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Abstract 

 

The Ant Colony Optimization was inspired by the foraging behavior of real ant colonies. The 

main determinants of an ant algorithm are the way of pheromone update and the transition 

probability of an ant‘s travel from a position to another. This paper proposes adopting the 

decision systems to develop the transition probability function and make other frequent 

decisions such as switching between ways of pheromone update. This increases the possibility 

of deriving and improving a variety of ant algorithms. The original transition probability 

function is investigated and other three formulas have been developed as general frameworks 

for the problems of multiple objective. The Analytic Hierarchy Process is followed as a base 

for this contribution; thus, unlimited number of factors can be involved. Furthermore, 

paradoxical views are discussed to synthesize different types of artificial stigmergy to 

energize the artificial ants with more robust interaction. 
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1. INTRODUCTION 

 

The Ant Colony Optimization (ACO) was first introduced by Marco Dorigo and colleagues in the 

early 1990s (Dorigo et Al. [1]) as a novel metaheuristic for solving NP-hard problems. The ACO 

is a natural way to distribute tasks between autonomous agents (ants). The ACO is a class of 

swarm intelligence techniques. The ACO is inspired by the shortest path foraging behavior of 

various ant species. While the members of an ant colony move between food sources and their 

nest, the ants deposit a chemical called pheromone (an odorous substance) on the ground to mark 

their paths. Thus, the ants form in this way different pheromone trails. The members of the ant 

colony have a tendency to follow such trails through probabilistic decisions biased by the 

pheromone intensity. However, ACO is based on the artificial ant which has some major 

differences with the real ant (see Cordón et Al. [2]). The artificial ant is a simple agent that builds 

feasible solutions using artificial pheromone trails (stigmergic information) and heuristic 

information. For more details, refer to Dorigo et Al. [1; 3; 4]. 

 

 

To apply ACO, the problem should be encoded by a construction graph fully connecting a 

specified number of nodes (Dorigo et Al. [4]). A connection between two nodes represents an 

edge. Generally, ACO is an iterative constructive technique. A number of artificial ants are 

assigned and distributed over the nodes of the graph and initial pheromone trails are set on edges. 

Thereafter, each ant builds a solution by walking from node to node on the graph with the 

constraint of not revisiting any node in the same tour. An ant chooses the next node to be visited 

according to a stochastic mechanism that is mainly biased by the pheromone intensity: when in 

node , the next node  is chosen stochastically among those available and unvisited nodes. In 

particular, a node  can be chosen with a probability that is proportional to the pheromone 

intensity and the heuristic information associated with edge . (Review Dorigo et Al. [1; 4].) 

 

 

Several ACO algorithms have been developed in the literature, such as Ant System (AS), Ant 

Colony System (ACS), MAX–MIN Ant System (MMAS), Rank-based Ant System (ASrank), 

Best-Worst Ant System (BWAS), Approximate Nondeterministic Tree Search (ANTS), and 

AntNet. For a detailed review about these algorithms and others, refer to Dorigo et Al. [1; 3; 4], 

Stützle and Hoos [5], Cordón et Al. [2], Dorigo and Stützle [6], Dorigo and Blum [7], Blum [8], 

Maniezzo and Roffilli [9], and Mullen et Al. [10]. It is found that ACO algorithms and their 

variants differ in some characteristics, such as the way of pheromone update, the form of 

transition probability, the heuristic information adopted, the number of ants distributed in the 

system, and initializing, reinitializing, terminating and boundary conditions. 

 

 

Recently, attention to ACO is much increased. The larger part of research on ACO is concerned 

with the area of application (Dorigo et Al. [4]). (See Shtovba [11]; Fox et Al. [12]; Azzag et Al. 

[13]; Hani et Al. [14].) The attention is also directed to more challenging problems that needs to 

more theory such as those involve multiple objective, dynamic modifications of data, and 

stochastic nature of the objective function and of the constraints (Dorigo et Al. [4]). Furthermore, 

the theory of ACO spotlights other directions such as continuous ACO (Socha and Blum [15]; 

Socha and Dorigo [16]) and parallel implementation of ACO (Randall and Lewis [17]; Manfrin et 

Al. [18]). The contribution of this paper focuses on the extension of ACO to multiple objective 



     
 

 3 

problems. A decision system called Analytic Hierarchy Process (AHP) is adopted for this 

purpose. 

