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ABSTRACT

¢ Let M : D—-—V3 and M : D—'-\_I:‘l (D ch) be two isometric surfaces in the

Riemannian spaces V3 and 63 with curvatures R, R respectively.

We shall prove that the second fundamental forms of the two sur faces are

the same provided that:

l1- The Gaussian curvature K of M is positive.

2~ M and M have the same second fundamental form on " D.

3- For each d €D, L s T (Vs)-u-T(G3) is the isometry determined by

4 M) M(a)
its restriction Ld to T (M) which satisfies tdodM = dM, and Ld{R(x,y)é-
M(d)
= §(de, Ldy)Ldz for all tangent vectors X,Y,2€ T(M)

M(d)

© Also it is shown that the two isometric surfaces M and M satisfying the

.
.
.

‘ above conditions have the same Gaussian and mean curvatures at correspond-

ing points.
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INTRODUCTION

It is known that the first fundamental forms I of two isometric surfaces
are the same. This is not the case for the second fundamental forms II.
However A 3vec [3] studied the conditions for two infinitesimal surfaces
to have the same second fundamental form. He proved that two infinitesimal
isometric surfaces in E3 have the same second fundamental form, that is the
variation in the second fundamental form@II = O on M, provided that the

Gaussian curvature K > 0 on the surface M, and there is a function :

’ 2:M—>R such that the variation of the second fundamental form $II =‘NI on

2 M.

Our aim in this paper is to generalize 8vec's theorem from the case of in-
finitesimal isometric surfaces in E° to the case of the two general isome-

tric surfaces in Riemannian 3-spaces.

THE RIGIDITY THEOREM

Theorem: Let V3, V3 be two Riemannian 3-spaces with curvatures R, Erespec-
tively. Let Dc:R2 be a bounded domain, and let M : D——rV3, M : D-——\73 be
two surfaces, such that:

i) M and M are isometric. .

ii) the Gaussian curvature of M is K and K > O

i @ 3 = . .
iii) For each deD, let L_.: T (V )""Tﬁ(d) (v3) be the isometry determined
M(d)
by the condition that its restriction "d to T (M) satisfies ‘dodM =

_ _ M(@) |
dM , and Ld{R(x,y)z} = R (de, Ldy)Ldz for each deD and all x,y,z

€T (M).
M(d)
iv) II and II are the second fundamental formSof M and M respectively ,

and II = II on the boundary ™ D , ‘

Then II = II on D.

. . 3
Proof: 1In the Riemannian space V7, let M:D—o-v3 be a surface. For each

point m € M associate an orthonormal fr ame {m,vi} , i=1,2,3. Hence there
are differntial forms wl,wi on D such that
3 i 3 . . :
dm = I wiv, ,  dv, =X wlv.,, wi+w: =0 (i,3=1,2,3), @)
=3 =1 = 4 2

with the structure equations
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3 . 3 . 3 . . :
i j i k 1 ] T 43 i o
dw'= Tw’Awj, dwi= Twinw- 7 I Ry waw’ RgRig= 0 @)
j=1 . k=1 b, Tl ‘

(i,j,k,L=1,2,3).
Since dm lies in the tangent plane Tm(M), hence from (1) we have
3
w” = 0. (3)

The exterior differential of (3) gives
) 3 2 3
WA W] + WwAW, =0, (4)

and hence there exist functions a,b,c:D—=R such that

3 1 2 3 1 2
w; = aw +buw , w, = bw™ + cw” . (5)

The first and second fundamental forms of M are given respectively by

; 2 2

r=(wh?+ (wh? , mewtedidwd - awh el w? sew?)?, )
The Gaussian and mean curvatures of M are given respectively by

K = ac - b2 v 2H = a + ¢ . (7)

=3 . . T :
Let V' be another Riemannian space, M : D—sV~ be another surface. For each
point m€ M associate an orthonormal frame{ﬁ,;i}, 1=1.2,3; Hence there

; ’ =1l
are differential forms ) ,uJi on D such that

3 3 :
— -1 — — -] = .o .
dm = Y @& v, " dv, = } u;? v, , (i,3=1,2,3)
. i i : i 3 d
i=1 j=1
(8)
3 3 3
- - — o o S 1 —k _ L
dw = ZwJAw i dws = Zwil\wi Y Zl?;.]kLw AW,
j=1 k=1 k,L=1"
R +R. =0, (koL=1,2,3) )
ikL ilk ! ! fhe=as
Since M is isometric to M, then we can choose the frame{ E);;} in such a
way that ‘
=1 Yom
w = wl ’ wz - wz . (9)
Let us write
=3 J :
w; =w; + Ty (10)

j From (9) 1
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2 2 1 2
w A Tl = w A Tl = 0, (11)
hence
2 s 2 2
'[l =0 andi; =w, (12)

