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Introduction 

To provide data for the verification and improvement of analytical models of aircraft structures 
(once they have been designed), it is necessary to accurately determine the principal modes of the 
structure. This is carried out during what is normally called the Ground Vibration Test. 

Traditionally these tests have been based on the Normal Mode testing technique described by 
Lewis & Wrisley (11 in which the structure is excited at the resonant frequency by a set of 
monophase forces (0° or 180° out of phase with each other) distributed over the structure, and the 
amplitudes of the forces are adjusted manually until the velocities at all points on the structure are 
in phase with the forces. Using these forces which are called appropriated forces, each of the 
modes can be excited in turn and the modal parameters determined. To determine these forces, 
however, some form of iterative procedure for force appropriation is required to optimize the 
phase coherence of the responses. Manual iterative procedures are carried out whilst observing 
some form of phase display. Generally, use of Lissajous figures is quite convenient, as closing of 
the ellipses at all points implies not only proper force appropriation, but also excitation at the 
resonant frequency. 

Difficulties, however, arise when a large number of shakers have to be adjusted to isolate modes In 
frequency ranges of high modal density. Therefore to automate the force appropriation task, 
different methods have been put forward. The one that will be described in this paper is due to Ash-
er (21 who proposed a quantitative method, which detects the natural frequencies as well as 
provides the force ratios necessary for multiple-shaker tuning, using only experimental transfer 
admittance data as input. 

Asher's Method 

To illustrate the method suggested by Asher consider the following equation which describes the 
harmonic motion of an n degree of freedom linear, damped system i.e. 

(mi {50 + 	lkj + (kJ (xi = IF) sin wt 	 (1) 

The damping is considered to be rather general, and is therefore represented by an arbitrarily 
frequency-dependent term 

= (ci 	11w 	 (2) 

where [c(c4)1 encompasses any combination of the standard viscous and hysteretic types, given by 
(c) and [di matrices respectively. Furthermore, in the general case, damping is non-proportional so 
that the damping matrix couples the otherwise uncoupled normal equations of motion. 

The system is assumed to be excited by a set of mono-phase forces i.e. all the forces are either 0° 
or 180° out of phase with each other. Introducing complex notation (complex quantities are 
denoted by a bar) in eq. (1) yields 

where 

[m] f til [c(w)] 	[k]ii-11 = 	e iwt  

{x} = im  NI 
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Substituting the trial solution 

10 . ful eiwt 	
(5) 

In eq. (3) yields 

—w2  [m] 	[c(w)] 161 4-  [k] ICA = {F} 	 (6) 
i.e. 	Dkj — w2  fmj + jwic(w)J] 	= F} 	 (7) 
Eq. (7) may be written as 

1111 = [id(F) 	 (8) 
 

where 	 = Dkj — w2  [m] + jw [c(w)j] 1 	 (9) 
is called the complex admittance matrix. It can be written in its real and imaginary parts as 

[ B]= [e] + 
(10)  

where WI is the real part of [fij 
and [B"] is the imaginary part of [F3-] 

Substituting eq. (10) in eq. (8) yields 

fUl = [8110 + j[131{F} 
(11)  

which implies that when the displacement response is in quadrature with the excitation force, it is required that 

P3') iFI = lOi 
(12)  

since the real parts of the displacement responses are zero. Eq. (12) represents a set of linear 
homogeneous equations which have a non-trivial solution if, and only if 

IB'I= 0 
(13)  

(giving a t et df eigenvalues which are the undamped natural frequencies). As a corollary to this 
statement it can be concluded that "The response of a system will be in quadrature with the 
excitation if, and only if, the determinant of the real part of its complex admittance matrix [8 1 is 
equal to zero". The corresponding force ratios required to isolate the modes will be given by eq. 
(12) using thd eigenvalues obtained from eq. (13). 

The theotetidal results given by eqs. (12) and (13) were first stated by Asher. His method can be de-
scribed With reference to these equations in the context of an idealized modal test on a discrete n 
degree of freedom linear structure with linear damping. The test is started by measuring the (n x n) 
complex admittance matrix over the frequency range of interest. This can be carried out by exciting 
and measuring the response at each degree of freedom, using sinusoidal sweeps. The real part of 
the admittance matrix, [B'] is extracted, and the determinant of [B'] Is plotted as a function Of 
frequency. It can be seen from eq. (13) that this determinant is exactly zero at an undamped natural 
frequency. Thus n zero-crossings will he found on the frequency axis, and the frequencies at which 
they occur, are the undamped natural frequencies, even though damping is present. The admit-
tance matrix is again measured, but this time only at the undamped natural freqUencies Just found [B(w0)]. The force ratios necessary to excite these modes individually are then calcUlated from eq. (12). (Any one column of the adjoint matrix [§'(coo)j represents the solution to eq. (12), i.e. It Is 
identical to the force ratios (to within constant multiples)). Using these force ratios, the individual 
modes are tuned exactly for a multiple-shaker sine dwell test. For the 1th  mode the shakers are set to produce the force ratios 

