representation the stochastic characteristics of the noise 
vector should be described. If the noise is nonwhite gaussian a shaping 
filter should be constructed. Sensor location should be accounted for by 
making the proper transformations to the reference coordinate system used, 
Fig. 2. Sensor redundancy is usually applied (quad redundancy for most 
systems). 

II. System Definition and Modeling_ 

Accurate system definition and modeling is the corner stone for designing 
a reliable and effective control system. The full order state,control and 

	

•oarametric vertors should he -ar-fullv d'fi ed Rr. r9•:ero-e'or of the 	• 
'oncertainities by an additive noise vector whether colored or white gaussian' 
does not yield in general true simulation of the plant stochastic charact-
eristics. A better renresentation is achieved by considering the state 
vector to he composed of two parts, a deterministic part and a stoc astic 
part,i.e.; 

x = f(x,p,u,t) 	 (2a) 
X = X

d
+X
s 	 (2b)  

where x,p and u are the state,parametric and control vectors respectively, 
x
d is the deterministic part and xs is the stochastic part of the state vector. Proper linearization of Eqn.(2) gives; 

x = (Fd+Fs) x + (Gd+Gs) 6 	 (3) 

-where X and 6 are the perturbed state and control vectors respectively, Fd  . 
and G

d  are deterministic (nominal) coefficient matrices and F and G are s 	s stochastic coefficient matrices incorporating the stochastic characteristics 
of the uncertainities. Equations (2) and (3) are more realistic and accurate 
representation of the plant dynamics than the traditional additive noise 
representation. 

For large as well as moderate scale systems.dividing the system into inter-
connected subsystems leads to more computational efficiency specially for 
regulating purposes. The overall system state and control vectors are com-
posed of those of the different subsystems ;i.e. 

x
T 

= [x
(1)T  x(2)T 	x(N)T  

(4a) 

6 
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Fig. 2 Sensor Location and Alignment Correftions 

Eu(1)T 	
u(2)T 	..... 	u(N)Ti 	 (4b) 

the dynamics of the i th. subsystem is therefore given by: 

	

.(1)= F (ii)x(i)+ G(ii)u(i)+ c(i)(t) 
	

(5) 

where r(1)(0 is the intnrcnnnection vector for the i th suhsystem,i.e. the • 
couoling:Tffect of all other subsystems on the i th. suhsystem. This inter-
ronnection,vertor is oiven by; 

c (i),t)  . 7 Nil  (ik)x(k)+ G
(ik)

u(k)  (6) 
k=1 
k/i 

Whom Al 
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coefficient matrtc.'s F and G. Due to uncertainities in system modeling and 
compensating such defficiency by random vectors with known characteristics,' 

the system equations become stochastic. It is therefore necessary to estimate 
the mean of the state and the parametric vectors. This is done by means of 
Kalman filter for linear cases and Extended Kalman filter for nonlinear cases. 
The Kalman filter algorithm becomes an integrated part of the system mathem-

atical model as shown in Fig. 4. 

- • - 

Measurements 

• 
System Model Shaping Filter 

(for colored 
noise) 

Kalman Filter 
(E.K.F.) 

Stochastic 
characterist. 

Fig. 4 The Integrated System Model for Stochastic Processes 

III. Identification of Stability_Aequirements 

and Stability Check 

Stability Analysis of nonlinear systems is different from that of linear 
systems. Also stability analysis for time varying coefficients is different 
from that of constant coefficients. In that respect identification of the 

-system structure should preceed the analysis. In addition to the above cla-: 

•ssification stability requirements for interconnected subsystems (decentral-
ized control) are dealt with in a different manner. The system structures 

requiring different stability analysis are:- 

-Nonlinear systems. 
-Time invariant linear systems. 
-Linear systems with time varying coefficients. 

-Systems with time delays. 

-Linear interconnected subsystems. 

