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ABSTRACT 
 
A two-dimensional cylindrical axisymetrical model for laser-metal interaction is presented in 
this paper by taking into account the reflection of the laser beam at the surface of the target, 
the initial and boundary condition, using the continuous and pulsed Gaussian Nd:YAG laser 
beam. The problem was solved using finite difference method and using Newton Raphson 
method to calculate the position of the interface, the metals were studied are pure aluminum, 
magnesium and titanium. The model allows both for heat conduction and melting inside the 
target. The computational results are temperature fields in both solid and liquid were obtained 
which provide useful information to practical laser treatment processing.  
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INTRODUCTION 
 
From the main characteristic of the laser beam has low divergence is able to deliver high 
power pre unit area that makes high change in the metal temperature, so the interaction of 
laser radiation with metals leads to the absorption of electromagnetic energy in a thin film 
thick, the absorbed energy raises the temperature of the surface  layer and the heat propagates 
into the metal by conduction and then the surface begins to melt and then vaporizes at this 
initial stage of interaction. The dynamic of laser-metal interaction depends on the laser 
parameters such as wavelength, beam energy, irradiance and temporal and spatial distribution 
of intensity and thermal properties of the metal such specific heat, thermal conductivity, 
thermal diffusivity, and reflectivity [1] . 
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MODELING OF THE PROBLEM 
 
Let a diffusion problem in a finite region  
0 / 2R D≤ ≤ , 0 Z L≤ ≤  is considered and           
described by a heat-conduction  
equation (1) as shown in fig. (1) .   
The region 0 / 2R D≤ ≤  is divided 
into M equal parts of mesh size.  
The region 0 Z L≤ ≤  is divided 
into N equal parts of mesh size. 
 
Where / 2r D MΔ =  and /z L NΔ = . [2,3] 
          ambT    is ambient temperature  

                    taking equal to 20C °  
           h      is heat transfer coefficient to ambient 
                    taking equal to 20.0134 / .w cm C ° [4]  
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We construct a finite-difference net of rectangular mesh ( , )r zΔ Δ  in the ,r z  domain over 
the region. Then the coordinates ( , )r z  are represented by 
                            r i r= Δ ,              z j z= Δ  
Where ,i j  = positive integers and the time domain is divided into small steps Δt.     such 
that                       t n t= Δ  
Then the temperature at any location ( , )r z at any time ( )t  is represented by  

                                    ( , , )T r z t  = ,( , , ) n
i jT i r j z n t TΔ Δ Δ =  

Various derivatives in equation (1) at a node (i, j), an implicit scheme are used. The finite-
difference form using the central difference formula as[5]  
 

                             
2

,2 i j
T
r

∂
∂

=
1 1 1

1, , 1,
2

2
( )

n n n
i j i j i jT T T

r

+ + +
− +− +

Δ
                      (2 )a  

                             ,i j
T
r

∂
∂

=
1 1

1, 1,

2

n n
i j i jT T

r

+ +
+ −−

Δ
                                              (2 )b  

                                     ,i j
T
t

∂
∂

=
1

, ,
n n

i j i jT T
t

+ −
Δ

                                          (2 )c     

Introducing equations (2) into equation (1) we obtain 
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Fig .1.  Geometry of   
two-dimensions model 
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α ………..is the thermal diffusivity.  
k ………..is the thermal conductivity.   
ρ ………..is the metal density. 

pc ……….is the heat capacity.  

                                     0,1,2,3,.....n =       , 1,2,.... 1i M= −            and 1,2,.... 1j N= −  
Which is the implicit finite-difference form of the heat-conduction equation(1) at the inside 
node ( , )i j  for the nonzero values of r . 

At  0r = ,      due to the temperature at 0r =  is maximum there, 0T
r

∂
=

∂
 thus 

0

0lim
0r

dT r
dr→

=  due to this fact the rule  of L’Hopital’s rule is used. This gives: [6] 
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Then the heat-conduction equation (1) at the location 0r =  takes the form  
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Initial conditions 
    
The temperature of the metal at 0t =  equal ambT . 
 