IFI = {F;) sin wit 	
(14) 

L 
• • • 
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Undamped normal modes of models 51.4 and 5V 
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and the displacement response is measured to be 

j 	= (11i) sin (wit — ir/2) 	 (15) 

where 01 is the principal mode shape for the ith  undamped natural frequency, even though there is 
damping in the system. Generally a narrow-band sweep about (1)0  with fixed { F1 1 Is more useful than 
a dwell, as It permits the plotting of Nyquist graphs from which mode shapes and modal damping 
values can be calculated and modal purity evaluated. 

Simulation studies carried out by Hallauer and Stafford [31 on mathematical models will be 
described In the following to Illustrate the effectiveness of Asher's method. As the parameters of a 
mathematical structural model are known precisely, and can also be designed to produce desired 
characteristics (such as high modal density), absolute values are available against which the 
simulated test results can be compared. Furthermore, they also aid in pin-pointing the specific 
causes for failures of the test method. 

The structure used is a cantilevered plane grid shown in Fig.1 a, where five discrete masses are 
connected by identical massless bars at right angles in the a plane. The bars are flexible only in 
vertical bending and torsion, and the degrees of freedom are vertical (y) translations of the masses. 

Fig.1 a) Structure of the model 
b) Undamped normal modes of the model 

By means df an optimization procedure, the structure was designed to have its third and fourth 
natural frequencies within 4% of each other. Damping values for the third and fourth modes were 
selected s6 that these modes were separated by less than one half-power bandwidth. The un-
damped netural frequencies and the corresponding normal modes are given In the table in Fig.1 b. 

In Fig.2 the determinant of the real part of the admittance matrix, plotted as a function of frequency, 
is shown by solid lines when all the masses are excited, and by dashed lines when only masses 1 
and 5 are excited, The normalization scheme used is such that the lowest mode dominates the 
higher modes which consequently may disappear in the resolution of the graph. Thus Fig.2 b and 
Fig.2 c are fedrawn on an expanded scale. It can be seen that the curves have a similar form to the 
real part of a frequency response function near the resonant frequencies. When all the masses are 
excited, the curves in Fig.2 a and 2 c have zero-crossings exactly at the undamped natural frequen-
cies as predicted by the theory. 

The force-amplitude distribution required to excite the fourth mode (the higher of the two closely 
spaced modes) was calculated. This distribution when applied to the model In a 3 rad/s narrow 
band sweep gave a polar plot of the admittance X (  of each mass as shown In Fig.3 a. Tick marks on 
the response curves indicate equal frequency increments, and arrows indicate starting frequency 
for each response. Conjugates of the curves are plotted when appropriate to have all the curves on 

, the same side of the real axis. The mode shape vector { d74  } indicated in the figure, was calculated 
from the quadrature components of the response at the zero- crossing frequency of the determi-
nant. In this case, it is the exact mode shape according to theory. 



c.s(rad/s) 
20,183 361,66 52,50 68133 841 16 

I  

1,0 

a) 

0 ••• Masses 1, 5 forced 

‘‘ 
I 
I 

1 	s 

	

tt 	I 
1 I 

40 00 43,33 46.66 	50,00 	53,33 
(rad/s) 

56,66 60,00 

b) 
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If the damping had been non-coupling, then according to Kennedy & Pancu [4], each curve of the polar plot would be an arc of a perfect circle centred on the imaginary axis with its highest point passing through the origin. However, coupling damping causes deviation from circular shape, Which is evident in Fig.3 a where interference is introduced from the lower of the two closely spaced 

Im (Xi) 	
Ins 1;1 

b) 

Fig.3 a) Perfect tuning with complete excitation: polar plot for the fourth mode with 
all masses forced 

8310.14  

in a 3rad/s narrow-band sine sweep 
b) Excellent tuning with incomplete excitation: polar plot for the fourth mode with 

masses 1 and 5 forced 
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o Central Frequency: 55.409 radii 
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modes. As mentioned previously, according to theory perfect mode tuning is possible only at the 
undamped natural frequency for coupling damping, with responses in quadrature with the force, 
even though all degrees of freedom are excited. 

