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ABSTRACT 
 
The problem of interfacing Engine Control Units (ECUs) with autopilots in Unmanned 
Arial Vehicles (UAVs), in the presence of modular communication protocols, is a 
considerable concern in the UAV industry. This paper presents a development 
algorithm for interface circuits between ECUs and autopilots for UAVs. The algorithm 
developed was based on testing and analysing the communication protocols for both 
the autopilot and the ECU. The engine selected for the analysis was the Zanzottera 
498H engine and the autopilot was a generic one that produces PWM commands for 
the actuators. For off-line testing of the developed interface circuit communication 
performance with the ECU, a hardware PWM generator circuit was developed to 
mimic the generated autopilot protocol signal. The present work illustrates the steps 
to analyse both protocols and the procedures to develop such an interface circuit. 
Finally, the interface circuit was tested experimentally and showed good performance 
in communication between the autopilot and the ECU. 
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INTRODUCTION 
  
Before the invention of embedded systems, Unmanned Aerial Vehicles’ (UAVs) 
internal communications included relatively large wired networks represented by 
complicated harnesses in their design. Since 1992, when a real-time operating 
system, named “µC/OS; The Real-Time Kernel”, was first introduced by Jean 
Labrosse [1], the embedded systems applications in avionics had evolved. In 1998, 
the µC/OS-II [2] was introduced and certified in the first commercial avionics product 
by Federal Aviation Administration (FAA) in 2000 under the DO-178B regulations [3]. 
Later on, after the development of Controller Area Network (CAN) by Robert Bosch 
GmbH in the 1980s [4], originally for automotive applications, Boeing and Airbus had 
developed the ARINC 429 [5] and ARINIC 825 [6] standards for airborne equipment 
based on the adapted CAN protocols. Although both ARINC 429 and ARINC 825 
standards are widely used in avionics till today, as technology advanced, more 
bandwidths and more flexible topologies were needed. In 2005, ARINC had 
introduced the ARINC 664-Part 7 standard protocol [7], also referred to as Avionics 
Full-DupleX Ethernet switching (AFDX). It is an extended standard Ethernet 
technology with design objectives built around safety. 
 
For the UAV industry, the onboard networks development is underway till the 
moment of writing this article. Several efforts were recorded to standardise network 
protocols for UAVs. After CANaerospace was introduced by Stock Flight Systems in 
1998 [8] and published by National Aeronautics and Space Agency (NASA) and 
Advanced General Aviation Transport Experiments (AGATE) in 2001 [9] and refined 
in 2006 [10], it was used in UAVs in Czech Republic [11] & [12] and Italy [13] & [14]. 
 
Despite the benefits of implementing CANaerospace in the embedded systems’ 
networks in UAV platforms, there are some challenges that make these development 
impractical compared to larger size aeroplanes for the following reasons: 

• CANaerospace has a high payload overhead which makes it not suitable for 
high speed data streams which require low latency. 

• Passing multiple values at once in CANaerospace is not an easy task. 

• CANaerospace does not provide time synchronization, firmware update and 
node configuration handling. 

 
As a trial to overcome those challenges, the UAVCAN was introduced [15] and 
applied in UAV networks [16]. The UAVCAN provides the UAVs with better handling 
of multiple value passing and lower payload overhead. 
 
As mentioned earlier, onboard networks development in UAVs is underway. 
Consequently, UAV manufacturers are facing troubles matching their electronic 
components together, specially, those who produce versatile platforms. 
 
In the present work, an easy approach was proposed to produce an interface circuit 
to match components in a UAV. The example presented is the Zanzottera 498H 
engine, Fig. 1, with a generic autopilot. 
 
The approach was based on the determination of the communication protocol of the 
ECU and the determination of the communication signal produced by the autopilot, 
which was a PWM signal in the selected autopilot. The target signal to be transferred 
from the autopilot to the ECU was the desired throttle valve position command signal. 



49 RC    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

  

  
 

Fig. 1. Zanzottera 498H engine with the developed interface box. 
  
The organization of this article is as follows; the second section contains the signal 
analysis of the devices, the third sections contains the ECU communication protocol, 
the fourth section contains the interface circuit design and the algorithm flowchart, 
the fifth section contains the hardware implementation and testing and, finally, the 
sixth section concludes the article. 
 