In the following each case will be discussed briefly; 

Nonlinear Systems 

A general nonlinear system may be represented by the vector differential 

equation; 

x = f(x,u,t) 	; 	x 
o 
 =x(t 

o
) 	 (7) 

The stab pity of Vs nonlinear system may be checked indirectly by means of 
Lyapunov or Malkin methods. The powerful Lyapunov method starts with the 
choice of a positive Lyapunov function V(t). Such choice should represent 
the stored energy of the system. The system will be stable if V(t) < 0, 
critically stable for V(t)= 0 and unstable for V(t) > 0. In pracyice diffi-
culties may arise due to unsuitable choice of the function V(t) and also 

difficulties may be encountered at conditions where equilibrium points are 
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critical. Moreover,for some cases different choices of Lyapunov function 
V(t) may result in different stability status (stable or unstable). A direct 
and computationally efficient method for 4hecking the stability of nonlinear 
systems has been introduced by the auther . The nonlinear continuous system 
is first discretized by means of the fourth order Runge-Kutta numerical sch-
eme. Sensitivity analysis for the state propagation is then performed. The 
resulting stability criterion is of a direct form. It states that a nonlin-
ear autonomous system will be stable at the equilibrium point "r" if the 
eigen values of the matrix (Ur+Mr) are confined within the central unit cir-
cle in the complex plane. The general element of the matrix U

r 
is given by; 

u..= exp[h(afi/ayr]-(1-did )  

-Matrix M is given by; 
r 

M
r= (h

2
/6)E (N

(1)
+ N

(2)
+ N

(3)
) r 

@
2
f./ax 
1 	j 9,=1 

Matrices N
(1)

,N
(2) 

and N(3) are n-dimensional diagonal matrices with diagonal 
elements respectively; 

f..
11
(x 
r 
 ,t 
r11  
) 	; 	f..(a 

r 
 ,t 

r
+h/2) 	; 	fii[xr+f(ar,tr+h/2)/2;t

r
+h/2] 

where 	a =x r +hf(x r,t )/2 

• 	Time Varying Systems  

There is no explicit solution for time varying systems. This type of systems 
has been investigated a great deal during the past decade. It has been shown 
that linear time varying systems can be unstable even if5ap7of its eigen 
values are located on the left half of the complex plane ' 	. In the mean 
time a linear time varying system can be asymptotically stable even if8some 
of its eigen values are located on the right half of the complex plane . 
There exists an algebraic transformation such that any linear timevarying 
system can be transformed into a linear time-invariant system 9. A linear time 
varying system represented by the equation; 

x= A( t)x + B(t )u 	
(10) 	• 

could be transformed to a linear time invariant system by the following 
transformation; 

x = TX 	(11a) 	T= 01)(t,t0) T-1(to,t) 	(11b) 

where matrices 4) and T are given by the equations; 

= A(t)e 	(120 	; 	T = B(t)'!' 	(12b) 

(8)  

(9)  

where E
r is an n-square matrix whose general element is; 

n 
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Systems with Time Delays  

In practice time delays are encountered. Time delays may occur in state 
variables and /or in control variables. State variables time delays result 
from nonsynchronization of the different coupled dynamic modes of the system. 
In such cases the magnitude of time delays vary from one system to another. 
On the other hand control variables time delays result from control mecha-
nisms and the time required by the processor (computer) to compute the pro-
per control signals. In any case whether the time delays are attributed to 

state variables or to control variables or both,such delays should be acc-
ounted for when designing the control system and also when analyzing the 

system performance. Considerable changes in system dynamics and stability 
'occur due to time delays. A stable nondelayed system may become unstable 
'when time delays are included. The time delays become more profound for 
systems with fast response suTU as high performance aircraft. The Cooper- 

Harper 

 

 pilot rating technique 	gives a very important indication and measure 

of the effect of time delays on the aircraft performance. The Cooper-Harper 

pilot rating scale is shown in Fig. 5. 

1 2 3 	4 5 6 7 8 9 •
.5

10  
•5  1 	

1 	
6.5 

Level 1  

Flying Qualities 

Clearly 
Satisfactory  

Level 2  

Flying Qualities 
Adequate but 

Need 
Improvement  

Level 3  

Aircraft Controll-
able but Flying 
Qualities are 

Inadequate 

aLA  
Fig. 5 Illustration for the Effect of Time Delay on the 

Cooper-Harper Pilot Rating Scale. 

