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Abstract 
 

Recently, the idea of using chaos to design digital ciphers and analog secure 
communication systems has provoked a great deal of research efforts since early 1990s. 
Meanwhile, security analysis of various proposed chaotic cryptosystems also attracts 
increasing attention, and some chaotic cryptosystems have been found insecure. This paper 
discusses the security weaknesses of a proposed cryptographic algorithm with chaos at the 
physical level. Some simple linear maps have a well known chaotic behavior in specific 
interval. But when studding their long-time dynamics with computers, the result is different 
from the true long-time chaotic dynamics, even in a high-precision floating-point arithmetic. 
This phenomenon will affect the security of a proposed cryptosystem for practical 
implementation with finite computing precision and for the use of the iteration number n as 
the secret key. In addition, we present some possible improvements to the encryption scheme 
to obtain higher security. 

 
1   Introduction 

When we realize some chaotic systems using digital computers, their true long-time 
dynamics cannot be exhibited at all, even in a high-precision floating-point arithmetic. 
Although the results cannot be directly generalized to most other chaotic systems, the risk of 
using digital computers to numerically study continuous dynamical systems is exposed. The 
essential reason of this case can be attributed to the use of the multiplication factor 2 and its 
powers. It is because all digital computers are based on binary arithmetic, in which a 
multiplication with 2i is equal to the left bit-shifting operation << i. A well-known piecewise 
linear chaotic maps, V-map, V(x) = 2|x −0.5|, is studied to clarify this behaviour. The results 
on the V-map can be directly extended to other analogue chaotic maps, including the reflected 
Bernoulli map f(x) = 1 − (2x mod 1), and the Baker map (considering Bernoulli shift map is 
the x-transformation of the Baker map) [2].  

Due to the ergodicity and random-like behavior in addition to sensitive dependence on 
initial conditions and parameters, it is believed that chaos can be used for secure 
communication efficiently. A growing number of cryptosystems based on chaos have been 
proposed, many of them fundamentally flawed by a lack of robustness and security. Recently, 
a cryptosystem based on the chaotic Baker map have been presented [1], which is a scheme 
that encrypts wave signals. The security defects caused by the Baker map realized in finite 
precision and the fact that the secret key n can be directly deduced from the ciphertext are 
discussed. 
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2   Floating point representation in Digital Computers 
 

For real numbers, there are two kinds of representation formats: fixed-point format, 
and floating-point format. Fixed point places a radix point somewhere in the middle of the 
digits, and the floating-point representation - the most common solution - basically represents 
reals in scientific notation. Floating-point solves a number of representation problems. Fixed-
point has a fixed window of representation, which limits it from representing very large or 
very small numbers. Also, fixed-point is prone to a loss of precision when two large numbers 
are divided. Floating-point, on the other hand, employs a sort of "sliding window" of 
precision appropriate to the scale of the number.  

IEEE Standard floating point is the most common representation today for real 
numbers on computers, including Intel-based PC's, Macintoshes, and most Unix platforms. 
IEEE floating point numbers have three basic components: the sign, the exponent, and the 
mantissa. The mantissa is composed of the fraction and an implicit leading digit. The 
exponent base (2) is implicit and need not be stored.  
The following figure shows the layout for single (32-bit) and double (64-bit) precision 
floating-point values. The number of bits for each field are shown (bit ranges are in square 
brackets):  
 

 Sign Exponent Fraction Bias 
Single Precision 1 [31] 8 [30-23] 23 [22-00] 127 
Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023 

