

A RIGIDITY THEOREM FOR SURFACES IN RIEMANNIAN 3-SPACES.

BY

Gen. Dr. RAMY M.K. TALAAT

ABSTRACT

Let $M: D \longrightarrow V^3$ and $\overline{M}: D \longrightarrow \overline{V}^3$ (D $\subset \mathbb{R}^2$) be two isometric surfaces in the Riemannian spaces V^3 and \overline{V}^3 with curvatures R, \overline{R} respectively.

We shall prove that the second fundamental forms of the two surfaces are the same provided that:

- 1- The Gaussian curvature K of M is positive.
- 2- M and \overline{M} have the same second fundamental form on $\overline{\mbox{O}}$ D.
- 3- For each d \in D, L_d: T (V³) \longrightarrow T(\overline{V} ³) is the isometry determined by M(d) \overline{M} (d)

its restriction l_d to T (M) which satisfies l_d odM = $d\bar{M}$, and L_d R(x,y) z

- = $\bar{R}(L_dx, L_dy)L_dz$ for all tangent vectors x,y,z \in T(M) M(d)
- Also it is shown that the two isometric surfaces M and \overline{M} satisfying the above conditions have the same Gaussian and mean curvatures at corresponding points.

Military Technical College, Kobry El-Kobba, Cairo, Egypt.

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

INTRODUCTION

It is known that the first fundamental forms I of two isometric surfaces are the same. This is not the case for the second fundamental forms II. However A Svec [3] studied the conditions for two infinitesimal surfaces to have the same second fundamental form. He proved that two infinitesimal isometric surfaces in E^3 have the same second fundamental form, that is the variation in the second fundamental form SII = 0 on M, provided that the Gaussian curvature K > 0 on the surface M, and there is a function $A:M \longrightarrow R$ such that the variation of the second fundamental form SII = AI on A.

Our aim in this paper is to generalize \S vec's theorem from the case of infinitesimal isometric surfaces in E^3 to the case of the two general isometric surfaces in Riemannian 3-spaces.

THE RIGIDITY THEOREM

Theorem: Let V^3 , \overline{V}^3 be two Riemannian 3-spaces with curvatures R, \overline{R} respectively. Let $D \subset R^2$ be a bounded domain, and let $M: D \longrightarrow V^3$, $\overline{M}: D \longrightarrow \overline{V}^3$ be two surfaces, such that:

- i) M and M are isometric.
- ii) the Gaussian curvature of M is K and K > O
- iii) For each $d \in D$, let L_d : $T(v^3) \to T_{M(d)}(\overline{v}^3)$ be the isometry determined M(d) by the condition that its restriction C_d to T(M) satisfies $C_d = \overline{dM}$, and $C_d = \overline{dM}$, and $C_d = \overline{dM}$ and $C_d = \overline{dM$
- iv) II and \overline{II} are the second fundamental formsof M and \overline{M} respectively , and II = \overline{II} on the boundary \Im D . Then II = \overline{II} on D.

<u>Proof</u>: In the Riemannian space V^3 , let $M:D \longrightarrow V^3$ be a surface. For each point m \in M associate an orthonormal frame $\{m,v_i\}$, i=1,2,3. Hence there are differntial forms $\boldsymbol{w}^i, \boldsymbol{w}_i^j$ on D such that

$$dm = \sum_{i=1}^{3} w^{i}v_{i}$$
, $dv_{i} = \sum_{j=1}^{3} w_{i}^{j}v_{j}$, $w_{i}^{j} + w_{j}^{i} = 0$ (i,j=1,2,3), (1)

with the structure equations

6

$$d \mathbf{w}^{i} = \sum_{j=1}^{3} \mathbf{w}^{j} \wedge \mathbf{w}^{i}_{j}, \quad d \mathbf{w}^{j}_{i} = \sum_{k=1}^{3} \mathbf{w}^{k}_{i} \wedge \mathbf{w}^{j}_{k} - \frac{1}{2} \sum_{k,L=1}^{3} R^{j}_{ikL} \mathbf{w}^{k} \wedge \mathbf{w}^{L}, R^{j}_{ikL} + R^{j}_{iLk} = 0$$
 (2)
$$(i,j,k,L=1,2,3).$$