As seen the aircraft flying qualities change drastically as a function of 
time delays. Reference 11 presents an outstanding review of the different 
mathematical techniques dealing with time delays. It is found that for syst-
ems with state variables time delays good control quality may be achieved by 
using suboptimal control laws. However,for systems with control variables 
time delays the control quality is sensitive to the applied control law. 
A linear time invariant continuous system with multiple time delays in state 

and control variables is represented by; 

x(t)=A0x(t)+EA.x(t-Txi
)+ B

o
u(t) + E B.u(t-T

ui
) 	(13) 

i=1 	1=1 

where T 	and 
Tui 

are delay times for the different state and control var- 

iables.
xi  When neglecting time delays,the above equation reduces to the 

nondelayed standard form. To show the effect of time delays on the system 
performance,the delayed state and control variables are expanded by Taylor's 

series as; 

2 (14a) 
x(t-T

xi
)=x(t) - T .x(t)+(1/2!)TXi 

 x (t) — 
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6 • TU 	

• 
U(t) - T 

Ul 	U 
.u(t) + (1/2!) T

2 
l 
. U - (14b) 

• 

. 	• 
In the above equations neglecting terms containing x , u and u and substit-
uting into Eqn.(13) yields; 

n 	 m 
x(t) = [I + E TxiAir-J-( E Ai  )x(t) +[I+ E Txi  Air( E Bi)u(t) 

i=1 	i=o 	i=1 	i=o 

	 (15) 

Equation (15) represents a linear time-invariant continuous system with 
modified state and control coefficient matrices. Such representation will 
hold whenever the inverse of the matrix appearing in the equation exists. 

.Using any control methodology,it is seen from Eqn.(15) that the resulting 
control strategy when accounting for time delays is different from that 
when neglecting time delays. 

• 

Time Invariant Linear Systems  

The stability of time-invariant system represented by the vector differen-
tial equation; 

x = Fx + Gu 	 (16) 

is determined by the eigen values of the state coefficient matrix F. As well 
known the system will be stable if all the eigen values are located on the 
left half of the complex plane. On the other hand the stability of the dis-
crete-time system represented by the equation; 

x
k+1 

= O
k
x
k 

+ L
k
u
k 
	

(17) 

is determined by the eigen values of the state transition matrix 0. As well 
known the system will be stable if the eigen values of the transition matrix 

are located inside a unit central circle in the complex plane. 
For these type of systems the stability status as well as the stability mar-
gins are well defined. 

Linear Interconnected Subsystems  

For this type of system structure application of Lyapunov's concept yields 
a direct stability criterion for the interconnected subsystems12. Based on 
the subsystems representation given by Eqns.(4)-(6) a Lyapunov function for 
the ith. subsystem is chosen as; 

V(t)
1  1 	
x. + E x

k 
ek xk 

T 	N-1 

k=1 

	 (18) 

where matrices S and 0 are semipositive definite symmetric matrices governed 
by matrix Ricatti equations derived for the decentralized control law . 
Substitution of the feed back decentralized control law into Eqn. (5) and 
lumping all subsystems other than the ith. together yields; 

(1) x(2 x_ 

T
(1) 

T
(2 

y y 

(19) 
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r 	
T T T 	T T 	Ti  

where 	y =[x
1 	

x
2 	

1 
1-1 	

x. +1  ... xNj  

The interconnected subsystems will be stable if the following matrices are 

negative definite; 

T
(2)

) 
(X
(1)

+X
(2)

M) 	and 	(T
(1)

M+  

where 	M = 4)
(4)

(t,t
o
)4)
(2)-1(t,t

o
) 

(2) 
and 4)

(4) are submatrices of the transition matrix relevant to those 

appearing in Eqn.(19). 
Stability criteria establish bounds for stable system operation. In aerospace 

•systems nominal flight conditions are defined by solving the original non- 

•

linear differential equations governing the system trajectory or dynamics. • 
such solution can only be achieved by a numerical scheme. The continuous 
equations thus have to be discretized. State and parametric values at each ' 

discrete nodal point from the equilibrium condition for stab ility check at 
this particular time instant. Contiuous stability check during system opera-

tion is therefore required to limit the response to the stable domain. 
The combined stability of both system dynamics and Kalman filter(for assumed 
stochastic process) should be checked. Kalman filter will be stable (conver-
gent estimate) when all the eigen values of matrix (F-KH) are located in the 

left half complex plane,where K is the Kalman gain matrix. The combined sye-
tem-filter closed loop dynamics for a feed back control signal u=-CRis deter-

mined by the combined coefficient matrix; 

F 	-GC 

0 	(F-KH-GC) 