 
SIGNAL ANALYSIS 
 
In order to propose a design for the interface circuit that handles the communication 
protocol between two devices, the output and input signals of those devices, the 
autopilot and the ECU, needed to be analysed. This was accomplished separately for 
each of the devices. The following analysis illustrates how the signals were 
measured and analysed for the autopilot and the ECU. 
 
The signal generated by the autopilot for the actuators is a Pulse Width Modulated 
(PWM) signal. The general waveform of the PWM signal from the autopilot to the 
throttle valve actuator has the following specifications. The signal has a frequency of 
500 Hz and amplitude of 5 V. The duty cycle ranges from 50% to 100% which should 
correspond to a range from 0% to 100% throttle position. This waveform was 
implemented originally to target other UAV engines where the throttle valve position 
control was managed through controlling a stepper motor to push a mechanical lever 
in order to accelerate the engine. Since the ECU of the engine selected has a 
different communication protocol as it will described later, the problem of using 
modular systems arises. To start handling this problem in off-line design stage, a 
PWM signal generator circuit was developed to mimic the autopilot signal. This PWM 
signal generator circuit was chosen to be Arduino Uno board. The Arduino program 
was developed to produce a PWM signal that has the specifications of the autopilot 
generated PWM signal. Figure 2 shows a sample oscilloscope captured signal for the 
PWM generated by the Arduino circuit. As shown in figure, the signal follows the 
specifications of the autopilot PWM signal. 
 
The selected engine, Zanzottera 498H, was equipped with an ECU that receives and 
transmits signals to the peripheral devices (components of aeroplane) through a 
serial communication channel. This serial communication channel has a flipped 
Universal Asynchronous Receive/Transmit (UART) standard with 8-bit data byte, no  
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Fig. 2. PWM signal from the autopilot corresponding to the proposed throttle position 
angle.  

 
parity bit and one stop bit; that is inverse logic UART 8-N-1 standard serial 
communication. Figure 3 shows a sample signal from the ECU captured on 
oscilloscope while Figure 4 shows one sample message of the ECU. 
 

 
Time [µsec] 

 
Fig. 3. Three consecutive messages on ECU serial channel captured on 

oscilloscope. 
 

 
Time [µsec] 

 
Fig. 4. One sample message from the ECU captured on the oscilloscope. 
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Analysing messages of the ECU serial communication channel, it is confirmed that 
the ECU uses the inverse logic UART 8-N-1 standard. The term inverse logic here 
refers to the low voltage level of the signal idle and the “ones” bits and, conversely, 
the high voltage level of the “zeros” bits. Notice in Fig. 5 the low voltage of the signal 
idle and the high voltage level of the start bit. As shown in figure, the first byte of the 
sample message contains the 10 bits arranged in time order (0-0-1-0-1-1-1-0-0-1). 
The first bit “0” is the start bit while the last bit “1” is the stop bit according to the 
UART 8-N-1 standard. The actual byte word is (0-1-0-1-1-1-0-0), where the Least 
Significant Bit (LSB) is sent first. Hence, the binary number represented by this byte 
is (00111010)b which is equivalent to 58 in decimal format. This is equivalent to the 
character “:” in the ASCII table. 
 

 
 

Time [µsec] 
 

Fig. 5. Sample ECU message captured on oscilloscope; the signal idle is 0V, the 
start bit is 4.25V, the stop bit is 0V and the total byte word length is 10 bits 

(0010111001) or (binary 00111010 = decimal 58 = ASCII character “:”). 
 
 
ECU COMMUNICATION PROTOCOL 
 
The Zanzottera 498H engine is equipped with an embedded system. This embedded 
system communicates with the peripherals using a protocol which will be described in 
this section. Using this protocol, a peripheral device can write to the ECU memory 
any desired value of the available engine control variables. One of which is the 
throttle valve position. If such a device wants to write a variable value to the ECU 
memory, it should send first the write command (three characters “:WR”) followed by 
the address of the variable (in hexadecimal format) followed by the byte length of this 
variable (in hexadecimal format) followed by the value of the variable (in hexadecimal 
format) and finally followed by the checksum of this whole message (in character 
format). Notice that the whole message, including the checksum, is sent from the 
ECU controller in character format which, in turn, is being converted by the UART 
module in the ECU into its binary equivalent format according to the inverse logic 
UART 8-N-1 standard described in the previous section. Example complete throttle 
valve position write message (20 characters): “WR00FFEC08000201F3[“. 
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The detailed contents of the above message according to the ECU serial 
communication protocol is as follows: 