Since dm lies in the tangent plane $T_{m}(M)$, hence from (1) we have

$$\omega^3 = 0.$$
(3)

The exterior differential of (3) gives

$$\omega_{\Lambda}^{3} + \omega_{\Lambda}^{3} + \omega_{\Lambda}^{3} = 0,$$
 (4)

and hence there exist functions a,b,c:D-R such that

$$\omega_1^3 = a \omega^1 + b \omega^2$$
 , $\omega_2^3 = b \omega^1 + c \omega^2$. (5)

The first and second fundamental forms of M are given respectively by

$$I = (\omega^{1})^{2} + (\omega^{2})^{2}$$
, $II = \omega^{1}\omega_{1}^{3} + \omega^{2}\omega_{2}^{3} = a(\omega^{1})^{2} + 2b\omega^{1}\omega^{2} + c(\omega^{2})^{2}$. (6)

The Gaussian and mean curvatures of M are given respectively by

$$K = ac - b^2$$
, $2H = a + c$. (7)

Let \overline{V}^3 be another Riemannian space, $\overline{M}: D \longrightarrow \overline{V}^3$ be another surface. For each point $\overline{m} \in \overline{M}$ associate an orthonormal frame $\{\overline{m}, \overline{v}_i\}$, i=1,2,3. Hence there are differential forms $\overline{\omega}^i, \overline{\omega}^j_i$ on D such that

$$d\overline{m} = \sum_{i=1}^{3} \overline{\omega}^{i} \overline{v}_{i} , d\overline{v}_{i} = \sum_{j=1}^{3} \overline{\omega}^{j} \overline{v}_{j} , (i,j=1,2,3)$$

$$d\overline{\omega}^{i} = \sum_{j=1}^{3} \overline{\omega}^{j} \wedge \overline{\omega}^{i}_{j} ; d\overline{\omega}^{i}_{i} = \sum_{k=1}^{3} \overline{\omega}^{k}_{i} \wedge \overline{\omega}^{j}_{k} - \frac{1}{2} \sum_{k,L=1}^{3} \overline{R}^{j}_{ikL} \overline{\omega}^{k} \wedge \overline{\omega}^{L} ,$$

$$\overline{R}^{j}_{ikL} + \overline{R}^{j}_{ilk} = 0, (k,L=1,2,3).$$
(8)

Since \overline{M} is isometric to M, then we can choose the frame $\left\{\overline{m},\overline{v}_i\right\}$ in such a way that

$$\overline{\omega}^1 = \omega^1 \quad , \quad \overline{\omega}^2 = \omega^2 \ . \tag{9}$$

Let us write

$$\bar{\omega}_{i}^{j} = \omega_{i}^{j} + \gamma_{i}^{j} \tag{10}$$

SECOND A.M.E. CONFERENCE 6 - 8 May 1986, Cairo

 $\omega^2 \wedge \gamma^2 = \omega^1 \wedge \gamma^2 = 0, \tag{11}$

hence

$$\gamma_1^2 = 0 \quad \text{and } \overline{\omega}_1^2 = \omega_1^2$$
 (12)

Further we get from (2), (3), (8), (9) and (12)

$$\omega^{1} \wedge \Upsilon_{1}^{3} + \omega^{2} \wedge \Upsilon_{2}^{3} = 0,$$

$$\omega_{1}^{3} \wedge \Upsilon_{2}^{3} + \Upsilon_{1}^{3} \wedge \omega_{2}^{3} + \Upsilon_{1}^{3} \wedge \Upsilon_{2}^{3} = (R_{112}^{2} - \overline{R_{112}^{2}}) \omega^{1} \wedge \omega^{2},$$

$$d \Upsilon_{1}^{3} = \omega_{1}^{2} \wedge \Upsilon_{2}^{3} + (R_{112}^{3} - \overline{R_{112}^{3}}) \omega^{1} \wedge \omega^{2},$$

$$d \Upsilon_{2}^{3} = -\omega_{1}^{2} \wedge \Upsilon_{1}^{3} + (R_{212}^{2} - \overline{R_{212}^{3}}) \omega^{1} \wedge \omega^{2}.$$
(13)