• The combined system-filter will be stable when all the eigen values of the 

• above matrix are located in the left half complex plane. 	• 

IV. Identification of Desired Task and Performance  

The desired task identification means specifying the states (position,veloc-
ity,attitude,...,etc.) of the aerospace vehicle to be reached after a fixed 
(or free) interval of time. Identification of the desired performance for the 

given task means that certain constraints such as acceleration limits,damping 
quality,stability margin,assigned trajectory,...,etc. are to be satisfied. 
Such identification leads to the choice of the convenient control methodology 
and strategy. The importance of task and performance identification is dicta-
ted by the fact that there is no unifying control methodology capable of ach-
ieving  the desired requirements. For tasks with specified constraints(equa-• 

• lity or inequality) the optimal control approach (LQ,LQG,nonlinear)is most 
appropriate. For model or trajectory tracking,the model following techniques 
are more convenient. For stability and handling qualities requirements pole 
assignment and configuration control methodologies are to be employed. In 
all cases robustness analysis should be performed to yield a more reliable 

and accurate controller. 

V. Determination of Control Startegies  

As mentioned earlier the choice of the control methodology to be employed 
depends upon the task to be achieved. The different optimal control proble-

ms of Mayer, Bolza and Lagrange as well as the regulator problem (LQ and LQG) 
_11 	1;mm of fnrminn 

• • 	• 
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the Hamiltonian of the system then enforcing the optimization necessary and 
sufficient conditions thus yielding the costate equations for the Lagrange 
multipliers and the optimal control law. In the presence of equality or in-
equality constraints and /or free terminal time,additional conditions have 
to be satisfied'3. Though the obtained optimal control law justifies the 
optimality requirements,yet-it can not provide the desired transient chara-
cteristics (stability margins and damping quality). In some cases the obtai-
ned optimal control gains could not be realized in practice. However,it has 
been shown that in cases where both state and control vectors have the same 
dimensions,the optimal control law may provide desired transient dynamics 
(closed loop eigen values)14. This may be achieved by partitioning the state 
vector into directly controllable state subvector and a non-directly contr 
.ollable state subvector. This approach has proven its validity for control 
.configured vehicles (CCU) such as the the Advanced Fighter Technology Integ 
'ration F-16 aircraft (AFTI/F-16)15. The state vector and the state and cont-' 
rol coefficient matrices of the linearized system are partitioned in the foi 
form; 

-S 

The linearized state equation may therefore be written in the decomposed 
form; 

x
c 

= F(1)x
c 
 + G 

cu + c(t) 
	

(20a) 
• 
x
nc 

= F(4)x
nc + d(t) 	 (20b) 

.where 	c(t) = F(2)x
nc = F(3)x d(t)  

and the quadratic performance index to be minimized is; 
t
f 

J = z f 	(xTAx + uTBu) dt t 	c 
0 

The closed loop eigen values are not sensitive to the control weighting 
matrix B,however they are very sensitive to the state weighting matrix A. 
Matrix B will therefore be assigned and matrix A will be calculated to yie-
ld control gains with desired closed loop eigen values. 
,Pole placement techniques are more convenient for designing control systems 
-dealing with the maneuverability,performance and handling qualities of the • 
'aircraft. During the past decade several pole assignment techniques have beeh 
published. A certain degree of mathematical and implementation difficulties 
are encountered in most approaches,specially for on-line computations. Seve-
re limitations on eigen values shifts are placed particularly for coupled 
multi-input,multi-output systems. A powerful and computatcbonally efficient 
methodology in that respect has been presented by the auther16'17'16 which 
relaxes most constraints imposed on other techniques. The method is based 
on finding a direct relation between the eigen values shifts (difference 
between closed loop and open loop eigen values) and the corresponding chan-
ges in the system coefficient matrices (closed and open llop coefficient 
matrices). Shifts in all eigen values in any direction are admissible except 
for the case of repeated closed loop eigen values which in fact is a trivial 
Lane. In addition to conventional confrn11,-, 

F
(1) 

F
(2)' 

G 

	

x =L xc 	x
nc
] ; 	F =  	G =1- 

(3) 
F
(4) 	0 

T 	T  

(21) 



SECOND A.M.E. CONFERENCE 

6 - 8 May 1986 , Cairo 

  

r- 	
• • • 	 -1  

for nonconventiona4 configuration control of the aerospace vehicles. The 

key equation for this methodology is;  

*
[c

o
+Re(P

-1
g )] 	 (22) 

c c 

* 
is the pseudo-inverse of matrix D;  i.e. D

*
=(D

T
D)
-1
0
T 

where D 	
, Re(.) indic- 

ates the real part of the expression between brackets. f is a vector whose 
elementsare those of the open loop coefficient matrix which are allowed to 

vary. c
o is a vector whose elements are the coeffcients of the open loop 

characteristic equation. Matrices D and Pc  and vector gc  are given by;  

o 
/3f 

11 	n-1 	12 	n-1 	nn 
o 	. 

