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ABSTRACT 

-The design of multi-input multi-output (MIMO) industrial 
:control systems, by use of the modern control theory, 
usually leads to considerable difficulties as a direct 
consequence of the following points: the mathematical 
:models are usually of high order and the state feedback 
'schemes are of complicated nature. The present research 	• 
deals with the problem of simultanious decoupling and cont-
.2'01 based on the diagonal dominancy over certain frequency 
-range and the stabilization of the inverse Nyquist array 
•(INA) plots at an optimum point. An approximate design 
technique is proposed for certain class of (MIMO) systems. 
•The effect of emergency outage of one of the controllers is : 
.studied. The results have been checked by simulating two-
'input 

 
 two-output system on the analog computer. 

INTRODUCTION AND PROBLEM FORMULATION 

'The design of multi-input multi-output (MIMO) industrial 
control systems (thermal, cheMical, mechanical, ... etc.) by: 
use of the modern control theory (state space approach), 
-usually leads to considerable difficulties because: the 
:mathematical models of these processes are of high order,and. 
the state feedback schemes are of complicated nature. The 
•decoupling technique based on the principle of diagenal 
:dominancy which had been established by Rosenbrock [1] -
represents one of the practically sucessful approaches for 
the analysis and design of such systems. The problem of 
:diagonal dominancy of the open loop transfer function matrix 
'had been reviewed by several authers 121, [31. In the pre-
viously given works, the problem is treated separately far : 
:from the requirements imposed by the designer on the system 
performance. Moreover, no sufficient attension has been 
addressed to the concept of diagonal dominancy about certain :  
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:frequency which has a significant role in determining the 
performance of the system. 

This research deals with the problem of simultanious decoup-
ling 

 
 and control based on the diagonal dominancy over cer-

tain frequency range and the stabilization of the inverse 
Nyquist array (INA) plots at an optimum point. The freque-
ncy range at which complete decoupling exists at certain 
.frequency and diagonal dominancy occurs at other frequencies, 
'represents the most significant range for determining the 
performance of the MIMO system. The frequency at which com-
plete decoupling exists had been obtained from the condition 
'of optimum performance (minimiza'tion of the dispersion of the 
error signal) of a family of INA similar plots for the diffe-.' 
;rent components of the open loop transfer function matrix. 
An approximate design technique is proposed and Gershgorin 
bands are plotted to chock the diagonal dominancy at the 
:choosen frequency range. The effect of emergency outage of 
one of the controllers of the MIMO system is studied. The 
results have been checked by simulating two-input two-output' 
:system on the analog computer. 

TUNING OF A CLASS OF SINGLE-INPUT SINGLE-OUTPUT 
(SISO) SYSTEMS. 

A class of SISO systems has been invistigated in this sec-
!tion in order to compare the INA of these systems when opti-
Maly tuned. Each SISO system consists of a plant Wp(s) and 
a controller We(s). Eight types of plant transfer functions: 
are considered: 

l 	e-T's e-• 1  
(Ts + 1)2  ; (Ts + 1) ; (Ts + 1)2  ; (Ts + 1)-5  ' 

e-7's -l.' e s 1 	e 	 1  

	

s(Ts + 1)2  ' s(Ts + 1) 	s(Ts + 1)2  ' s(Ts + 1)3  

iThe previously given transfer functions can represent a wide 
class of thermal, chemical and mechanical systems. The con-
troller transfer function of each plant is obtained using 
Wiener-Hopf optimum controller 14] 	in the form: 	• 

W1(s) 

	

Wc(s) = 	 (1) ; 
Wp(1 - W1  (s)) 

:The controller transfer functions can be approximated in the 
'region of lower frequancies in the following form: 

1  

	

Wc(s) = 	 (2) 
rs Wp°(s) where 

. 	0  — the pure time delay of the plant 
W (s)- the transfer function of the plant without pure 
P 	time delay 

L.. 	 "...i 
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In the common practical situations, some standard types of 
controllers such as P, PI, PID controllers are usually used. 
:Each SISO systems is tuned such that the following conditions 
are satisfied: 
a) the resonant peak is maintained at a value M = 1.62. 
b) the dispersion or the square of the error signal is 

minimized. 
The INA of the open loop transfer functions of the optimally 

:controlled systems are plotted in Fig. 1. It is clear from 
'Fig. 1 that all systems have approximately equal INA plot at 
a point having coordinates (1.25, 150°). In the consequent 
:analysis, this point will be choosen as a center for comp-
lete decoupling, while a suitabfe range about this point 
will be choosen such that the diagonal dominancy conditions 
for a MIMO system will be satisfied. 