Equation (13₁) implies that there exist functions R_1 , R_2 , R_3 : D—R such that:

$$\gamma_1^3 = R_1 \omega^1 + R_2 \omega^2$$
, $\gamma_2^3 = R_2 \omega^1 + R_3 \omega^2$. (14)

From (14) the second fundamental form of $\overline{\mathrm{M}}$ is then

$$\overline{II} = II + R_1 (\omega^1)^2 + 2R_2 \omega^1 \omega^2 + R_3 (\omega^2)^2.$$
 (15)

The exterior differentiation of (12) gives

$$\omega_{1}^{3} \wedge \omega_{2}^{3} + R_{112}^{2} \omega_{1}^{1} \wedge \omega_{2}^{2} = \overline{\omega}_{1}^{3} \wedge \overline{\omega}_{2}^{3} + \overline{R}_{112}^{2} \omega_{1}^{1} \wedge \omega_{1}^{2}$$

From (5)

$$(ac - b^2) + R_{112}^2 = (ac - b^2) + R_{112}^2$$

from (7) it follows that

$$K + R_{112}^2 = \overline{K} + \overline{R}_{112}^2$$
 (16)

From (5), (14), (13_2) and (16) we get

$$aR_3 - 2bR_2 + cR_1 + R_1 R_3 - R_2^2 = \overline{K} - K.$$
 (17)

From $(13_{3,4})$ and (14)

$$(dR_1 - 2R_2 \omega_1^2) \wedge \omega^1 + \left\{ dR_2 + (R_1 - R_3) \omega_1^2 \right\} \wedge \omega^2 = (R_{112}^3 - \overline{R}_{112}^3) \omega^1 \wedge \omega_2^2$$
(18)

6

$$\left\{ dR_{\frac{1}{2}}(R_{1}-R_{3}) \omega_{1}^{2} \right\} \wedge \omega^{1} + (dR_{3}+2R_{2} \omega_{1}^{2}) \wedge \omega^{2} = (R_{212}^{3}-\overline{R}_{212}^{3}) \omega^{1} \wedge \omega^{2},$$
 (18)

and hence there exist functions S_1, \dots, S_n : D-R each that

$$dR_{1}^{-2}R_{2}\omega_{1}^{2} = S_{1}\omega^{1} + (S_{2}^{+}R_{112}^{3})\omega^{2},$$

$$dR_{2}^{+}(R_{1}^{-}R_{3})\omega_{1}^{2} = (S_{2}^{+}R_{112}^{3})\omega^{1} + (S_{3}^{+}R_{212}^{-3})\omega^{2},$$

$$dR_{3}^{+2}R_{2}\omega_{1}^{2} = (S_{3}^{+}R_{212}^{3})\omega^{1} + S_{4}^{2}\omega^{2}.$$
(19)

From (2) and (5)

$$\left\{ da - 2b \omega_{1}^{2} \right\} \wedge \omega^{1} + \left\{ db + (a - c) \omega_{1}^{2} \right\} \wedge \omega^{2} = -R_{112}^{3} \omega^{1} \wedge \omega^{2},$$

$$\left\{ db + (a - c) \omega_{1}^{2} \right\} \wedge \omega^{1} + (dc + 2b \omega_{1}^{2}) \wedge \omega^{2} = -R_{212}^{3} \omega^{1} \wedge \omega^{2},$$

$$\left\{ db + (a - c) \omega_{1}^{2} \right\} \wedge \omega^{1} + (dc + 2b \omega_{1}^{2}) \wedge \omega^{2} = -R_{212}^{3} \omega^{1} \wedge \omega^{2},$$

$$\left\{ db + (a - c) \omega_{1}^{2} \right\} \wedge \omega^{1} + (dc + 2b \omega_{1}^{2}) \wedge \omega^{2} = -R_{212}^{3} \omega^{1} \wedge \omega^{2},$$