From the table In Fig.1 it can be seen that for the first bending mode shape, all the responses are in 
phase. Thus intuitively one would expect all the tuning forces to be in phase as well. However, the 
normalized force vector for perfect tuning is given by 

  

{ 	= 

—0,214 
—0,125 
0,133 
1,000 
0,431 

 

On second thoughts the explanation is obvious, in that the appropriated forces required to tune the 
mode must cancel the damping forces, which are not generally distributed spatially as the mode 
'shape. 

The dashed curves of Fig.2 a, b, and c show zero-crossings, at 10,909, 32,070, and 55,327 rad/s 
which are very close to the natural frequencies of the first, second and fourth modes respectively. 
However, there is also a false mode crossing at 44,524 rad/s which is characterised by its gentle 
slope. In general, for lightly damped structures, true modes are indicated by steep slopes at the 
zero-crossings, and false modes by relatively gentler slopes. This can again be seen on the dashed 
curves of Fig.2 b and c which do not have a zero-crossing for the third and the fifth modes, but nev-
ertheless have a relatively steep slope in the vicinity of the natural frequency of the missed modes. 

Fig.3 b shows the polar plots of the admittance X, of each mass obtained using incomplete 
excitation. The tuning corresponds to the fourth mode zero-crossing of the determinant at 55,327 
rad/s on Fig.2 a and b for masses 1 and 5 forced. The 5x1 force-amplitude distribution vector {F,,} 
is derived from the 2x 1 vector 11',,1 with zeros added for the unforced masses. In spite of 
incomplete excitation, the tuning is seen to be excellent which is often provided by Asher's method. 

Instrumentation 

Fig.4 shows an instrumentation set-up for testing of large structures using multiple shakers. The 
system Is such, that it can be readily expanded to incorporate any number of shakers and 
accelerometer channels. All the equipment below the structure constitutes the excitation part of the 
system, while the instrumentation above the structure is used for data acquisition and further 
processing and analysis of the results. 

On account of the multiplicity of shakers and accelerometers, automatic control of the system is im-
perative, although manual operation is possible. This can be achieved by the Digital System 
Controller, which could be, for example, a desk-top calculator having sufficient memory and speed 
commensurate with the sophistication of the analysis software. 

The fundamental requirement on the excitation side is the accurate control of the amplitude and 
phase of the force, applied by each shaker to the test structure at a single frequency. A Precision 
Generator Type 1050 can be used to feed the signal to the shakers, via a power amplifier and a Le-
vel/Phase Controller. Whilst the latter controls the voltage input, and thus the force output from 
each shaker, via the IEC/IEEE Interface, monitoring of the forces into the structure is carried out by 
force transducers mounted between each shaker and the test structure. 

On the data acquisition side, the acceleration signals have to be measured at several points on the 
structure, and conditioned, before they are fed to the Lissajous Display Type 5851. The Multiplier 
Type 5795 extracts the Real and the Imaginary components of the acceleration signals, while the 
Control Unit Type 5794 digitizes these signals, and controls the Group Selectors Type 5820 for out-
scanning of the system. 

• . • 
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Fig.4 Instrumentation set-up for testing of large structures using multiple shakers 
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Extraction of Modal Parameters 

Once the appropriated forces are calculated using Asher's method, a narrow band sweep around 
the resonant frequency is carried out using these forces, and the response obtained at several 
points on the structure are plotted, for example, as Nyquists plots. Since the structure would behave 
as a single degree of freedom system, the modal parameters can be calculated from these plots. 

A more efficient way, however, to extract the modal parameters is to plot the real and the imaginary 
parts of the power, as the structure is excited around the resonant frequency using the appropriat-ed forces. 

Real Power = 	= E F1  vi ' 
i= 1 

Imag. Power = W = E Fi  vi" 
i= 1 

where vi' and vi" are the real and the imaginary parts of the velocity response at the Ith  location. Fig.5 shows typical curves of complex power from which the modal parameters can be calculated using the formulae shown in the figure. 

Complex Power 

dW" 
— at co = con  du)  

W' = Re W- 

W" = Im W 

MAX Fmle .1 
NAT. FRED, 28.14 
INC FRE°, .1 
DAMPING RATIO, .0421 
MI 5.13E-7 
K, .0161 

Fig.5 a) Nyquist plots 
b) Complex power plots 
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