
47 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

18th International Conference
on Applied Mechanics and
Mechanical Engineering.

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt.

DEVELOPMENT OF ENGINE-AUTOPILOT INTERFACE CIRCUITS

FOR UAVS

M. Yacoub*

ABSTRACT

The problem of interfacing Engine Control Units (ECUs) with autopilots in Unmanned
Arial Vehicles (UAVs), in the presence of modular communication protocols, is a
considerable concern in the UAV industry. This paper presents a development
algorithm for interface circuits between ECUs and autopilots for UAVs. The algorithm
developed was based on testing and analysing the communication protocols for both
the autopilot and the ECU. The engine selected for the analysis was the Zanzottera
498H engine and the autopilot was a generic one that produces PWM commands for
the actuators. For off-line testing of the developed interface circuit communication
performance with the ECU, a hardware PWM generator circuit was developed to
mimic the generated autopilot protocol signal. The present work illustrates the steps
to analyse both protocols and the procedures to develop such an interface circuit.
Finally, the interface circuit was tested experimentally and showed good performance
in communication between the autopilot and the ECU.

KEYWORDS

Unmanned Arial Vehicle (UAV) – Interface Circuit – Autopilot – Engine Control Unit
(ECU)

* Egyptian Armed Forces.

48 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

INTRODUCTION

Before the invention of embedded systems, Unmanned Aerial Vehicles’ (UAVs)
internal communications included relatively large wired networks represented by
complicated harnesses in their design. Since 1992, when a real-time operating
system, named “µC/OS; The Real-Time Kernel”, was first introduced by Jean
Labrosse [1], the embedded systems applications in avionics had evolved. In 1998,
the µC/OS-II [2] was introduced and certified in the first commercial avionics product
by Federal Aviation Administration (FAA) in 2000 under the DO-178B regulations [3].
Later on, after the development of Controller Area Network (CAN) by Robert Bosch
GmbH in the 1980s [4], originally for automotive applications, Boeing and Airbus had
developed the ARINC 429 [5] and ARINIC 825 [6] standards for airborne equipment
based on the adapted CAN protocols. Although both ARINC 429 and ARINC 825
standards are widely used in avionics till today, as technology advanced, more
bandwidths and more flexible topologies were needed. In 2005, ARINC had
introduced the ARINC 664-Part 7 standard protocol [7], also referred to as Avionics
Full-DupleX Ethernet switching (AFDX). It is an extended standard Ethernet
technology with design objectives built around safety.

For the UAV industry, the onboard networks development is underway till the
moment of writing this article. Several efforts were recorded to standardise network
protocols for UAVs. After CANaerospace was introduced by Stock Flight Systems in
1998 [8] and published by National Aeronautics and Space Agency (NASA) and
Advanced General Aviation Transport Experiments (AGATE) in 2001 [9] and refined
in 2006 [10], it was used in UAVs in Czech Republic [11] & [12] and Italy [13] & [14].

Despite the benefits of implementing CANaerospace in the embedded systems’
networks in UAV platforms, there are some challenges that make these development
impractical compared to larger size aeroplanes for the following reasons:

• CANaerospace has a high payload overhead which makes it not suitable for
high speed data streams which require low latency.

• Passing multiple values at once in CANaerospace is not an easy task.

• CANaerospace does not provide time synchronization, firmware update and
node configuration handling.

As a trial to overcome those challenges, the UAVCAN was introduced [15] and
applied in UAV networks [16]. The UAVCAN provides the UAVs with better handling
of multiple value passing and lower payload overhead.

As mentioned earlier, onboard networks development in UAVs is underway.
Consequently, UAV manufacturers are facing troubles matching their electronic
components together, specially, those who produce versatile platforms.

In the present work, an easy approach was proposed to produce an interface circuit
to match components in a UAV. The example presented is the Zanzottera 498H
engine, Fig. 1, with a generic autopilot.

The approach was based on the determination of the communication protocol of the
ECU and the determination of the communication signal produced by the autopilot,
which was a PWM signal in the selected autopilot. The target signal to be transferred
from the autopilot to the ECU was the desired throttle valve position command signal.

49 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Fig. 1. Zanzottera 498H engine with the developed interface box.

The organization of this article is as follows; the second section contains the signal
analysis of the devices, the third sections contains the ECU communication protocol,
the fourth section contains the interface circuit design and the algorithm flowchart,
the fifth section contains the hardware implementation and testing and, finally, the
sixth section concludes the article.

