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ABSTRACT. 
 
The Asynchronous Transfer Mode (ATM) is a major transport technology to support the 
Broadband Integrated Services Digital Networks (B-ISDN). It supports variety of network 
services such as World Wide Web, videoconference, e-commerce, network multimedia, 
traditional file transfer protocol (ftp), email, newsgroup and etc. Many network applications 
not only ask for high speed, broadband, but also require high quality of services (QoS). More 
and more research works are focused on ATM networks. A number of researchers have 
demonstrated the virtual path concept. The advantage of this concept is that it allows a large 
group of virtual circuits to be handled and switched together, resulting in a lower computing 
complexity, faster processing speed, and an efficient use of network resources. The ATM 
network provides multiple services, a significant amount of traffic flows have stochastic 
characteristics; that makes it difficult to solve congestion control problem.  
 
Stochastic programming (SP) is introduced to solve the essential problems of ATM network 
congestion control, Scenario Tracking (ST) approach of stochastic programming employed 
for ATM network optimization. Three optimization models: Capacity Assignment (CA), 
Capacity and Flow Assignment (CFA), and Flow Assignment (FA) are discussed; a proposed 
virtual path based CFA model is then simulated.  
 
1. INTRODUCTION 

Asynchronous Transfer Mode (ATM) is an ITU-T standard for cell relay, which 
provides multiple services, such as voice, video, and data, all that is conveyed in small, fixed-
size cells. ATM is a cell-switching and multiplexing technology that combines the benefits of 
circuit switching (guaranteed capacity and constant transmission delay) with those of packet 
switching (flexibility and efficiency for intermittent traffic)[1]. It provides scalable bandwidth 
from a few megabits per second (Mbps) to many gigabits per second (Gbps). 
 
ATM networks are fundamentally connection-oriented, which means that a virtual channel 
(VC) must be set up across the ATM network prior to any data transfer [5]. Two types of ATM 
connections exist: virtual paths (VP), which are identified by virtual path identifiers (VPI), 
and virtual channels (VC), which are identified by the combination of a VPI and a virtual 
channel identifier (VCI). A virtual path is a bundle of virtual channels, all of which are 
switched transparently across the ATM network on the basis of the common VPI. 
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The basic operation of an ATM switch is straightforward: The cell is received across a link on 
a known VCI or VPI value. The switch looks up the connection value in a local translation 
table to determine the outgoing port (or ports) of the connection and the new VPI/VCI value 
of the connection on that link. The switch then retransmits the cell on that outgoing link with 
the appropriate connection identifiers. Because all VCIs and VPIs have only local significance 
across a particular link, these values are remapped, as necessary, at each switch.  
 
Congestion control is important in any packet communication system. In ATM networks, 
congestion is the state that the network is unable to provide the guaranteed QoS to established 
connections [4][6].  
 
Since ATM networks typically work with virtual paths (VP) and virtual channels (VC), 
conventional based on link-node models are not feasible to ATM network optimization any 
longer. As mentioned before, after virtual path connection (VPC) established, virtual channel 
connections (VCC) are established upon requests, the procedures just like a phone call 
connection. So in this paper, we pay more attention to build a simple and theoretical model, 
and the detail VPC/VCC operation are too complex, for convenience, we just induce virtual 
path (VP) conception. Consequently, the concepts of path flow and path capacity are proposed 
to characterize the path-oriented networks. And in order to deal with the probabilistic 
infeasibility cases occurring in network operation, the stochastic programming SP 
methodology is introduced.[2] 

 
2. STOCHASTIC PROGRAMMING IN ATM NETWORKS 

In a conventional communication paradigm, the traffic passing through a network usually does 
not change significantly within a period, so a generic model can be used for a common 
problem. In a network model, the parameters needed in such formulations are also presented 
in terms of mean values such as the average arrival rate, the average interarrival time, or the 
average cost. However, this method is now greatly challenged by new communication modes 
represented by asynchronous transfer mode (ATM). An ATM network can support diverse 
rates applications each with a different requirement of QoS. 
The major variety of ATM services proposed by ITU and ATM forum are[3]:  

Constant Bit Rate (CBR), also known as “Deterministic” Bit Rate  
Variable Bit Rate real time traffic (RT-VBR), Variable Bit Rate non-real time traffic 
(NRT-VBR), also known as “Statistical” Bit Rate  
Available Bit Rate (ABR)  
Unspecified Bit Rate (UBR). 