$$\left\{ db + (a - c) \omega_{1}^{2} \right\} \wedge \omega^{1} + (dc + 2b \omega_{1}^{2}) \wedge \omega^{2} = -R_{212}^{3} \omega^{1} \wedge \omega^{2},$$

and we may write

$$da -2b \omega_{1}^{2} = \alpha (\omega^{1} + (\beta + \frac{1}{2} R_{112}^{3}) \omega^{2},$$

$$db + (a-c) \omega_{1}^{2} = (\beta - \frac{1}{2} R_{112}^{3}) \omega^{1} + (\beta + \frac{1}{2} R_{212}^{3}) \omega^{2},$$

$$dc + 2b \omega_{1}^{2} = (\beta - \frac{1}{2} R_{212}^{3}) \omega^{1} + \delta \omega^{2}.$$

$$(21)$$

On differentiating (17) and substituting from (19) and (21) the coefficient of ω_1^2 vanishes. Hencethe coefficient of each of ω^1 and ω^2 will be equal to zero, which gives

$$(c+R_3)S_1 - 2(b+R_2)S_2 + (a+R_1)S_3 = -(N+\frac{1}{2}R_{212}^3)R_1$$

$$+ 2(\beta + \frac{1}{2}R_{112}^3)R_2 - \alpha R_3 - aR_{212}^3 + 2bR_{112}^3 + (\overline{K} - K)_1,$$

$$(c+R_3)S_2 - 2(b+R_2)S_3 + (a+R_1)S_4 = -\overline{S}R_1 + 2(N+\frac{1}{2}R_{212}^3 + \overline{R}_{212}^3)R_2$$

$$-(\beta + \frac{1}{2}R_{112}^3 + \overline{R}_{112}^3)R_3 + 2b\overline{R}_{212}^3 - c\overline{R}_{112}^3 + (\overline{K} - K)_2.$$

$$(22)$$

In D, let us choose coordinates (u,v) such that

$$\omega^{1} = rdu$$
, $\omega^{2} = sdv$, $r = r(u,v) \neq 0$, $s = s(u,v) \neq 0$ (23)

SECOND A.M.E. CONFERENCE
6 - 8 May 1986 , Cairo

which implies that

$$\omega_1^2 = - \delta^{-1} \frac{\partial r}{\partial v} du + r^{-1} \frac{\partial \delta}{\partial u} dv. \qquad (24)$$

From (19) , (23) and (24) we get

$$\frac{\partial^{(R_{1}-R_{3})}}{\partial u} du + \frac{\partial^{(R_{1}-R_{3})}}{\partial v} dv - 4R_{2}(- \triangle^{-1} \frac{\partial r}{\partial v} du + r^{-1} \frac{\partial \Delta}{\partial u} dv) =$$

$$(S_{1}-S_{3}-R_{212}^{3})r du + (S_{2}-S_{4}+R_{112}^{3}) \triangle dv,$$

$$\frac{\partial^{R_{2}}}{\partial u} du + \frac{\partial^{R_{2}}}{\partial v} dv + (R_{1}-R_{3})(- \triangle^{-1} \frac{\partial r}{\partial v} du + r^{-1} \frac{\partial \Delta}{\partial u} dv) =$$

$$(S_{2}+R_{112}^{3})r du + (S_{3}+R_{212}^{3}) \triangle dv.$$

$$(25)$$

From (25) it follows that

$$r \Delta S_{1} = \Delta \frac{\partial^{(R_{1}-R_{3})}}{\partial u} + r \frac{\partial^{R_{2}}}{\partial v} + \frac{\partial \Delta}{\partial u} (R_{1}-R_{3}) + 4 \frac{\partial^{r}}{\partial v} R_{2} + r \Delta (R_{212}^{3}-R_{212}^{3}),$$

$$\vdots r \Delta S_{2} = \Delta \frac{\partial^{R_{2}}}{\partial u} - \frac{\partial^{r}}{\partial v} (R_{1}-R_{3}) - r \Delta R_{112}^{2},$$