SIGNAL ANALYSIS

In order to propose a design for the interface circuit that handles the communication
protocol between two devices, the output and input signals of those devices, the
autopilot and the ECU, needed to be analysed. This was accomplished separately for
each of the devices. The following analysis illustrates how the signals were
measured and analysed for the autopilot and the ECU.

The signal generated by the autopilot for the actuators is a Pulse Width Modulated
(PWM) signal. The general waveform of the PWM signal from the autopilot to the
throttle valve actuator has the following specifications. The signal has a frequency of
500 Hz and amplitude of 5 V. The duty cycle ranges from 50% to 100% which should
correspond to a range from 0% to 100% throttle position. This waveform was
implemented originally to target other UAV engines where the throttle valve position
control was managed through controlling a stepper motor to push a mechanical lever
in order to accelerate the engine. Since the ECU of the engine selected has a
different communication protocol as it will described later, the problem of using
modular systems arises. To start handling this problem in off-line design stage, a
PWM signal generator circuit was developed to mimic the autopilot signal. This PWM
signal generator circuit was chosen to be Arduino Uno board. The Arduino program
was developed to produce a PWM signal that has the specifications of the autopilot
generated PWM signal. Figure 2 shows a sample oscilloscope captured signal for the
PWM generated by the Arduino circuit. As shown in figure, the signal follows the
specifications of the autopilot PWM signal.

The selected engine, Zanzottera 498H, was equipped with an ECU that receives and
transmits signals to the peripheral devices (components of aeroplane) through a
serial communication channel. This serial communication channel has a flipped
Universal Asynchronous Receive/Transmit (UART) standard with 8-bit data byte, no

50 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Fig. 2. PWM signal from the autopilot corresponding to the proposed throttle position
angle.

parity bit and one stop bit; that is inverse logic UART 8-N-1 standard serial
communication. Figure 3 shows a sample signal from the ECU captured on
oscilloscope while Figure 4 shows one sample message of the ECU.

Time [µsec]

Fig. 3. Three consecutive messages on ECU serial channel captured on

oscilloscope.

Time [µsec]

Fig. 4. One sample message from the ECU captured on the oscilloscope.

51 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Analysing messages of the ECU serial communication channel, it is confirmed that
the ECU uses the inverse logic UART 8-N-1 standard. The term inverse logic here
refers to the low voltage level of the signal idle and the “ones” bits and, conversely,
the high voltage level of the “zeros” bits. Notice in Fig. 5 the low voltage of the signal
idle and the high voltage level of the start bit. As shown in figure, the first byte of the
sample message contains the 10 bits arranged in time order (0-0-1-0-1-1-1-0-0-1).
The first bit “0” is the start bit while the last bit “1” is the stop bit according to the
UART 8-N-1 standard. The actual byte word is (0-1-0-1-1-1-0-0), where the Least
Significant Bit (LSB) is sent first. Hence, the binary number represented by this byte
is (00111010)b which is equivalent to 58 in decimal format. This is equivalent to the
character “:” in the ASCII table.

Time [µsec]

Fig. 5. Sample ECU message captured on oscilloscope; the signal idle is 0V, the
start bit is 4.25V, the stop bit is 0V and the total byte word length is 10 bits

(0010111001) or (binary 00111010 = decimal 58 = ASCII character “:”).

ECU COMMUNICATION PROTOCOL

The Zanzottera 498H engine is equipped with an embedded system. This embedded
system communicates with the peripherals using a protocol which will be described in
this section. Using this protocol, a peripheral device can write to the ECU memory
any desired value of the available engine control variables. One of which is the
throttle valve position. If such a device wants to write a variable value to the ECU
memory, it should send first the write command (three characters “:WR”) followed by
the address of the variable (in hexadecimal format) followed by the byte length of this
variable (in hexadecimal format) followed by the value of the variable (in hexadecimal
format) and finally followed by the checksum of this whole message (in character
format). Notice that the whole message, including the checksum, is sent from the
ECU controller in character format which, in turn, is being converted by the UART
module in the ECU into its binary equivalent format according to the inverse logic
UART 8-N-1 standard described in the previous section. Example complete throttle
valve position write message (20 characters): “WR00FFEC08000201F3[“.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1
.0
0