The QoS can be specified by the following parameters: Cell Delay Variation (CDV), 
Maximum Cell Transfer Delay (MCTD), Mean Cell Transfer Delay (Mean CTD), Cell Loss 
Rate (CLR) 
 
In general, traffic flows in modern communication networks are not only dynamic but also 
stochastic. In these circumstances, the approach that uses mean values of parameters may be 

Figure 1 Virtual paths (VP) and Virtual channels (VC)[1]. 



Proceeding of 4th International Conference on Engineering Mathematics and Physics S-EM III 111 
 

114
no longer valid in many cases. The SP theory has been developed to primarily deal with that 
type of problems assuming that the probability density function (PDF) or the cumulative 
distribution function (CDF) of anticipation is known with certainty 
 
All of the generic network models can be abstracted as a mathematical programming problem:  
                                          minimize    f ( X, a ) 
                                          subject to    g( X, b ) ≥ 0 
where f: IR

n 
→ IR, g: IR

n 
→ IR

m
. X is called the decision variable. f(X) is called the objective 

function and g(X) the constraint function. The feasible region of X is represented by mixed set 
of the solutions of both f(X) and g(X), expressed as a parameter set Ω = {a, b}.  
In SP formulation, subsets of the parameters are considered being random variables:  
                                          minimize    f ( X, ad , au ) 
                                          subject to    g( X, bd , bu) ≥ 0 
where the subscripts d, u stand for deterministic and uncertain, respectively. A scenario is 
defined to be a particular joint realization of a set of uncertain parameters.  
 
In practice, most network problems are analyzed with simulation techniques rather than 
analytical models. Consequently, the wait-and-see approach seems more flexible than the 
here-and-now one, since the latter needs analytical formulas of distributions. Another 
alternative approach is the Scenario Tracking (ST) [10], in which the stochastic programming 
problem is converted to a number of standard mathematical programming sub-problems. It 
takes scenarios (samples) of stochastic parameters, and based on these scenario values, a 
number of scenario sub-problems are constructed. Optimization then is performed for these 
scenario sub-problems. Finally, based on all scenario solutions, a coordinating model is 
constructed, and another time optimization is performed to track the scenario solutions to get 
single optimal solution.  
 
Let as and bs represent a particular joint realization of uncertain parameters, au and bu, 
respectively. For each scenario s ∈ S ≡ {set of all scenarios}, the SP formulations, expressed 
above, reduces to a deterministic problem shown below, which is referred to as the scenario 
sub-problem: 
                                          minimize    f ( X, ad , as ) = ys                                        
                                          subject to    g( X, bd , bs) ≥ 0                                         
For each scenario, there is a corresponding probability ps. In such an environment, a solution 
x to a stochastic nonlinear system g( X, bd , bs) ≥ 0 is said to be feasible if it minimizes: 
                                       [ ]∑

s
sd bbXg ,,(,0min(p s                                        

Accordingly, a coordination model can be constructed as: 
     minimize [ ]∑ +−

s
sdssd bbXgyaaXf )),,(,0min(),,(p s        

The coordinating model tracks the scenario solutions as closely as possible while still 
maintaining feasibility and this model is referred as tracking model. 
 
Mathematically, a network optimization problem with the path-node incidence can be 
described by the multi-commodity (MC) model, a representative paradigm developed in the 
theory of network flows [7]. For a B-ISDN paradigm, the concept of commodity classes 
associated with traffic classes. In modern communication technologies, the Poisson model had 
played a dominant role in for several decades until the 1990s. Then several studies argued that 
some applications in packet data networks might not follow the Poisson model very well [8][9].  
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3. NETWORK CONGESTION CONTROL MODELS 