 
To realize a higher simulation precision, generally double-precision is used for the study of 
chaotic systems. Thus, this paper will focus on double-precision floating-point arithmetic, and 
briefly call it floating-point arithmetic. Note that the extension from double-precision 
floating-point arithmetic to single-precision arithmetic is very easy. 
Following the IEEE/ANSI floating-point standard, almost all real numbers are stored in the following 
normalized format: 

mantissa                            exponent 
                                      (1) 

where (・)2 means a binary number and (b51 … b0)2 is called the fraction of the mantissa.  
The range of positive floating point numbers can be split into normalized numbers (which preserve the full 

precision of the mantissa), and denormalized numbers which use only a portion of the fractions's precision.  
 Denormalized Normalized Approximate Decimal 
Single Precision ± 2-149 to (1-2-23)×2-126 ± 2-126 to (2-2-23)×2127 ± ~10-44.85 to ~1038.53 
Double Precision ± 2-1074 to (1-2-52)×2-1022 ± 2-1022 to (2-2-52)×21023 ± ~10-323.3 to ~10308.3 
 
• denormalized numbers: IEEE reserves exponent field values of all 0s and all 1s to denote 
special values in the floating-point scheme, ±0, ±∞, indeterminate value, NaN (Not a 
Number), among which ±0 can be considered as two special denormalized numbers. Note that 
+0 ≠ −  and +∞ ≠ −∞. The five types of special values are stored in the following formats [4, 
5]: 
3   Studying the V-Map under Floating-Point Arithmetic 

A well-known discrete-time chaotic map is studied to show the incapability of digital 
computers to compute and represent the chaotic behavior of a well-known discrete-time 
chaotic map: the V -map [2]. The V -map is defined as 

    (2) 

which are shown in Fig. 1a. Graphical analysis shows that if |x| > 2, then the orbit of x under 
V tends to infinity. To compute higher iterates of V, we first make use of the definition of the 
absolute value to write  
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  (b) 
  
 (c) 

Fig. 1:  The graph of (a) 
V(x), (b) V 2, (c) V 3 

To prove that V is chaotic on the interval [–2, 2], Fig. 1b, 1c shows the graphs of  
and , note that graphs of  consists of four linear pieces, each of slope ±4, and that the 
graph of  consists of eight pieces, each with slop ±8. In general, the graph of consists of 

 pieces, each of which is a straight line with slope . Each of these linear portions of the 
graph is defined on an interval of length . 
This fact shows immediately that V is chaotic on [–2, 2]. To see this, we consider an open 
subinterval  J  in [–2, 2]. From the above observation, we may always find a subinterval of J 
of length  on which the graph of stretches from –2 to 2 In particular,  has a fixed 
point in J, so this proves that periodic points are dense in [-2,2]. Also, the image of J covers 
the entire interval [–2, 2], so V is transitive. Finally, to prove the sensitivity on initial 
conditions we need to find β > 0 such that for any x and any ε > 0 there is a y within ε of x 
and a k such that . For any x ∈  J, there is a y ∈  J such 
that . Thus we may choose β = 2 and we have sensitive dependence on 
initial conditions.  

 
Firstly, assume the initial condition , where  (the least 

significant 1-bit), . Then, the 
iteration of the V- map will be 

 
 Apparently, after L – 1 iterations, . Then, xL≡ 1, xL+1 ≡ 0, xL+2 ≡ -2, 
xL+3 ≡ 2. That is, the number of required iterations to converge to zero is Nr = L + 3. Note that 
Nr = 0 when x0 = 2. 
From the above analysis, it is clear that no any quantization error is introduced in the digital 
chaotic iterations, which is because the chaotic iterations can be exactly carried out with the 
digital operation �. 
 
Generally denormalized numbers will not be used by most pseudo-random number 
generators, such as the embedded rand function in almost all programming languages, so let 
us consider the value of L in the condition that x0 is a normalized number ≠ 0: 
 
Let . Assuming the least 1-bit of x0 is bi = 1, one can 
               c-1        52-i         i  
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immediately get  and deduce L = (c − 1) + 1 + (52 − i) = c + 52 − i. 
Considering 0 ≤ c ≤ 1022 and 0 ≤ i ≤ 51, 1≤ L ≤ 1074. 
 
We will prove that if x0 distributes uniformly in the space of all valid floating-point numbers 
in [-2,2]. That is, the mathematical expectation of Nr is much smaller than 1074 for the V- 
map.  