$$r \Delta S_{3} = r \frac{\partial^{R_{2}}}{\partial u} + \frac{\partial \Delta}{\partial u} (R_{1}-R_{3}) - r \Delta R_{212}^{3},$$

$$r \Delta S_{4} = -r \frac{\partial^{(R_{1}-R_{3})}}{\partial u} + \Delta \frac{\partial^{R_{2}}}{\partial u} - \frac{\partial^{r}}{\partial v} (R_{1}-R_{3}) + 4 \frac{\partial \Delta}{\partial u} R_{2} - r \Delta (R_{112}^{3}-R_{112}^{3}).$$

$$(26)$$

Now, let us turn our attention to condition (iii) of our theorem, for $x,y,z \in T$ (M) , let M(d)

$$x = x^{1}v_{1} + x^{2}v_{2}$$
, $y = y^{1}v_{1} + y^{2}v_{2}$, $z = z^{1}v_{1}1z^{2}v_{2}$, $(x^{3}=y^{3}=z^{3}=0)$. (27)

We have

$$R(x,y) z = \sum_{\ell=1}^{3} R^{\ell}_{ijk} x^{j} y^{k} z^{i} v_{\ell} , \quad (i,j,k=1,2.)$$

$$= R^{2}_{112} x^{1} y^{2} z^{1} v_{2} + R^{3}_{112} x^{1} y^{2} z^{1} v_{3} - R^{2}_{112} x^{2} y^{1} z^{1} v_{2} - R^{3}_{112} x^{2} y^{1} z^{1} v_{3}$$

$$- R^{2}_{112} x^{1} y^{2} z^{2} v_{1} + R^{3}_{212} x^{1} y^{2} z^{2} v_{3} + R^{2}_{112} x^{2} y^{1} z^{2} v_{1} - R^{3}_{212} x^{2} y^{1} z^{2} v_{3}$$

 $= (x^{2}y^{1}-x^{1}y^{2}) \left\{ R_{112}^{2} (z^{2}v_{1}-z^{1}v_{2}) - (R_{112}^{3}z^{1}+R_{212}^{3}z^{2}) v_{3} \right\}$ (28)

Since $L_{di} = \overline{v}_{i}$, then .

$$L_{d} \left\{ R(x,y)z \right\} = (x^{2}y^{1}-x^{1}y^{2}) \left\{ R_{112}^{2}(z^{2}\overline{v}_{1}-z^{1}\overline{v}_{2}) - (R_{112}^{3}z^{1}+R_{212}^{3}z^{2})\overline{v}_{3} \right\},$$

$$\overline{R}(L_{d}x,L_{d}y)L_{d}z = (x^{2}y^{1}-x^{1}y^{2}) \left\{ \overline{R}_{112}^{2}(z^{2}\overline{v}_{1}-z^{1}\overline{v}_{2}) - (\overline{R}_{112}^{3}z^{1}+\overline{R}_{212}^{3}z^{2})\overline{v}_{3} \right\}.$$
(29)

Since from the condition $L_d \left\{ R(x,y)z \right\} = \overline{R}(L_dx,L_dy)L_dz$ for each $d \in D$ and all $x,y,z \in T$ (M), it follows from (29) that we have on M M(d)

$$R_{112}^2 = \bar{R}_{112}^2$$
, $R_{112}^3 = \bar{R}_{112}^3$, $R_{212}^3 = \bar{R}_{212}^3$. (30)

Hence from (16) we get

$$K = \overline{K} \qquad (K > 0). \tag{31}$$

Using (31), equation (17) can be written in the forms

$$(2a+2c+R_1+R_3)R_1-2(2b+R_2)R_2-(2a+R_1)(R_1-R_3) = 0,$$
or
$$(2c+R_3)(R_1-R_3)-2(2b+R_2)R_2+(2a+2c+R_1+R_3)R_3 = 0.$$
(32)

From (10) and (14) we get,

$$\bar{\omega}_{1}^{3} \wedge \bar{\omega}^{2} + \bar{\omega}^{1} \wedge \bar{\omega}_{2}^{3} = 2H \omega^{1} \wedge \omega^{2} + (R_{1} + R_{3}) \omega^{1} \wedge \omega^{2} = 2H \omega^{1} \wedge \omega^{2}, \quad (33)$$