To archive a new optimization model of ATM network congestion control, a group of wide 
used network models are reviewed.  
A communication network can be expressed by a graph G = (V, A), where V is the set of nodes 
(vertices) and A is the set of arcs (or links, edges).  
Most packet communication networks can be regarded as an augmented graph with two types 
of indices: the operating index, expressed by T, e.g. packets delay or the number of packets in 
the system, generally speaking, network operation cost; the capital index, expressed by D, e.g. 
capacities cost. In a communication network, two important entities must be considered: link 
flow λi and link transmission capacity Ci. The physical meaning of λi is the traffic arrival rate 
in link i, expressed as data units per second, and Ci has the same dimension as λi. Accordingly, 
to a given network topology, the external traffic requirements, and the constraints of λi and Ci, 
the following three models can be developed:[2]  
 
Capacity Assignment (CA) problem:  

Given λi 
Minimize T 
Adjust Ci  
Constraint D 
 

Flow Assignment (FA) problem: 
Given Ci  
Minimize T  
Adjust λi 
 

Capacity Flow Assignment (CFA) problem: 
Minimize T 
Adjust Ci and λi 
Constraint D 

 
Several important issues may be discovered with further analysis of these generic models as 
flow:  
■ Whether a model is CA, FA, or CFA, depends on what the design variables are, rather than 
what variables are presented in the objective function.  
■ An objective function should be able to reflect the effect of design variables; generally 
speaking, all design variables should be integrated into the objective function.  
■ In the formulations of the CFA problems, the roles of objective function and constraint 
function can be exchanged, thus the terminology of primary and dual formulations is induced, 
the two forms can be called dual each other. However, the capital index cannot be utilized as 
the objective function for the FA model; otherwise adjusting λi has no effect to reduce the 
objective function.  
 
4. PROPOSED FLOW ASSIGNMENT PATH-NODE MODEL 

The parameters employed in path-node models are as follows: 

W : the set of all OD pairs.  
Pw: the set of all paths that connect a particular OD pair w. 
L : the set of all links. 
Ci: the capacity of link i. 
Qi: the set of all paths that pass link i. 
dp: the unit flow cost of path p.  
xp: the flow of path p. 
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bp: the unit capacity cost of path p. 
Gp: the capacity of path p.  
xp/Gp: the path utilization factor. 

wγ : External traffic demand which will be a random variable with uniform PDF. 
 

Model PF-1  
The objective function and constraint functions are illustrated below:  

                minimize        p
Ww Pp p

p
p x

G
x

dy
w

)(∑ ∑
∈ ∈

=                                     

                subject to                 ∑
∈

=
wPp

wpx γ  

                                                      pp Gx ≤                                                

                                                 ∑
∈

≤
iQp

ip CG  

                                                       0≥px  

                                              LiWwPp w ∈∈∈∀ ,,  
 
In this model, the target function is the same to that of CFA model, but the fundamental 
difference is: that in FA, only xp is the design variable, Gp is a parameter; while in CFA both 
xp and Gp are design variables. By introducing VP flow and VP capacity the path-node FA 
model becomes a CFA model on logical network level, but on physical network level, it still 
remains an FA model. 
 
Note that objective function of model PF-1 incorporates the path utilization factor and the unit 
path flow cost dp, in the VP flow model. The path utilization factor xp/Gp introduces the 
degree of congestion into the objective function. Obviously, when xp/Gp approaches 1, the VP 
flow is close to the VP capacity. Hence, the delay and the possibility of congestion in this VP 
increase. By incorporating the utilization factor xp/Gp into the objective function, we distribute 
the traffic between an OD pair on all available VPs evenly, and decrease the possibility of 
congestion. In this model, because the path utilization factor xp/Gp is kept small while 
minimizing the total flow delay, the resulting VP system can be resilient to input traffic 
changes. Therefore, possibility of congestion is likely to be decreased. Since traffic is 
distributed evenly on all available VPs between OD pairs, the highest link load can be 
minimized, and the traffic can be distributed evenly on all links.  
 
In ATM networks, the higher the maximum load on any specific link, the more catastrophic 
may be the effect of the failure of the link. If traffic can be distributed evenly on all links and 
highest link load can be reduced, the network will have high robustness. Therefore, the 
resulting VP system has high robustness to physical link failure. 
 
5. WEIGHTED SCENARIO TRACKING MODEL 

The Scenario Tracking (ST) approach is used here to solve the VP distribution 
problem. A weighted scenario tracking scheme is proposed here. The ST method does not 
need analytical formulas of distribution of stochastic parameters and can find a single optimal 
solution. These features make ST method more feasible and flexible for VP optimization 
when comparing with other approaches. 
 