 
Assume the mantissa fraction (b51 … b0)2 distributes uniformly over the discrete set {0, … , 
252 −1}. Then, the probability that (bi = 1, bi−1 = … = b0 = 0) is , and the probability 

that (b51 = … = b0 = 0) is . Then, the mathematical expectation of i � {0, … , 51} for a 
normalized number with a fixed exponent c is 

 
Assume x0 is distributed normally in the interval [-2, 2] with mean 0 and standard deviation 
0.5, Then, let us compute the mathematical expectation of c � {1, …, 1022}. The probability 
of the exponent is c is about Prob[2−c ≤ x < 2−c+1] = Φ(2−c+1/0.5)-Φ(2−c/0.5). Thus, the 
mathematical expectation of c can be computed by a simple matlab program: 

 
From the above deductions, we can immediately deduce 

 
So, . That is,  ≈ 55 << 1074 for the V- map, see figure 2and figure 3. 
 

                
Fig. 2: The values of Nr for 1000 randomly-

generated initial conditions 
 

Fig. 3: The occurrence frequency of different 
values of Nr in the total 1000 values 

 
 
4   Cryptography with the chaotic Baker map 
 
A proposed chaos-based cryptography scheme designed for digital communication based on the chaotic Baker 
map was presented, which is a scheme where the encryption is realized at the physical level, that is, a scheme 
that encrypts the wave signal itself [1].  
  
In the sampling process, a signal varying continuously in time, which is limited in the bandwidth W, is replaced 
by a set of measurements (samples) taken at instants separated by a suitable time interval provided by the 
sampling theorem [11,12]. According to the sampling theorem, it is possible to reconstruct the original signal 
from samples taken at times multiple of the sampling interval  . Thus, at the end of the sampling 
process, the signal is converted to a sequence  of real values. After being sampled the 
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signal is quantized. In this process, the amplitude of the signal is divided into N subintervals and every interval is 
assigned a real amplitude value , its middle point for example. A new sequence, the y  
sequence, is generated by replacing each  by the  associated to the subinterval it belongs to: 

 where each   takes its value from the set . 
Suppose, now, that the amplitude of the wave signal is restricted to the interval [0,1]. The first step of the process 
is to obtain the chaotic encrypting signal, a sequence  , is used to generate the ciphertext. 
This signal is obtained by either sampling a chaotic one or by a chaotic mapping. For the purposes of our 
analysis, the process to generate the chaotic signal is irrelevant since our results apply equally to any signal. 
Finally, the ordered pair  is constructed, localizing a point in the unit square. In order to encrypt  , 
the Baker map is applied n times to the point  to obtain: 
 
   ,   (3) 

where  is the largest integer equal to or less than . The encrypted signal is given by  , where n is 

considered as the secret key of the cryptosystem. As a result, a plaintext signal with values , is 
encrypted into a signal which can take 2nN different values. 
 
5   Cryptanalysis 
 
Before starting to analyze the security of the proposed secure encryption scheme, some 
security guidelines are reviewed. Following the well-known Kerckhoffs’ principle in 
cryptology [13], the security of a cryptosystem should rely on the secret key only, which 
means that an attacker knows all details about the cryptosystem except for the secret key.  
Actually, in some special scenarios, it is possible for an attacker to get some useful 
information or even intentionally choose some information from the transmitter and/or the 
receiver. As a result, from the cryptographical point of view, to provide a high level of 
security, a cryptosystem should be secure enough against all the following four attacks (listed 
from the hardest to the easiest): 
• the ciphertext-only attack - the attacker can only get ciphertexts and other publicly-
transmitted information (such as the common driving signal in the scheme under discussion); 
• the known-plaintext attack - in addition to some basic information, the attacker can get some 
plaintexts and the corresponding ciphertexts; 
• the chosen-plaintext attack - in addition to some basic information, the attacker can choose 
some plaintexts and get the corresponding ciphertexts; 
• the chosen-ciphertext attack - in addition to some basic information, the attacker can choose 
some ciphertexts and get the corresponding plaintexts.  
 