DECOUPLING AND DIAGONAL DOMINANCY ABOUT CERTAIN 
FREQUENCY 

Fig. 2 shows a MIMO system, the plant of which has a trans- 

W (s) = 

W11(s)  
W21(s) 

• 
• 

• 

Wnl(s) 

W12(s) 	... 

W22(s) 

Wn2(s) 	... 

W1n(s) 
W2n(s) 

W/LT1 (s) 

(3)  

whereWij  ..(s) belongs to the class of the previously given 
:transfer functions. The controller transfer function matrix' 
is considered to be diagonal matrix in the form: 

Wc11(s)  

fer function matrix in the form: 

Wc22(s)  

0 

0 

(4)  

 

wc (a) = 

where Weii(s) belongs to the 
:controllei's previously given 
the class of standard P, PI, 
industry). 

Wcnn (s) 
class of Wiener-Hopf optiMum 
by expressions (1), (2); or to 
PID controllers (widely used in 

'Refering to the results given in the previous sections, the 
INA common point (1.25, 150°) corresponds to a point (0.8, 
,-150°) on the common Nyquist plot. Accordingly, the decou- 
'piing problem can be formulated as follows: find a matrix 
[K] such that the open loop transfer function matrix is a 
:diagonal matrix in the form: 

L.. 



W(s ) 

1 +1/ T. s ) 

k22 

e-s 

s + 1 ) 	+1 ) 

e-s 

s +1)3 s(s+1 

1 

1 
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0.8 
6 0 

ic•I[tre( s)][wp(s)] 
0.8 

0 (5) 
0.8 

To achieve diagonalization at a point of the INA (1.25, 150°); 
the matrix (Wc(s))[Wp(s)] can be expressed in the form: 

0.8 a12 ... aln 

a21 	0.8 	a2n 
[lic(s)][Wp(s)] = .. 	• 

. 	. 
• 

(6) 

O 

and ant 0.8  

.i.e. the diagonal elements are equal to 0.8 (the point at 
'which complete decoupling occurs). The off-diagonal eleme-
nts ail are obtained as follows: 
.a) find the optimum values of the controller parameters 

corresponding to controller Wcii(s) and a plant Wpii(s) 
connected as SISO system. 

.b) generate a group of SISO systems consisting of contro-
llers Wcii(s) (the optimum parameters of which are obtai-
ned in the previous step) and plants Wi•(s)3 4j. 

.c) find the modulia of the open loop frequ6ncy responses of 
the previously generated systems corresponding to a phase 
angle of -150° 

•d) the modulia obtained in step (c) represent the values of 
aij given in matrix (6). 

The diagonalization of the matrix [Wc(s)][Wp(s)1 may lead to 
the following cases: 
a) some distinct real eigen values 
b) some repeated real eigen values 

:c) some repeated or conjugate complex eigen values. 

The previously given cases can lead to the following confi-
gurations of the decoupled or nearly decoupled systems: 
a. completely decoupled systems if there exists some distinct 

eigen values. 
:b. one-sided interaction if some roots are repeated and 

Jordan blocks will appear on the diagenal of the diagona-
lized matrix. 

:c. two-sided interaction if complex eigen values appear. 
- It is clear from the given configurations that the appeared 
one-sided or two-sided interactions can be considered as an 

.input signal to an individual SISO system, and the corres-
:ponding systems can be tuned as a SISO system. This remark 
can be concluded also from some previous works in the field 

: of large-scale systems, - 

It is easy to get the effect of the inaccuracy of the INA 
point (1.25, 150°) on the degree of decoupling. Assume that 



KlnEnn 

K E 2h nn 

K12  E22 
0.8+K

AAE.AA . 

• • • 

0 • 0 

aIn 
a 2n 

• • • ln 
K2n • • • 

• 

K11 K12 
K21 K22 

• 
• 

Knl 	 nn 

al2 
a21 	0.8+E22 

• 

• • 
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• for each diagonal element each system has a deviation of 
then: 

.The matrix on the righ-hand side of the previous equality 
'leads to the fact that the.  degree of diagonal dominancy dep-
ends on the order (n) of the system and the deviation& . 

As the proposed technique relies on the concept of diagonal 
dominancy rather than complete diagonalization, Gershgorin 

: bands are recommended to be used for checking the dominancy 
at any situation. 