In this thesis, we apply the ST scheme to proposed FA model PF-1 to solve the VP 
optimization problem. Here, scenario values of γw are taken, and for every scenario, solve the 
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scenario sub-problem, which is indeed a deterministic problem. After we get solutions for all 
scenarios, construct a coordinating model based on all scenarios to track the scenario 
solutions as closely as possible while still maintaining feasibility. Finally, the optimal solution 
is calculated based on the tracking model. The tracking model consists of two parts: 
“objective value” and “feasibility penalty” cost functions. 
 
Objective value 
The objective value cost function is used to track all scenario solutions by taking summation 
of difference between the final objective value and every scenario objective value. 

Let the final optimal objective value be denoted by p
Ww Pp p

p
p x

G
x

dG
w

)(∑ ∑
∈ ∈

= , then 

sobj yGZ −=  
where S: the set of all scenarios; ys: objective function value at scenario s; the remaining 
notations are same as defined in subsection 3.5.3 Chapter 3. 
 
This objective value part Zobj shown above is used to track all scenario solutions to find the 
final single solution by minimizing summation of difference between the final solution and 
every scenario objective value. This part is to track the scenario solutions as closely as 
possible. 
 
Feasibility Penalty 
This cost function is used to reflect the feasibility into the tracking model by summating the 
negative distance between the final solution and each scenario input flow. Let the lowest 
difference between the final solution and scenario input flow is denoted by 

],))min[(( WwxD
wPp

wps ∈−= ∑
∈

γ , then 

),0min( spenalty DZ =  
Here Ds is used to determine the lowest difference between the final solution and every 
scenario input flow γw. Note that in networks, only when path flows between an OD pair 
cannot meet external input traffic flows ∑

∈

<
wPp

wpx )( γ , the feasibility of the flow 

assignment is violated. Hence, we count only these negative distances here. We then compare 
the lowest value Ds with 0 to get the summation of all negative distances. Finally, we get 
absolute value of this summation. By doing this, we reflect the feasibility into tracking model 
by minimizing the largest negative distance between final solution and every scenario input 
flow γw. By adding the feasibility penalty into the tracking model, we are trying to maintain 
the feasibility while tracking the scenario solutions. 
 
Hence, the complete tracking model can be constructed as follows: 

minimize       ∑
∈

+
Ss

penaltyobjs bZaZp )(     

The fully extended form of the objective value is: 

         ∑ ∑∑ ∑
∈ ∈∈ ∈

−+−
Ss Pp

wpsp
Ww Pp p

p
ps

ww

xbyx
G
x

dap ])min[(,0min()([ γ  

subject to                 
                               pp Gx ≤                                                 

                     ∑
∈

≤
iQp

ip CG  
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                          0≥px  

                LiWwPpSs w ∈∈∈∈∀ ,,,  
where ps: probability of scenario s; a: weighting factor of objective value tracking; b: 
weighting factor of feasibility tracking. 
 
We apply the ST method to model PF-1, and then compare the resulting VP system with the 
VP system obtained from mean values.  
 
In our research, we assume that the external traffic demands; expressed in terms of 
bandwidth, change randomly. A random number generator is used to generate sets of traffic 
demands with Poisson distribution. Each group corresponds to external traffic demand of an 
OD pair, and each group includes numbers corresponding to scenarios.  
 
In ST approach, the more scenarios we use the higher accuracy we obtain. However, if we 
choose a large number of scenarios, the computation will take long time and the tracking 
model will be difficult to solve.  
 
6. SIMULATION AND ANALYSIS 

A prototype network with 4 nodes, 4 links and 6 OD pairs is shown in Fig. (2). 

 
In the network, we consider at most two VPs for each OD pair, so there are 11 paths, which 
are shown in Table (1). Table (1) shows the all paths associated with OD pairs and 
corresponding path cost. Table (2) shows the path / link incidence. Table (3) shows a few 
selected network parameters that we are using in the simulation. 