The last two attacks, which seem to seldom occur in practice, are feasible in some real 
applications and have become much more common in today’s networked world. In the 
following, it will be pointed out that the secure communication system under study is not 
secure enough against these attacks. 
 
5.1   Convergence to zero of the digital Baker map 
 

In this section, the security defects caused by the Baker map realized in finite precision are discussed. 
The proposed cryptosystem uses the Baker map as a mixing function. The Baker map is an idealized one in the 
sense that it can only be implemented with finite precision in digital computers and, as a consequence, in this 
case it will has a stable attractor at (0, 0). This is easy to see when the value of x is represented in binary form 
with L significant bits. Assuming x0 = 0.b1b2 · · · bj · · · bL−1bL, the Baker map runs as follows: 

x1 = 2x0 mod 1 = x0 << 1 = 0.b2b3 · · · bj · · · bL−1bL0,   (4) 
Apparently, the most significant bit b1 is dropped during the current iteration. As a result, after m > L iterations, 
xm = 0. Once xm = 0, it is apparent that within a finite number of iterations yj will exponentially converge to zero, 
i.e., the digital Baker map will eventually converge to the stable attractive point at (0, 0) as shown in figure 4. As 
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we noted in the preceding section, this result does not depend on the real number representation method or the 
precision. 

So, it is expected that each plaintext sample  cannot be correctly decrypted when n is greater than 53 
(or even smaller but close to 53), since the counter-iterating process is unable to get   from   = 0 due to the 
loss of precision during the forward iterations. It can be appreciated how the plaintext is correctly recovered only 
when n < 45. For n > 52, the system does not work at all. As a consequence, only n = 45 secret keys have to be 
tried to break a ciphertext encrypted with this cryptosystem. This takes a modern desktop computer less than a 
second for moderated lengths of the plaintext. This attack is called a brute-force attack, which breaks a cipher by 
trying every possible key. The feasibility of a brute force attack depends on the size of the cipher’s key space and 
on the amount of computational power available to the attacker. 

 
Fig. 4. Orbits of x and y of the Baker map 

 
If the value of n could be arbitrarily enlarged, then the encryption process would slow down until it would be 
unusable in practice. Thus, from any point of view, this is an impractical encryption method because it is either 
totally insecure or infinitely slow, without any reasonable tradeoff possible. In [1] it is said that the encryption is 
applied to the wave signal instead of the symbolic sequence. Therefore, in Table 1 a review of some widely used 
multimedia communications systems with their bandwidth and sampling frequencies is given. These are the kind 
of signals that might be encrypted by the system proposed in [1]. Consider for example TV broadcasting, which 
transmits 12,000,000 samples per second. It is impossible to iterate the Baker map billions of times for 
12,000,000 samples in one second with average computing power. 
 
5.2   Determination of the secret number n 
 

Here we point out to the fact that the secret key n can be directly deduced from the 
ciphertext. Suppose, for example, that N = 2, and we have q1 = 0.25 and q2 = 0.75. If 

 then  and if we use n = 1, we have  if  or 
 if . On the other hand, if , then  and we have 
, if  or  if . So, the encrypted signal takes on 

values from the set {0.125, 0.375, 0.625, 0.875}, where the first and third values can be 
decrypted as 0.25 in the non-encrypted signal while the second and the forth as 0.75. During the 
encryption process a binary tree is generated in the following way: 



Proceeding of 4th International Conference on Mathematics and Engineering Physics S-EM I  
     

 

 

55

 

    (5) 

In a general case, where we apply n iterations of the mapping,  can assume 2nN different 
values. This fact is weakest point, the cryptosystem would be broken as well because the secret key n can be 
derived from only one known amplitude value of the ciphertext. In eq. (5), it is obvious that  is always one 
value in the set 

     (6) 

The value  will be represented in the following form: 

 
where  is the least significant 1-bit. From Eq. (6), one can see that . Therefore, we can 
directly derive , by checking which bit is the least significant bit (i.e., the least significant 
1-bit) in all bits of . 
 Similarly, for other values of N = 2v, one can easily deduce that ; and for N ≠2v, the 
value of n can still be derived easily, but the calculation algorithm depends on how the binary tree shown in Eq. 
(4) is re-designed. 