	

cc)  /3f   @c/ar ac
n-1  

ac° /af 	ac° /af   aco /af 
• - n-2 	11 	n-2 	12 	n-2 	nn 

. 	 . 

• 
• 

ac°/@f 	ac°/af 
o 11 	o 12 

(ecl)n-1 	(ecl)n-2 
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e
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1 

e
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1 
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P
c
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c 

'
(ec)n
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(e

c
)
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e 	1 
n n 	n  

cn 	cn 

gcT 74(el) 	(e2)  — 
(e

cn
)
n
] 

c 	. 
where e.;  1=1,...,n are the desired closed loop eigen valu9s. 

This configuration control methodology is valid whenever D exists. Such 
condition can easily be realized in practice. It has to be mentioned here 
that this control method is lost convenient for designing control systems 

for advanced CCU fighter aircraft. 

One of the most needed concepts for guidance and control of aircraft and 

missiles is that of model tracking (model following; model matching). For 

• the final landing approach of aircraft,for precise aircraft or missile nav-: 

• igation or for intercepting missiles a specified nominal trajectory and/or . 
conditions are to be tracked (followed or matched)by the actual vehicle in 

order to achieve certain performance requirements. Many model following and 

matching techniques have been published in recent years. The linearized dy-

namics of the vehicle and the model are given by; 

x =Fx +Gu+w 	; 	04\1(0,Q) 	 (22a) 

Vehicle 
z = Hx+v ; 0(0,R) 	 (22b) 

Model 	x = F x +G u +w 	; 	w % N(0,0 ) 	 (23a) 
m 	m 

I 



(27) 

The highlights of the main control strategies suitable for aerospace systems 
has been presented in this section. As stated earlier each control concept L. 

. The resulting control law for optimal model tracking is; 

u=-C
1
z-C

2
v+C

3
z
m
+C
4
v
m
+C
5
u
m 	 (26) 

where C
I 

to C
5 are defined gain matrices. 

It is seen that this control law is a feedbackward with respect to vehicle 

information and a feedforward with respect to model information. The mean of 
the nonobservable subvector of state '\) is computed by the reduced order 
estimator; 

4 (4)^ (3) -1 vr.F v+F 	N z+G
(2) 

 u 
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r 
z g H,  x +v 
m m m m 

• • 	• 

v
m
1,N(0,Rm) (23b) 

1 

An efficient model tracking method has been published/9. It is based on for-
ming the output dynamics of the vehicle and of the model. The dynamics of 
the output difference 6z=z-zm  is obtained as; 

67=AN
-1

6z+B6v+HGu+(AN
-1

-A M N
-1

)z M +(B-B 
M 
 )v 

M 
 -H 

M
G u 

M
+p 	(24) M 	M 

where in the above equation all matrices are defined, 6v=v-v wherev and v
m  

are the nonobservable subvectors of state for the vehicle ani for the modeT . respectively. p is a white gaussian noise vector. The state and control 
• coefficient matrices for the vehicle and for the model are partitioned as; 

F= 
F(')  

F
(3) 

p 

F(2) 

F
(4) 

(n-p) 

} P 

} 	(n-p) 

G = 
G(1)  

G(2) 
 

} P 

} 	(n-p) 

• 

m 

where n is the dimension of the state vector and p is the dimension of the 
observation (output vector). Equation for the difference vector ovis then 
obtained as; 

(s) = F(4)6v+F(3)N-16z+G(2)u+(F(4)-F(4))v 
m m 

(F
(3)

N
-1
- 

(3)
N
-1

)z -G
(2)

u+p-x 
	

(25) 
• 

Forming the n-dimensional vector 	such that; 

T 
oz

T 
 dv

T
] 

The control strategy for optimal model tracking is obtained by minimizing 
the quadratic performance index; 

J = 2 E f
T
Q
*T

R
*
u) dt 

t
f 

t 
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has its merits and the applicability of each depends upon the desired outco-
me of the control system. In addition to the above mentioned control method-
ologies modal control approaches are also quite useful and they are used as 
supplementary techniques to the above main concepts. Reduced order control 
methods have recieved great attention in recent years specially when dealing 
with large scale systems. Predictive control also is a suitable technique 
for terrain following" and for missile guidance. To conclude,we emphasize 
the fact that control system analysis has just started to take shape and the 
field is still widely open for intuitions,innovations and development in 

conventional and nonconventional ways. 