THE EFFECT OF EMERGENCY OUTAGE OF A CONTROLLER 
• 
If the controller Wii(s) of the MIMO system is in a situation 
of emergency outage, some loops of the system may suffer 	• !from instability, and the decoupling property or even the 
diagonal dominancy will be lost. The effecO3utage of cont- 
roller Wii(s) may be studied by the following matrix manipu-• 
ilations: 

WlnWcll 
W2nWc22 • 

• • 
• .th • j—i— row 0 	0 0 

[K] { we  ( s)] Cwp  ( )1 = Di] 

W11We11 W12Wc11 • • • 

W21Wc22 W22Wc22 • • • 

W 
• 

n1Wenn Wn2Wenn es. WnnWcnn h t  
'As the i— row of the previous matrix vanishes, then manipu-
lating the matrix [K][Wc(s)3[WD(s)], the diagonalization 

:property or even the diagonal dominancy will not exist. In 
'a great number of cases the system will suffer from insta-
bility, the matter which can be avoided by introducing a L_ 



1 
(s + 1)2  

e-s 

s(s+l) 
To get the matrix [K3„ we have: 

W (a) = We(s ) = 

Kc  (1+ --1-) 0 1 	T11s 

0 Ke  1: 22 • 

1 
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computational unit to manipulate and reset ano 
values of the matrix[K]. This scheme is 

:either by installing on-line computationaleas  uni
y  

* ble alarming and manual resetting. In such si 
Ostrowski bands are suitable to use for estima 
bility margins and the effect of changing IK -) lity of the system. 

SIMULATION RESULTS 

Two-input two-output control system was simulated on an ana-: 
:log computer. The schematic diagram of the simulated system 
is given in Fig. 3. Two types of controllers (P, PI) are 
used and optimally tuned atcording to the previously given ' 

:procedure. The matrix [K] was calculated by the diagonali-
zation procedure at INA point (1.25, 150°). The step respo-
nses of the different channels of the system had been reco-rded and given in Fig. 4. The numerical values of the 
simulated system are related to the following example about 
the decoupling and optimum tuning of two-input two-output :system. 

EXAMPLE 

Consider the system given in the previous section and which 
was simulated on the analog computer where: 

ther new 
to fulfill 

t or by suita-
tuations, 
ting the sta-
on the stabi- 

K][vic  (8)1 [wp(a)7 = 
	K11 
	K

12 
	0.8 

K 

To get a12, a21, the values of Kil, T11 which optimizes the K11,  
SISO system having plant transfer function Wil(s) 
obtained. Also, the value of K22  which optimizes the

should  
SISO

be 
 :system having plant transfer function W22(s) must be obtai- 

ned. Performing the procedure given in the previous sec- 
. • tions, it is easy to get the following results: 

Kc  = 0.56 ; T11  = 0.7 sec. 11 	
• • K22  = 0.54 

:Then, plot the Nyquist plot of the transfer function 161() as if it is tuned by a PI-controller of Kit = 0.56, 	
12
0
s
7 T= . sec. Plot also the Nyquist plot of the transfer funct11

ion 'W 1(s) as if it is tuned by a P-controller of K 2   Find the modulia of the previous plots at 	
= 0.54. 

phase angle of L7.7150°..., which will re resent 	 valuescf aid, s21.6 These j 

21 	K
22 21 0.8 
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'values are:al2 	' = 0.32. a21  = 0.14. Accordingly we have: 

1 	0.8 	0 
 _ 

0 	0.8 

K in the form: 

1.075 

= 
-0.188 	1.075, 

Then, it is possible to deduce the schematic diagram of the 
•optimally tuned and decoupled system as shown in Fig. 3. 
Fig. 5 shows the Gershgorin bands to check the dominancy of 
the transfer function matrix of the open loop system. The 

:nearly decoupled system had been checked by the results pre-
viously obtained by simulation on the analog computer, as 
shown in Fig. 4. 

CONCLUSIONS 

The given procedure is mainly relevant to the practice in 
the field of process control rather than the extensive theo-
retical leterature widely spread as a research work in this 

:area. The main concept of the procedure is based on the 
fact that: all optimally tuned systems related to the con-
sidered class of plants have nearly the same INA plots about:  

ia point laying in a region which is very significant for the 
optimum tuning of such systems. The given procedure has the 
following merits: 

:a. The decoupling procedure is considerably simplified, as 
the matrix manipulations are related to some numerical 
values but not to Laplace operators. 

•b. It is easy to implement some units to work against the 
subsidery effects of the emergency outage of some cont-
rollers. 

.c. The procedure is applicable for the majority of the indu-: 
strial plants and is compatible with the process control 
engineering practice. 
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K11 	K12 	
0.8 	0.32 

K21 	K
22

0.14 	0.8 

It is easy to get the matrix 
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