Although in [1] it is hinted that the value of n could be changed dynamically based on some information 
of the encrypted trajectory, this idea would not further increase the security of the cryptosystem as long as  
different amplitudes are still possible for each different n value. This means that the ciphertext value , 
whatever , can only take values from the finite set defined in Eq. (6) for the given . Hence, for each  the 
value of , can be computed as described above and the security is again compromised. 

 
in addition to the discussed security defects of the secret key n, using n as the secret key has 
another obvious paradox: from the point of view of the security, n should be as large as 
possible; while from the point of view of the encryption speed, n should be as small as 
possible. 
Apparently, n is not a good option as the secret key. 
 
 
6  The improved scheme 
 
There are many ways to improve the security of the attacked cryptosystem. As example we 
may introduce three possible ones: changing the key, changing the chaotic map, and masking 
the ciphertext with a secret signal.  
 
The secret key could be changed instead of n to be the control parameter of the 2-D chaotic 
map, or the generation parameter of the encryption signal x. If the key is chosen to be the 
control parameter of the 2-D chaotic map, the Baker map has to be modified to introduce 
some secret control parameters, or another 2-D chaotic map with one or more adjustable 
parameters has to be used. 
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There are two alternative definitions of the Baker's map which are in common use. One 
definition folds over or rotates one of the sliced halves before joining it (similar to the 
horseshoe map) and the other does not. 
The folded baker's map acts on the unit square as 

 . 

When the upper section is not folded over, the map may be written as 
 . 

The folded baker's map is a two-dimensional analog of the tent map, while the non-rotated 
map is analogous to the Bernoulli map. Both maps are topologically conjugate. The Bernoulli 
map can be understood as the map that progressively lops digits off the dyadic expansion of x. 
Unlike the tent map, the baker's map is invertible. 
To overcome the problem of limited number of iterations, the baker map may be modified to 
use the well-known logistic equation instead of the Bernoulli map 

 , 
where µ is the control parameter. The logistic equation maps the unit interval into itself for 

. It is known that when µ > 3.57 chaos sets in. So, equation (3) will be modified as 
follows: 

   (7) 

Now, the negative convergence to zero is removed as shown in figure 5, but the secret key n still can be derived 
from only one known amplitude value of the ciphertext. This security defect can be enhanced if we didn’t choose 
the values of  to be the middle point of its associate subinterval in the quantization process. 

The amplitude of the wave signal is restricted to the interval [0, 1] and divide it into N equal ε-intervals 
, where . Then  can be calculated as 

follows: 
 . 

The parameter µ, the number of iterations n and the parameter m are used to as the secret 
keys in our cryptosystem. 

 
Fig. 5. Orbits of x and y of the modified map (n=200)  

Another way to improve the security of the cryptosystem is to mask the ciphertext with a 
secret signal, this method can overcome the fact that the secret key n can be directly deduced 
from one amplitude of the ciphertext. The secret masking sequence can be the chaotic 
encryption signal , and the parameters of controlling the generation process of  can be 
added as part of the secret key. In this case, the ciphertext is changed from  into 

. This technique is commonly used to achieve stronger ciphers [6]. 
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6   Conclusions 
 
This paper has carefully studied the security of a secure communication scheme published in 
[1] which is based on chaotic baker map, showing it has security problems. The cryptosystem 
uses the Baker map as a mixing function. The Baker map is an idealized one , when it is 
implemented with finite precision in digital computers , it will has a stable attractor at (0, 0)  
within Nr iterations, and that the value of Nr is uniquely determined by the details of digital 
floating-point arithmetic. So, we can conclude that an idealized map cannot be used in a 
practical implementation of a chaos-based cipher. Furthermore, it has been found that the core 
of this secure communication scheme – the secret key n – is not secure against attacks. Some 
possible enhancements to the cryptosystem to improve its security are introduced. 
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