VI.Sensor Failure Detection and Isolation  

-Measurements are essential in the operation of any control system. They 
could be used directly for output feedback control or they could be used for: 
state and parameter estimation in case of state feed back control. In all 
situations accurate measurements are needed to compute the required control 
signals. Sensors operational relaiability must therefore be very high. In 
aerospace applications utilization of redundant sensors and processors is a 
common practice. All precautions should be taken to ensure recieving an ob-
servation signal as accurate as possible at all times. Several software as 
well as hardware techniques have been developed in that direction. The ele-
ments of a software sensor failure detection and isolation technique is des-

cribed in this section21-22-. The basic idea is to construct an ideal obser- 
vation trajectory describing the measurements history of the given plant. 
The vehicle dynamics and its measurements are represented in discrete-time 

form as; 

xk+1
= k

x
k
+  Lk

u
k
+ w

k 	wk-N(°'(1) 	
(28a) 

zk  = Hkxk+ vk 	v
k
%N(0,R) 	(28b) 

An ideal observation trajectory is derived as; 

z
k+1

= T
k
z
k
+  r

k
v
k
+  Lk

uk
+ c

k 	
(29) 

where all matrices are defined,v is the unmeasured subvector of state and c 
is the observation dynamics noise vector which is a combination of both the 
process and measurement noise vectors. Denoting the actual measurements by 
superscript "m" and the difference between the ideal and actual measurement 
vector by AZ=Z-Z , the following difference propagation equation may be 

obtained; 

Azk+1
= k

Az
k
+ p

k
+ c

k 
1 * 	* m 	m 

Fkvk+  'kuk+ Tkzk- zk+1 

(30a)  

(30b)  

From the above equations it is seen that for ideal measurements pk+ek=0. 
Therefore the measurements error (deviation between ideal and actual measu-
rements ) is generated by the sensors inaccuracy and the combined process 
and measurements noise vectors. The allowable deviations in measurements for 
sensors in the operational mode may be determined by the nonzero minimum of 

the input pk  and the output Azk
. The following quadratic performance index 

is therefore minim ized; 

• • • 
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N-1 	T  
J= 1/2E 	(AzkAkAzk+ pkukok) 

k=0 

The propagation equation for the allowable measurement error covariance mat-
rix is then obtained as; 

* * 	* 11k+11 sk+1) 1 trovk
T 
 (I+Bk

-1 
 Sk+1

)
-1T 

 + R
k (32) 

Equation for the propagation of the actual measurement error covariance mat-
rix 1Iis also obtained. The sensor failure detection criterion is therefore 
.derived as; 

a 
Allk= (11k+Wk 	k 	 (3)) 

where W is a positive definite symmetric matrix that accounts for computat-
ions round off errors. 
The ith. sensor will be considered in the failure mode if Aff..<0. The failed 
sensor/s isolation process is geven in detail in references 	and 22. The 
block diagram for sensor failure detection and isolation is shown in Fig. 6. 

Fig. 6 Sensor Failure Detection and Isolation Block Diagram 

VII. Adaptive Control and Robustness  

Inaccuracy is system representation arise due to two factors,(i) simplified 
mathematical modeling and (ii) uncertainity in parameters values. Such inacc-
uracy in system representation results in inaccurate control signals. Restr-
ucturing the system model by measuring its response for a specified input is 
one way of improving the system representation. However,due to mathematical 
complexity such approach could not be implemented on-line. On the other hand, 
uncertainities in parameters may be accounted for by employing an adaptive 
control technique. In such technique,a parameter estimation algorithm is in-
cluded. The parameters are estimated at each control interval and the updated 
values are used to compute the control signals. The mathematical basics for 
arch approach may be described by considering the nonlinear discrete-time 	1 

(31) 
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system given by2S; 

xk= 	wk  

z
k
=h(x

k
)+v

k 

. 	• 	• 

wk%N(O,Qk ) 

vk%N(O,Rk) 