Boundary conditions: 
 
The boundary conditions at both sides, bottom and top for cylindrical sheet surfaces  
subjected to convection with heat transfer coefficient h  into the ambient at temperature 

ambT (except the top surface under the laser spot area  there is a heat flux boundary condition 
q ). 
The incident laser beam has a Gaussian transverse intensity distribution. The incident 
intensity incI is   

                                      2 2
0 0exp( 2 / )incI I r R= −                 2/W cm  

                                            2 2 2
0 0(2 / )exp( 2 / )P R r Rπ= −                                            (6)  

     
Where           r           is the radial coordinate. 
                     0R          is the characteristic beam radius.  
                     P           is the beam power [ ]W . [7]  
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CALCULATED RESULTS AND DISCUSSIONS 
 
Firstly, (I) By using the continuous laser source, as described in the equation (6) and the 
figure (2)  with 20KW power and spot diameter (10mm ) to the target as described in the 
figure (1)  with properties listed in the tables (1) and(2) , until the first point ( , ) (0,0)R Z =  
under laser source at the top surface of target reaches the melting temperature ( )mT . By 
solving the equation (3) taking into account the initial and boundary conditions as described 
above by using the MATLAB environment. 
For laser-metal interaction the most important optical properties of the metal is its reflectivity 
( )R , taking equal to 90%  for :Nd Y AG laser having 1.06 mλ μ= .   
Then the absorbed intensity by the metal is then 
                                      (1 )absorb incI I R= −          2/W cm   
Figures (3) , (6) and (9) show that the temperature at the surface reaches the melting point 
after (460 sec)m , (30 sec)m and(46.25 sec)m  for aluminum, magnesium and titanium 
respectively. The heat growth at the surface for aluminum, magnesium and titanium are  
found to have an average rate of 31.435*10 secC ° ,   321.66*10 secC ° and 

336.11*10 secC ° respectively.  
From previous, (i) We fined that titanium is faster than magnesium and aluminum due to low 
thermal diffusivity or low thermal conductivity of titanium, for example at a depth of 
2.5mm the temperature reaches37.47C ° ,33.56C ° and 20.06C ° after15 secm  for 
aluminum, magnesium and titanium respectively. 
(ii) For metals with high conductivity the temperature penetrates along the depth, for metals 
with low conductivity the temperature is accumulated near the surface. 
Figures (4) , (7) and(10) show the dependence of the temperature contours on the depth and 
the radius in aluminum, magnesium and titanium respectively. 
 Figures (5) , (8) and(11) show the variation of the temperature with time at R = 0 and Z as a 
parameter calculated in aluminum, magnesium and titanium respectively. 
  
 (II) By using the pulsed laser source, as described in the equation (6) and the figure (12)  
with 25KW power, spot diameter (10mm )and pulse duration 25 secmτ =  to the previous 
target with the same all conditions described above in (I). 
Figure (13) shows the dependence of the temperature contours on the radius and the depth 
calculated in aluminum, the position of points ,A B and C . 
Figure (14) shows that the temperature at the surface(point A) reaches the melting point  after 
(630 sec)m and the temperature variants with the change of pulsed power source from high 
to low. 
 
Secondly, as the first point reaches its melting temperature, the melting starts at the surface, 
there is now a liquid layer over the solid and a moving interface between liquid and solid, the 
processes of heating and melting are now analyzed using the energy balance equations of all 
nodes. Solving by Newton Raphson method, in both liquid and solid region. At the beginning 
of the process, the heat energy induced by laser radiation converted to the latent heat of 
melting in the sample. As the process continues the interface between liquid and solid moves 
and the heat is conducted through the liquid metal. By using the continuous laser source, as 
described in the equation (6) and the figure (2)  with 15KW power and spot diameter 
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(5mm ) to the previous target with the same all conditions described above in (I). 
 