Hence

$$2(H+\bar{H}) = 2a + 2c + R_1 + R_3$$
 (34)

Since $\bar{H}^2 > \bar{K} = K > 0$, $H^2 > K$, imply $2(H + \bar{H}) > 0$,

then from (32) and (34),

$$R_{1} = (H + \overline{H})^{-1} \left\{ (2b + R_{2})R_{2} + \frac{1}{2} (2a + R_{1}) (R_{1} - R_{3}) \right\},$$

$$R_{3} = (H + \overline{H})^{-1} \left\{ (2b + R_{2})R_{2} - \frac{1}{2} (2c + R_{3}) (R_{1} - R_{3}) \right\}.$$
(35)

From (26), (35) and (22) we get

SECOND A.M.E. CONFERENCE

6 - 8 May 1986, Cairo

 $\mathcal{A}(c+R_{3}) = \frac{\partial (R_{1}-R_{3})}{\partial u} - 2 \mathcal{A}(b+R_{2}) = \frac{\partial R_{2}}{\partial u} + r (a+c+R_{1}+R_{3}) = \frac{\partial R_{2}}{\partial v} = \frac{f_{1} (R_{1}-R_{3}) + f_{2} R_{2}}{\partial v} + \mathcal{A}(a+c+R_{1}+R_{3}) = \frac{\partial R_{2}}{\partial u} - 2r (b+R_{2}) = \frac{\partial R_{2}}{\partial v} = \frac{f_{3} (R_{1}-R_{3})}{\partial v} + \mathcal{A}(a+c+R_{1}+R_{3}) = \frac{\partial R_{2}}{\partial u} - 2r (b+R_{2}) = \frac{\partial R_{2}}{\partial v} = \frac{f_{3} (R_{1}-R_{3}) + f_{4} R_{3}}{\partial v} = \frac{f_{3} (R_{1}-R_{3}) + f_{4}$

The quadratic form \emptyset of (36) is equivalent to

$$\emptyset = - (a+c+R_1+R_3) \left\{ r^2 (a+R_1) \mu^2 + 2r \delta (b+R_2) \mu \nu + \delta^2 (c+R_3) \nu^2 \right\}.$$
 (37)

Let the discriminant of \emptyset be - \triangle , then

$$\Delta = r^2 \Delta^2 (a+c+R_1+R_3)^2 \left\{ (a+R_1)(c+R_3) - (b+R_2)^2 \right\}, \tag{38}$$

from (7), (17), (31) and $(a+c+R_1+R_3) = 2\overline{H} > 0$ equ (38) reduces to

 $\Delta = r^2 \Delta^2 K (a+c+R_1+R_3)^2 > 0$. Hence \emptyset is definite and (36) is elliptic, and from (iv) we get $R_1-R_3=R_2=0$ in D. From (35) we get $R_1=R_2-R_3=0$ inside D. Then from (33) we get $H=\overline{H}$, and from (15) we get $\overline{II}=\overline{II}$ in D, which proves the theorem.

Q.E.D.

CONCLUSION

We conclude that the theorem of A. Švec [3] can be generalized from two infinitesimal isometric surfaces to the case of two general isometric surfaces in Riemannian 3-spaces. Moreover if $V^3 = \overline{V}^3 = E^3$ the condition (iii) is automatically satisfied since $R^{\ell}_{ijk} = \overline{R}^{\ell}_{ijk} = 0$.

REFERENCES

- W. Blaschke, K.Leichtweiss: Elementare Differential geometrie. Springer - Verlag, 1973.
- 2 H. Huck, R. Roitzsch, U. Simon, W. Vortisch, R. Wolden, B. Wegner, W. Wendland: Beweismethoden der Differential geometrie in Grossen. Springer Verlag, 1973.
- 3 A. Švec: Contributions to the global differential geometry of surfaces Publishing House of the Czechoslovak Academy of Sciences, 1977.