• The throttle message starts with write command (three characters) “:WR” 

• The address of the throttle valve position variable (eight characters in HEX) 
“00FFEC08” 

• The data length of the throttle valve position value (four characters in HEX) 
“0002” 

• The desired value of the throttle valve position (four characters in HEX) “01F3” 

• The checksum of the whole message (one character in CHAR format) “[“ 
 
The checksum used in the ECU is the modulo 256 and is calculated by finding the 
remainder of the division of the sum of the decimal equivalents (from ASCII table) of 
all the 19 characters by 256 as follows: 

 

Modulo 256 checksum= remainder of (
���������⋯�����	��


���
) = 91 

 
The character equivalent of the decimal value 91 from the ASCII table is the 
character “[“. 
 
The checksum character is concatenated to the original 19 characters message to 
form the complete 20 characters message shown above. This 20 characters 
message is then sent to the communication channel through the UART one-by-one in 
20 consecutive bytes. As mentioned earlier, the UART sends the bytes in 8-N-1 
format. This means that each byte is sent in 10 bits (not 8 bits). This is because the 
UART precedes the original 8 bits with a start bit and ends it with one stop bit without 
adding any parity bits. Also, this standard sends the 8 bits starting from the LSB first. 
For example, if the character “:” is to be sent, which is equivalent to binary 
(00111010)b, where the LSB is on the right and the Most Significant Bit (MSB) is on 
the left, the bit logic will be sent over time as shown in Figure 6. 

 
Refer to Fig. 5 to see the inverse logic of the UART 8-N-1 standard of the character 
“:“while being sent through the ECU serial communication channel. 
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Start 
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Original 8 bit word 
 Time propagation   
  

Fig. 6. The bit sequence of the character “:” as sent through the communication 
channel. 

 
 
INTERFACE CIRCUIT 
 
In order to build an interface circuit to interpret the PWM throttle commands coming 
from the autopilot and convert them into standard UART serial messages, an Arduino 
Due board was initially used to do the job. The Due board was chosen due its high 
processing rate and the multiple serial channels it has which may be used in future 
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development to receive additional signals from the ECU (e.g. engine temperature, 
engine r.p.m, etc…). As described earlier, another Arduino board was used only in 
the development phase to simulate the PWM signal coming from the autopilot. The 
program loaded on the Arduino Due was developed so that after sensing the duty 
cycle, the program converts this value into a character stuffed inside the character 
message of the throttle valve position according to the ECU communication protocol. 
 
The Arduino sketch is designed to include two Interrupt Service Routines (ISR); one 
for detecting the rising of each pulse of the PWM and another for detecting the falling 
of the same pulse of the PWM signal. To guarantee avoiding nested rising 
detections, the rising ISR handler was configured in the setup function of the Arduino 
while the falling ISR handler was configured inside the rising ISR. The pulse width is 
calculated inside the falling ISR and stored in memory to be used whenever needed 
in the main loop until it’s updated. The main loop conditionally uses the updated 
pulse duration value every 150 msec. The condition of using the updated value 
checks if there is a new complete pulse (rise and fall) has arrived by looking at a 
predefined flag (SW) which is only cleared once a new message has been sent to the 
serial port. If the condition satisfies, the program calculates the duty cycle and maps 
it to the range from 0 to 1000 to give an increment of 0.1% throttle opening as 
recommended by the ECU manual. The actual minimum throttle position accepted by 
the ECU is 1.8%. Hence, the range was mapped to 26 to 1000. 
 
Since the ECU write command, throttle position value address and throttle position 
data length are all fixed characters in all messages, they were initially stored in a 
single CHAR variable in the setup function in the Arduino sketch. Then, the decimal 
value of the obtained throttle position is converted into HEX and concatenated as 
characters after the characters of the address and data length. At this point, it is 
worth mentioning that the Arduino compiler doesn’t pad leading zeros of the HEX 
converted variable. For this reason, a new function was developed to pad leading 
zeros of the produced HEX variable up to 4 HEX digits (the function is capable of 
padding zeros up to 8 HEX digits). Then, the checksum is calculated and its CHAR 
equivalent is concatenated with the original character message. Finally, the complete 
character message is sent through a serial port. Figure 7 shows the flowchart of 
program.  
 