Further we get from (2), (3), (8), (9) and (12)

1 3 2 3
UJAT]_+ wATz = Uy

. 3 .3, 3 3 .3 .3 _ 2 — 1 2 :
WIAT 3+ Tiawy*t Tl = (R, - Rjj) w aw?,
= (13)
3 2 3 3 3 1, ,,2
- _ w

daT] = w AT +®, B agt Ry

3 2 o3 2 3 1. 2
AL, W AT R, - Ry )W Aw®, R

Equation (131) implies that there exist functions Rl' R2, R3 : D—»R such
that:
3 1 2 3 i 2

'[1=le +Row fC2=R2w +Ryw. (14)
. From (14) the second fundamental form of M is then ;
I = 11 + R (wh) P+ m gt o+ R (wh) . (15)

The exterior differentiation of (122) gives

3wl wlaw? =33k ol s 102
WA W, SWIAWS R wAW

112
From (5)
2 2 -— =2 —2
(ac - b))+ R112 = (ac - b )+ R112 r
from (7) it follows that .
3 o .
K + R112 =K + R112 . (16)
From (5), (14), (132) and (16) we get
2 —
aR3 - 2bR2 +CR-L+R1R3—R2 = K - K. (17)

From (133’4) and (14)

2 1 2 3.3 =3 1 2
(AR} =R, wy)A W +{dR2+(Rl R3“’"1}/\uJ = R Rpp)wAw,
(18)
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(18)
2 1 2 2 3 1 2
{dRi’(Pl’wal}"“’ +@AR+2R, W) AW —(R212-ﬁ312)w AW }
and hence there exist functions Sl,...,S4 : D—=R each that
drR -2R_ w2 = 5 Wit (s 4R, Jw? ]
By 2Ry B 5y oty 1)
2 3 1 —3 2
AR+ (R) R )W = (5,4, I W +(Sy+R) )W, L (19)
. 2 3 1 2
dR3+2R2w1 = (s3+R212)w +5, w. ]
From (2 ) and (5)
2 1 » 2 2 3 1 2
(da-wal) A W +{db+(a—c)wl} AW = - R.le WAW »
(20)
2 1 2 2 3 1 2
- = - AW
{db+(a c)wl}/\w +(dc+2bwl) AW R212 w 7
and we may write
2 _ .1 1.3 2 i
da —2bw1—°<w +(P+2R112)w v ,
. 2 _ 1.3 1 1.3 2 ;
: dbt+(a-c) W, = (B- SR ) W HTE SR W, > (21) .
v 2 _ 1.3 1 2
det2b Wi = (¥-F R I +BJw. ]

On differentiating (17) and substituting from (19) and (21) the coefficient

of “”1 vanishi=s  hencethe coefficient of each of wl

to zero, which gives

4
2

and (_uz will bé equal

1 3
{c4R S ~2(b+ ! Foa— s
(c+R,)S, -2 iR, )8, +(a+R, )8, ( 2+ > Ry15) R

1

1.3
+ 2(f+ = JR, ~4R, - a Rglz

3 o
J 12’ R, +2b R112+ (K - K). , ¢

1

LR RS R (22)

i e 1
= =R 2 () TRy R IR,

u.’—rR,‘ ) 82 =2 (b-l~R2 )S3 + (_a+Rl7S4

/3':-}- bR JRA420RS. - RO, + (K
2 N12% R1)R3*2bRy ) )= Ry, + (K - K),.

In D, let us choose coordinates (u,v) such that

il o 2
W =rdu , W = .adv , r=r(u,v) #0, 4=4(u,v) #0 (23)
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which implies that

2 =1 ¥ -1 24
wl——.o }Vdu+r 'DU dv , (24)

From (19) , (23) and (24) we get

O (R -Ry) (R, -Ry) -1 14 -
_———_Bu_ du+ —-Bv—dv - 4R2(- P ;du + r ﬁdv) =
. 3 —3
. (81-53—R2 )r du +(S2 S4+R112),odv 3
(25)
o8 Ry -1 >r -1 s (
=% du + =T dv +(R.|._R3)(_ D _W du+r 'ﬁ dv) =
S_4R
( 2 llZ)r du + (S + R212),odv. i
From (25) it follows that
2 (R -R, ) —3R N
_ 2 04 _ dr 3 -3
ToS) =A——=7 rSv Yt Ru ®TRIH TR rs(R) R L),
‘ ™R Sy 2
DEAS, == - 5L(R7Ry) - raR), o,
-3 o (26)
_ + 0 R )—
Jr’553"’5111 Su (B 7Ry r"Rzlz
"o (R) ~Ry) R, }r 5 4
rAS4 -r 2 u +A'Bu (R.L ® ).*4 TR r'o(R.LlZ RJ.IZ