2
0
.0
0

3
9
.0
0

5
8
.0
0

7
7
.0
0

9
6
.0
0

1
1
5
.0
0

1
3
4
.0
0

1
5
3
.0
0

1
7
2
.0
0

1
9
1
.0
0

2
1
0
.0
0

2
2
9
.0
0

2
4
8
.0
0

2
6
7
.0
0

2
8
6
.0
0

3
0
5
.0
0

3
2
4
.0
0

3
4
3
.0
0

3
6
2
.0
0

3
8
1
.0
0

4
0
0
.0
0

4
1
9
.0
0

4
3
8
.0
0

4
5
7
.0
0

4
7
6
.0
0

4
9
5
.0
0

5
1
4
.0
0

5
3
3
.0
0

5
5
2
.0
0

5
7
1
.0
0

5
9
0
.0
0

V
o
lt

 [
V

]

Signal

Idle

One byte word

(10 bits)
One stop bit

Start bit

52 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

The detailed contents of the above message according to the ECU serial
communication protocol is as follows:

• The throttle message starts with write command (three characters) “:WR”

• The address of the throttle valve position variable (eight characters in HEX)
“00FFEC08”

• The data length of the throttle valve position value (four characters in HEX)
“0002”

• The desired value of the throttle valve position (four characters in HEX) “01F3”

• The checksum of the whole message (one character in CHAR format) “[“

The checksum used in the ECU is the modulo 256 and is calculated by finding the
remainder of the division of the sum of the decimal equivalents (from ASCII table) of
all the 19 characters by 256 as follows:

Modulo 256 checksum= remainder of (
���������⋯�����	��

���
) = 91

The character equivalent of the decimal value 91 from the ASCII table is the
character “[“.

The checksum character is concatenated to the original 19 characters message to
form the complete 20 characters message shown above. This 20 characters
message is then sent to the communication channel through the UART one-by-one in
20 consecutive bytes. As mentioned earlier, the UART sends the bytes in 8-N-1
format. This means that each byte is sent in 10 bits (not 8 bits). This is because the
UART precedes the original 8 bits with a start bit and ends it with one stop bit without
adding any parity bits. Also, this standard sends the 8 bits starting from the LSB first.
For example, if the character “:” is to be sent, which is equivalent to binary
(00111010)b, where the LSB is on the right and the Most Significant Bit (MSB) is on
the left, the bit logic will be sent over time as shown in Figure 6.

Refer to Fig. 5 to see the inverse logic of the UART 8-N-1 standard of the character
“:“while being sent through the ECU serial communication channel.

0 0 1 0 1 1 1 0 0 1

Start
bit

LSB MSB
Stop
bit

��

Original 8 bit word
 Time propagation

Fig. 6. The bit sequence of the character “:” as sent through the communication
channel.

INTERFACE CIRCUIT

In order to build an interface circuit to interpret the PWM throttle commands coming
from the autopilot and convert them into standard UART serial messages, an Arduino
Due board was initially used to do the job. The Due board was chosen due its high
processing rate and the multiple serial channels it has which may be used in future

53 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

development to receive additional signals from the ECU (e.g. engine temperature,
engine r.p.m, etc…). As described earlier, another Arduino board was used only in
the development phase to simulate the PWM signal coming from the autopilot. The
program loaded on the Arduino Due was developed so that after sensing the duty
cycle, the program converts this value into a character stuffed inside the character
message of the throttle valve position according to the ECU communication protocol.

The Arduino sketch is designed to include two Interrupt Service Routines (ISR); one
for detecting the rising of each pulse of the PWM and another for detecting the falling
of the same pulse of the PWM signal. To guarantee avoiding nested rising
detections, the rising ISR handler was configured in the setup function of the Arduino
while the falling ISR handler was configured inside the rising ISR. The pulse width is
calculated inside the falling ISR and stored in memory to be used whenever needed
in the main loop until it’s updated. The main loop conditionally uses the updated
pulse duration value every 150 msec. The condition of using the updated value
checks if there is a new complete pulse (rise and fall) has arrived by looking at a
predefined flag (SW) which is only cleared once a new message has been sent to the
serial port. If the condition satisfies, the program calculates the duty cycle and maps
it to the range from 0 to 1000 to give an increment of 0.1% throttle opening as
recommended by the ECU manual. The actual minimum throttle position accepted by
the ECU is 1.8%. Hence, the range was mapped to 26 to 1000.