(34a)  

(34b)  

is an r-dimensional parametric vector whose nominal value 	is known apr- 

iori. During system operation the parametric vector changes from its nominal 
value. It is required to estimate both the system state vector and the act-
ual parametric vector at each time interval. The feed back control gain mat-
rices depend on the updated value of the parametric vector. Denoting the 

' estimate of the parametric vector at step k-1 by k-1'
expansion and linear- 

' ization of Eqns.(34) lead to; 

sk= (1)k_2sk  - 1+(1k  - 1-Hk  - 2)yk  - 1+ Uk  - 2ck_l+ vk  

y
k
= H

k-1
s
k
+ p

k 

where sk=xk-xk_i 	
; 	Yk-l=  .-- 1<.-1 	; = 	- ck_, uk_, uk_2  

	

yk=zk- z
k-1 ; 	

(D.= Wax 	; 	H= a(1)/a 

Li= aVau 	; 	H= ah/ax 

An augmented state vector is introduced such as; 

T
=[s

T  

(35a)  

(35b)  

• and an augmented equation is obtained as; 

n 	 A 	n 	+B 	c 	+ Lv 	 (36a) 
k-  k-2 k-1 	k-2 k-1 	k 

Yk= pk-lnk+  Pk 

where all matrices given in the above equations are expressed in terms of 
previously defined matrices. Kalman filter algorithm is then introduced to 

estimate the augmented vector q. It was found that the cross correlated sta-
te and parametric vectors error covariance matrices play an essential role 
in the updating process for the parametric vector estimation. The control 

system that incorporates a recursive parameter estimation algorithm is an 
adaptive control system since the control gain matrices are computed based 

-on the updated value of the parametric vector. 
Robust control system is that control system which is insensitive to param-• 
eter variations. The transient response of a linear system is defined by 

means of the eigen values and eigen vectors of the coefficeint matrix. The 
eigen values and consequently the eigen vectors depend on the parametric 
vector. Any variation in the parametric vector will result in changes in ei-
gen values and eigen vectors,i.e. result in different transient response 
(dynamics) of the system. The control system that will provide preassigned 
transient characteristics regardless of the changes in the parametric vector 
is known as robust control system. The design elements of a robust control 
system is given by considering the following24. 

x = A(a)x+ B(a)u 	 (37a) 

(36b) 

(7-7L\ 	_J 
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where a is a scalar parameter with nominal value a . 
An output feed back controller is described by the°closed loop state equation 

x = A(a) x 	 (38a) 

A(a) = A(a)+ B(a)KC(a) 	 (38b) 

where K is the output feed back gain matrix. 

The problem may be posed as,the determination of matrix K to achieve desired 
transient response. For distonct eigen values of matrix A(a

o
) the following 

relation holds; 

• p.A(a
0 
 )= A.p. 	 (39) 

where A. is the ith. eigen value and p. is the corresponding ith. row eigen • 
vectors of A(a ). Perturbations in a cause perturbations in matrices A,B and 
C and hence perturbations in the eigen values and the eigen vectors of matr-
ix A. Such perturbations are expressed by the Jacobi formula; 

dA.= p.dA(a)v. 	; 	i=1,...,n 	 (40) 

where 	 he variation of matr- 
ix A(a)igiven by Eqn.(38b) is; 

dA(a0)74(dA/da)a +(dB/da)a KC(a0)+B(a0)K(dC/da)ot ]da 0 	0 	
0 

46A+613KC+BK6C]da 	 (41) 

-Substitution of Eqn.(41) into Eqn.(40) shows that sufficient conditions for 
'the eigen values and the corresponding eigen vectors of matrix A(a0) to 
remain insensitive to small parameter variations is; 

[6A+ 68KC]vi  = 0 
	

(42a); 	6Cv.= 0 	(42b) 

These normality conditions are to be satisfied to ensure the controller rob-
ustness. It has to be noticed that further analysis is still needed to obtain 
applicable criteria for robust controllers. 

VIII. Conclusion  

An attempt is made in the present article to focus on the key issues to be 
.considered for achieving the goal of designing an intelligent control system; 
'Brief rather than detailed description has been given for the needed metho- 
dologies. The designer's task is to connect these information and the sequen- 

. 

ce of computations in a workable algorithm. 
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