Figure (15)shows the temperature contours as a function of the radius and the depth  
in both melt and solid, calculated in aluminum, at first step 

1( 2.3 sec)t m= , 1( 0.028mm)dz = . 
Figure (16) shows the temperature contours as a function of the radius and the depth  
in both melt and solid, calculated in aluminum, at second step 2( 12.1 sec)t m= , 

2 0.167mmdz = . 
 
 

Table 1. The thermodynamic properties of used materials[8]  
 

Material 
Melting  

point C °  
Melting 

Heat 1Jg −  
Boiling 

Point C °  
Evaporation 
Heat 1Jg −  

Aluminum 660 1,060 2,500  12,000  
Magnesium 650  1,090 1,095 6,000  

Titanium 1,670 1,500  3,300  10,000  
 

Table 2. The Physical properties of used materials[8]  
 

Material 

Density, 
ρ  

g 3cm −  

Heat capacity, 
pc  

J  1 1g K− −  

Thermal con- 
ductivity k , 
J 1 1 1cm s K− − −  

Thermal dif- 
fusivity, α  

2 1cm s −  

Aluminum 2.7  0.9  2.0  0.83 
Magnesium 1.74  1.0  1.0  0.57  

Titanium 4.5  0.5  0.2  0.086  
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Fig.2. the radial dependence of the Gaussian distributed laser intensity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. the variation of the temperature along the depth at R = 0 and the time as a parameter 
calculated in aluminum. 
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Fig.4. the dependence of the temperature contours on the depth and the radius in aluminum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. the variation of the temperature with time at R = 0 and Z as a parameter calculated in 
aluminum. 
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Fig.6. the variation of the temperature along the depth at R = 0 and time as a parameter 
calculated in magnesium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. the dependence of the temperature contours on the depth and the radius in magnesium. 
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Fig.8. the variation of the temperature with time at R = 0 with Z as a parameter calculated in 
magnesium. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9. the variation of the temperature along the depth at R = 0 with time as a parameter 
calculated in titanium. 
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Fig.10. the dependence of the temperature contours on the depth and the radius in titanium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11. the variation of the temperature with time at R = 0 and Z as a parameter calculated in 
titanium. 
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Fig.12. the variation of the pulsed power density with both radius and time. 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.13. the dependence of the temperature contours on the radius and the depth, calculated in 
aluminum, the position of points & &A B C . 
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Fig.14. the variation of the temperature with time calculated in aluminum at points 

& &A B C  
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
Fig.15. the temperature contours as a function of the radius and the depth calculated in 
aluminum, at first step 1( 2.3 sec)t m=  

1,( 0.028mm)dz =  . 
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Fig.16. the temperature contours as a function of the radius and the depth in aluminum, at 
second step 2( 12.1 sec)t m= , 2 0.167mmdz = . 
 
 
CONCLUSIONS 
 
In this work, we present a two-dimensional calculation of the interaction of a laser beam with 
metallic targets, a single and a double phase cylindrical axisymetrical models are established 
by using finite difference method, the Newton Raphson method to solve the energy balance 
equations of all nodes in both liquid and solid regions. 
The single phase model described the heating of metal before melting take place, while the 
double phase model described the occurrence of melting of metals, calculation runs for 
different target metals such as aluminum, magnesium and titanium.  
The calculation leads to: 
1-A two-dimensional variation of temperature distribution of the target against depth at 
certain time intervals. 
2-The temperature fields in both melt and solid regions and the moving boundary positions at 
different times. 
3-For metals that have low diffusivity, the temperature distribution along depth  nearly that as 
for one –dimension. 
4-The moving boundary problem is a common problem in the nature, specially the process of 
laser melting. The application of the model calculation that, provides a way to understand  the 
physical process of a laser-metal interaction.   
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