Since the ECU write command, throttle position value address and throttle position
data length are all fixed characters in all messages, they were initially stored in a
single CHAR variable in the setup function in the Arduino sketch. Then, the decimal
value of the obtained throttle position is converted into HEX and concatenated as
characters after the characters of the address and data length. At this point, it is
worth mentioning that the Arduino compiler doesn’t pad leading zeros of the HEX
converted variable. For this reason, a new function was developed to pad leading
zeros of the produced HEX variable up to 4 HEX digits (the function is capable of
padding zeros up to 8 HEX digits). Then, the checksum is calculated and its CHAR
equivalent is concatenated with the original character message. Finally, the complete
character message is sent through a serial port. Figure 7 shows the flowchart of
program.

HARWARE IMPLEMENTATION & TESTING

This section discusses the hardware implementation and testing of the developed
approach. As it will illustrated in this section, the output signal from the Arduino board
according to the developed program needed some adaptation before connecting it to
the ECU. Also, the developed hardware solution was packed in a subtle fashion to be
modular for future development.

Figure 8 shows a sample output message from the Arduino serial port. The Arduino
UART produces 8-N-1 standard which has a high (not low) idle level. In addition, the
high voltage level is 3.3 V (not 5 V). To solve these two problems, a NOT-gate, e.g.
7404 chip, was used to invert the bit logic of the serial output. To do this, an Arduino
shield needed to be designed and built. Both the Arduino Due board and the shield
that should hold the 7404 chip were enclosed in one box, namely “Interface Box”,
Fig. 9 and Fig. 10.

54 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Fig. 7. Flowchart of the Arduino program for the interface circuit.

The circuit diagram connecting the Arduino Due board with the NOT-gate chip is
shown in Fig. 11. The figure also shows the wiring of the I/O ports of the enclosure of
the interface box. As shown on the figure, the interface box has only three ports;
power port (+9 V DC), a three-pin servo motor-type port to receive the PWM signal
from the autopilot and an RS232 port that transmits and receives serial signals
between the interface box and the ECU.

55 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Time [µsec]

Fig. 8. Output of the Arduino serial port captured on oscilloscope. Notice that the

signal idle level at high and the start bit at low.

Fig. 9. The mounting of the developed shield on the Arduino Due board.

Fig. 10. A model of the developed interface box. Notice the I/O ports
of the interface box.

56 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Fig. 11. Circuit diagram showing the connection between the Arduino Due, the NOT-
gate chip and the I/O ports from/to the ECU.

Pictures of the developed interface box are shown in Fig. 12. The interface box is
designed to be subtle, easy to use and adaptable to the UAV system. The layout of
interface box connection with the ECU and the autopilot is shown in Fig. 13. The
interface box is connected to the autopilot using a three-pin servo motor-type cable.
The interface box is connected to the ECU through a standard RS232 cable. Finally,
the interface box is powered by a coaxial power cable from any +9V DC power
supply on the UAV. Once connected to the power source, the interface box is
powered and activated.

Fig. 12. The developed shield before and after installation on the Arduino Due board.

The developed interface solution was tested on the ECU in a dry run and the output
signal was captured on oscilloscope. Figure 14 shows the output signal. As shown in
figure, the output signal showed a good match with the required signal by the ECU
serial protocol.

57 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

Fig. 13. Interface box connections with the autopilot and the ECU.

Time [µsec]

Fig. 14. Sample output message from the interface box captured on oscilloscope; the
signal idle is 0V, the start bit is 4.25V, the stop bit is 0V and the total byte word length

is 10 bits (0010111001) or (binary 00111010 = decimal 58 = ASCII character “:”).

The interface box was also tested in the dry run from the point of view of the ECU.
The setup included a computer that had a serial monitor to sniff the signal coming
from the ECU as a response. The ECU had accepted the signals from the developed
interface box successfully. Whenever the computer acquired a read signal for the
throttle valve position from the ECU, it was responding with the exact sent commands
from the developed interface box.

Finally, the interface box was tested in a live run of the engine. The developed
interface box succeeded to enable the control of the engine throttle valve position
using a simple joystick. The engine was responsive to every command sent by the
joystick through the interface box.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1
.0
0

2
0
.0
0

3
9
.0
0

5
8
.0
0

7
7
.0
0

9
6
.0
0

1
1
5
.0
0

1
3
4
.0
0

1
5
3
.0
0

1
7
2
.0
0

1
9
1
.0
0

2
1
0
.0
0

2
2
9
.0
0

2
4
8
.0
0

2
6
7
.0
0

2
8
6
.0
0

3
0
5
.0
0

3
2
4
.0
0

3
4
3
.0
0

3
6
2
.0
0

3
8
1
.0
0

4
0
0
.0
0

4
1
9
.0
0

4
3
8
.0
0

4
5
7
.0
0

4
7
6
.0
0

4
9
5
.0
0

5
1
4
.0
0

5
3
3
.0
0

5
5
2
.0
0

5
7
1
.0
0

5
9
0
.0
0

V
o
lt

 [
V

]