 
HARWARE IMPLEMENTATION & TESTING 
 
This section discusses the hardware implementation and testing of the developed 
approach. As it will illustrated in this section, the output signal from the Arduino board 
according to the developed program needed some adaptation before connecting it to 
the ECU. Also, the developed hardware solution was packed in a subtle fashion to be 
modular for future development. 
 
Figure 8 shows a sample output message from the Arduino serial port. The Arduino 
UART produces 8-N-1 standard which has a high (not low) idle level. In addition, the 
high voltage level is 3.3 V (not 5 V). To solve these two problems, a NOT-gate, e.g. 
7404 chip, was used to invert the bit logic of the serial output. To do this, an Arduino 
shield needed to be designed and built. Both the Arduino Due board and the shield 
that should hold the 7404 chip were enclosed in one box, namely “Interface Box”, 
Fig. 9 and Fig. 10. 
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Fig. 7. Flowchart of the Arduino program for the interface circuit. 
 
The circuit diagram connecting the Arduino Due board with the NOT-gate chip is 
shown in Fig. 11. The figure also shows the wiring of the I/O ports of the enclosure of 
the interface box. As shown on the figure, the interface box has only three ports; 
power port (+9 V DC), a three-pin servo motor-type port to receive the PWM signal 
from the autopilot and an RS232 port that transmits and receives serial signals 
between the interface box and the ECU. 
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Time [µsec] 

 
Fig. 8. Output of the Arduino serial port captured on oscilloscope. Notice that the 

signal idle level at high and the start bit at low. 
                        

 
 

Fig. 9. The mounting of the developed shield on the Arduino Due board. 
 

 

 
 

Fig. 10. A model of the developed interface box. Notice the I/O ports  
of the interface box. 
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Fig. 11. Circuit diagram showing the connection between the Arduino Due, the NOT-
gate chip and the I/O ports from/to the ECU. 

 
Pictures of the developed interface box are shown in Fig. 12. The interface box is 
designed to be subtle, easy to use and adaptable to the UAV system. The layout of 
interface box connection with the ECU and the autopilot is shown in Fig. 13. The 
interface box is connected to the autopilot using a three-pin servo motor-type cable. 
The interface box is connected to the ECU through a standard RS232 cable. Finally, 
the interface box is powered by a coaxial power cable from any +9V DC power 
supply on the UAV. Once connected to the power source, the interface box is 
powered and activated. 
 

 
Fig. 12. The developed shield before and after installation on the Arduino Due board. 
 
The developed interface solution was tested on the ECU in a dry run and the output 
signal was captured on oscilloscope. Figure 14 shows the output signal. As shown in 
figure, the output signal showed a good match with the required signal by the ECU 
serial protocol. 
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Fig. 13. Interface box connections with the autopilot and the ECU. 

 
 

 
Time [µsec] 

 

Fig. 14. Sample output message from the interface box captured on oscilloscope; the 
signal idle is 0V, the start bit is 4.25V, the stop bit is 0V and the total byte word length 

is 10 bits (0010111001) or (binary 00111010 = decimal 58 = ASCII character “:”). 
 
The interface box was also tested in the dry run from the point of view of the ECU. 
The setup included a computer that had a serial monitor to sniff the signal coming 
from the ECU as a response. The ECU had accepted the signals from the developed 
interface box successfully. Whenever the computer acquired a read signal for the 
throttle valve position from the ECU, it was responding with the exact sent commands 
from the developed interface box. 
 
Finally, the interface box was tested in a live run of the engine. The developed 
interface box succeeded to enable the control of the engine throttle valve position 
using a simple joystick. The engine was responsive to every command sent by the 
joystick through the interface box. 
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CONCLUSIONS 
 
In the present work, an easy approach to interface two UAV components with two 
different communication protocols was presented. The approach was based on 
determining the two communication protocols separately by signal analysis 
techniques. The example included an ECU and a generic autopilot. An interface 
circuit was developed to handle the communication between the two components 
(devices) based on the two communication protocols, the UART 8-N-1 and the PWM. 
The developed circuit was mounted as a shield for an off-the shelf microcontroller 
circuit which was loaded with a new developed program illustrated in the present 
work. Both circuits, the developed shield and the microcontroller board, were 
enclosed in a single box namely, “Interface Box”. The developed interface box was 
tested in dry run and live run with the engine. Both tests showed good responses 
from the engine to the desired PWM signals. The approach presented gives an easy 
way to aid researches and manufacturers to interface several onboard devices for 
UAVs in a modular manner.  
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