Now, let us turn our attention to condition (iii) of our theorem, for x,y,z

€T (M) , let

. M(d)
b 2 il 2
X = X vl+x v2, y =y vl+y v2 y Z = Z vllz v2 P (x3=y3=23=0),. (27)
We have
: g
R(x,y) z = R ..
' %;1 Gk XY EY 4 (E,3,ke,20)
2 1 21 3 1 21 2 2 1 1 2 1 1
= R =
112 * Y 2Vt RyppX v 2vy - Ry oxyTzy, Ruzx y 2V,

2 122 3 122 2 212 3 2159
- R X + R
112 ¥ B Yy 212xyzv3+R112xyz"1 B® ¥ E v

L

._l
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21 12 2 2 1 3 1 3 2
. ol Rk ){ Ry =% Vil = %Ry s )"3} {48}
Since Ldvi = vi , then .

1 12

2 3 —
L R(x,y)z} = (x'y =x ){ (z v z v )= ( z)v ’
d{ 112 R112 2 2 3} 29)

— 2.1 1 2 " 1— 1 3 2. =
) R(de,Ldy)Ldz = Xy =Xy ){ 112 -z v, ) - (R112 + Rzlzz )v3}.

Since from the condition Ld{R(x,y)z}= ﬁ(de,Ldy)Ldz for each d € D and

all x,y,z € T (M), it follows from (29) that we have on M
M(d)

2 -2 =3
R°._ = R>._, - 3 _3
112 - Ry1o R_le 112, R, = Rypye (30)

Hence from (16) we get

K =K (K>0 ). (31)

Using (31), equation (17) can be written in the forms

: (2a+2c+Rl+R3)Rl—2(2b+R2)R2—(2a+R1)(R-L—R3) =0, .
_or (32) X
(2c+R3) (Rl—R3)—2(2b+R2)R2+(2a+2c+Rl+R3)R3 = 0.
From (10) and (14) we get,
=3 .2 -1 -3 1 2 1 2 - 1
WiAG +W AW, =2HW AW+ (R +R)W" A W™ = 2Hy r\wz. . (33)
Hence _
2(H+H) = 2a + 2c + Rl + R3. (34)

: =2 = =
Since H>K =K >0 , H2> K, imply 2(H+H) > O,

then from (32) and (34),

R, | 1
R = (H+H) {(2b+R2)R2 + 5 (2aR)) (Rl—R3)},
( (35)

- -1
Ry= (H+) {(2b+R2)R2 - % (2c+R3)(Rl—R3)}.

From (26), (35) and (22) ye get

ke -
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}(Rl-R3) 2R, 2R, o
,d(C+R3) ?_ -24(b+R2) 5a +r (a+C+F&+R3) Sv =
f. (R -R,)) + £_ R_,
3 Rl 3 2 2 (36)
- e 3k 2R f
—r(a+Rl) —5_‘,—+,6(a+C+Rl+R3) —2r(b+R2) ?V =
f3(Rl—R3)+ f4R2.
J :
The quadratic form ¢ of {36) is equivalent to ’
= R +R { 2 +R. ) 2+2 (b+R_Ipy + 2( +R _) 2 (37)
¢ = - (a+c+ 1 3) ¥ (a 1 H ray 2 H e c 3 \) }-
Let the discriminant of ¢ be - A, then
2 2 2 2
NA=1r .4 (a+c+Rl+R3) {(a+Rl)(c+R3)—(b+R2) }, (38)

from (7), (17), (31) and (a+c4R) +R,) = 2H > 0 equ (38) reduces to

A = r2 A2K(a+c+Rl+R3)2> O. Hence @ is definite and (36) is elliptic,

i we get - = = i . F = =B =
and from (iv) g Rl R3 R2 O in D From (35) we get Rl R2 R3 o

inside D. Then from (33) we get H = H , and from (15) we get II = I

in D, which proves the theorem.
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— CONCLUSION

We conclude that the theorem of A. 3vec [3] can be generalized from two

infinitesimal isometric surfaces to the case of two general isometric sur-

. 3 =3 3 C . P
faces in Riemannian 3-spaces. Moreover if V° = V = E the condition (iii)
is automatically satisfied since R%. = ﬁ?. = 0.
ijk ijk
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