Signal

Idle

One byte word

(10 bits)
One stop bit

Start bit

58 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

CONCLUSIONS

In the present work, an easy approach to interface two UAV components with two
different communication protocols was presented. The approach was based on
determining the two communication protocols separately by signal analysis
techniques. The example included an ECU and a generic autopilot. An interface
circuit was developed to handle the communication between the two components
(devices) based on the two communication protocols, the UART 8-N-1 and the PWM.
The developed circuit was mounted as a shield for an off-the shelf microcontroller
circuit which was loaded with a new developed program illustrated in the present
work. Both circuits, the developed shield and the microcontroller board, were
enclosed in a single box namely, “Interface Box”. The developed interface box was
tested in dry run and live run with the engine. Both tests showed good responses
from the engine to the desired PWM signals. The approach presented gives an easy
way to aid researches and manufacturers to interface several onboard devices for
UAVs in a modular manner.

ACKNOWLEDGEMENTS

This research was fully supported by the Military Technical College. We would like to
express our gratitude to the Aircraft Mechanics Department and the Automotive
Engineering Department for their support during the course of this research.

REFERENCES

[1] Labrosse, J., “µC/OS: The Real-Time Kernel”, ISBN 978-0-1324-2967-2, CMP

Books, December 1992.
[2] Labrosse, J., “MicroC/OS-II: The Real-Time Kernel”, ISBN 978-0-8793-0543-7,

CMP Books, 1998.
[3] RTCA Inc., “RTCA/DO-178B: Software Considerations in Airborne Systems and

Equipment Certification”, Federal Aviation Administration (FAA), Advisory
Circular AC 20-115B, December 1992.

[4] Kiencke, U., Dais, S., Litschel, M., "Automotive Serial Controller Area Network,"
Society of Automotive Engineers (SAE) International Congress and Exposition,
DOI: 10.4271/860391 Detroit, MI, February 1986.

[5] Airlines Electronic Engineering Committee, “ARINC Specification 429P3-18”,
Aeronautical Radio, Inc., October 2001.

[6] ARINC 825 Standard, online: https://www.arinc-825.com/arinc825-standard,
CAN Aviation Alliance, accessed December 2017.

[7] Airlines Electronic Engineering Committee, "ARINC Specification 664P7",
Aeronautical Radio, Inc., June 2005.

[8] Stock, M., “Fly-By-Wire for Experimental Aircraft? A Vision Based on
CANaerospace/AGATE Data Bus Technology”,

[9] Langley Research Center National Aeronautics and Space Administration,
“System Standard for the AGATE Airplane Avionics Data Bus”, RN. AGATE-
WP01-001-DBSTD, October 2001.

[10] M. Stock, "CANaerospace Interface Specification for Airborne CAN Applications
V 1.7”, Stock Flight Systems, 2006, available on
http://www.stockflightsystems.com, accessed December 2017.

59 RC Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018

[11] Bajer, J., Bystricky, R., Jalovecky, R., Janu, P., “Aircraft Sensors Signal
Processing”, RECENT ADVANCES IN MECHATRONICS 2008-2009, pp. 73-
78, ISBN: 978-3-642-05021-3, Springer, 2009.

[12] Koukol, O., “Analysis and Certification Method of COTS (Commercial/Cost-Off-
The-Shelf) Networks for Aviation Usage”, Ph.D. Thesis, University Of Defence
Brno, Prague, Czech, 2007.

[13] Catena, A., Melita, C. D., Muscato, G., “An Architecture for Automatic Tuning of
the Navigation System of Unmanned Aerial Vehicles”, International Conference
on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, May 2013.

[14] Catena, A., “Control Architectures for Heterogeneous Fleets of Unmanned
Vehicle Systems”, PhD thesis, Universita Degli Studi Di Catania, Italy 2014.

[15] P. Kirienko, "UAVCAN", available on http://www.uavcan.org, accessed
December 2017.

[16] Silva, P., “Development of Technology and Procedures for Health Monitoring of
UAV Subsystems”, MSc. thesis, Tecnico Lisboa, Lisbon, Portugal, November
2015.