 
Table 1 OD Pairs – Paths and costs (small prototype network) 

OD Pairs Paths Path cost (distance) 
P1 {1,2} 1 1 (1,2) 
P2 {1,4,2} 1.5 
P3 {1,2,3} 2 2 (1,3) P4 {1,4,2,3} 2.5 
P5 {1,4} 0.5 3 (1,4) P6 {1,2,4} 2 

4 (2,3) P7 {2,3} 1 
P8 {2,4} 1 5 (2,4) P9 {2,1,4} 1.5 
P10 {3,2,4} 2 6 (3,4) P11 {3,2,1,4) 2.5 

 
 
 
 

3 4 

1 2 

110.5 

Figure 2 Small size prototype network 

1
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Table 2 Links – Paths (small prototype network) 
 Path 

Link P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
Link1 (1,2) 1  1   1   1  1 
Link2 (2,3)   1 1   1   1 1 
Link3 (2,4)  1  1  1  1  1  
Link4 (1,4)  1  1 1    1  1 

 
Table 3 Network model parameters (small prototype network) 

dp,       p = 1,…, 11 Ci,         i = 1,…, 4 γw,         w = 1,…, 
6 

d1 1 d8 1 C1 35 γ1 13 
d2 1.5 d9 1.5 C2 38 γ2 10.2 
d3 2 d10 2 C3 20 γ3 13 
d4 2.5 d11 2.5 C4 40 γ4 8 
d5 0.5 γ5 10.2 
d6 2 γ6 10.2 
d7 1 

  

 
For the prototype network in Fig.(2), the model PF-1 can be formulated as follows: 

minimize      ∑
=

=
11

1
)(

p
p

p

p
p x

G
x

dy   

subject to       
                       x1 + x2 = γ1 

                       x3 + x4 = γ2 

                       x5 + x6 = γ3 

                       x7  = γ4 

                       x8 + x9 = γ3 

                       x10 + x11 = γ3 

               xp ≤ Gp, p = 1, ...,11 

            G1 + G3 + G6 + G9 + G11 ≤ C1 

            G3 + G4 + G7 + G10 + G11 ≤ C2 

            G2 + G4 + G6 + G8 + G10 ≤ C3 

            G2 + G4 + G5 + G9 + G11 ≤ C4 

              xp ≥ 0, p = 1,...11 

 
The above model is optimized using the parameters given in Table (3). After converting the 
optimization problem into GAMS software (General algebraic modeling system) and running, 
we get the optimized VP flows and VP capacities shown in Table (4). 
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Table 4 Optimized VP flows and capacities (small prototype network). 

Path flow  xp Path capacity  Gp 
x1 13 G1 17.44 
x2 0 G2 0 
x3 10.2 G3 13.96 
x4 0 G4 0 
x5 13 G5 36.41 
x6 0 G6 0 
x7 8 G7 11.18 
x8 10.2 G8 10.74 
x9 0 G9 0 
x10 7.78 G10 9.26 
x11 2.42 G11 3.59 

The minimized objective function ∑
=

=
11

1

)(
p

p
p

p
p x

G
x

dy = 59.47 

It is observed that in most cases, the path utilization factor xp /Gp is low for high traffic load 
VPs. In this way, the traffic can be distributed in the network evenly, and each VP is assigned 
some redundant capacity. Therefore, the assigned VP is resilient to external traffic changes.  
For the ST tracking method, firstly, we perform 64 times optimization for 64 scenarios. 
Secondly, based on the tracking model, we perform another time of optimization to get the 
optimal solution. After converting the optimization problem into GAMS and running, we get 
the optimized VP flows and VP capacities. The optimal solution is compared with the solution 
obtained from applying mean values of external traffic demands. 
 
7. CONCLUSION 

The idea of ST method is to construct a tracking model to track the scenario solutions 
as closely as possible while still maintaining feasibility. 
 
Based on the above simulation, it is observed that the ST approach shows great flexibility on 
solving stochastic programming problem. Based on different objectives, we can construct 
different tracking model. By adding two weighing factor a and b into the tracking model, we 
provide flexibility for users to change the weight of objective value part and feasibility part in 
the tracking model to meet their objectives. 
 
The simulation results show that the stochastic programming solution for the VP optimization 
problem, by applying the ST approach to our proposed FA model, has better performance 
than mean value approach in terms of more evenly distributed traffic in the network and fewer 
failures to accommodate external traffic changes. 
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