 

 

In the remainder of this paper, AS (§2), Multiple Objective ACO (§3) and AHP (§4) are 

summarized. In §5.1, the transition probability function of original AS is investigated in 

perspective of multicriteria. In §5.2, three models for transition probability function are presented 

based on AHP. Stigmergy in the context of social life is discussed in §6. In §7, some conclusions 

are drawn. Some formulations are moved to Appendices A, B and C. 

 

 

2. THE ANT SYSTEM 

 

The AS is the first ACO algorithm proposed in the literature, which was developed by Dorigo et 

Al. in 1991 based on the Travelling Salesman Problem (Dorigo et Al. [1; 4]). Three variants, ant-

cycle, ant-density, and ant-quantity algorithms, were developed, differing only in the way the 

pheromone trails are updated. In the latter two variants, each ant deposits pheromone at each step 

(travel from node  to node ) while building its tour (online step-by-step pheromone update). In 

ant-cycle, each ant deposits pheromone once a tour is completed (online delayed pheromone 

update). In AS, the pheromone trail intensity on the edge  is updated as 

 

 
 

where  is the pheromone evaporation rate,  is the total number of ants in the system, 

and  is the quantity of the pheromone laid on edge  by ant . 

 

 

For ant-cycle, at end of each tour, 

 

 
 

where  is a constant and  is the tour length of ant . 

 

 

For ant-density, at end of each step, 

 

 
 

 

For ant-quantity, at end of each step, 
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where  is the distance between nodes  and . 

 

 

In AS, at each step, an ant  at node  chooses to travel to next node  with a transition 

probability that is computed as 

 

 
 

where  is the feasible neighborhood of ant  when located at node , and  are the 

parameters that weight the relative importance of the pheromone trail, , versus the heuristic 

information, , which is given by 

 

 
 

where  is the distance between nodes  and . This heuristic information is called visibility. 

Notice that Formula (5) can be explained by Bayes‘ Formula. Iourinski et Al. [19] have discussed 

several biologically inspired formulas including the transition probability. 

 

 

Gagné et Al. [20] explored the addition of a look-ahead mechanism to such transition probability 

that allows incorporating additional information about the potential of the current partial solution 

(looking beyond the immediate choice horizon). That extends Formula (5) to more than two kinds 

of information. Another formula found similar in structure exists in Rahman et Al. [21], having 

three parameters as exponents. 

 

 

3. MULTIPLE OBJECTIVE ACO 

 

In general, a multiple objective optimization problem is the problem of simultaneously 

optimizing a set of several objectives while satisfying an active set of constraints. The most 

commonly used approaches to deal with such problems are four: objectives weighting, distance 

functions, Min–Max formulation, and Lexicographic approach (Garcìa-Martínez et Al. [22]). 

These approaches join the principal of reducing to a single objective problem. The ACO becomes 

one of the paradigms that used to solve this problem (Angus and Woodward [23]). The Multiple 

Objective ACO (MOACO) will be discussed in brief as follows. Table 1 names some of MOACO 

algorithms (Garcìa-Martínez et Al. [22]; Lezcano et Al. [24]). 

 

 

Most of MOACO algorithms are basically extensions of the established single objective ACO 

algorithms such as AS, MMAS, and ACS (Angus and Woodward [23]). For instance, Doerner et 



     
 

 5 

Al. [25] introduced an algorithm called COMPETants to deal with bi-objective transportation 

problems based on ASrank with two ant colonies. Each colony is set with each own pheromone 

trail matrix and the objectives are combined in a weighted sum. T‘Kindt et Al. [26] proposed an 

MMAS algorithm to solve bi-objective two-machine flowshop scheduling problem by ordering 

the objectives. They also used features of simulated annealing search and local search algorithms. 

 

Table 1. Some of MOACO algorithms. 

 

Algorithm Ellipsis Ellipsis Ellipsis 

Multi-objective Ant System MAS COMPETants COMP 

Bi-criterion Ant BIANT Multi-objective Ant Colony System MOACS 

Bi-criterion Multi Colony BIAMC 
Multi-objective Max–Min Ant 

System 
M3AS 

Pareto-Ant Colony 

Optimization 
P-ACO Multiple Objective Ant-Q MOAQ 

Multi-objective Omicron ACO MOA Elitist TA e-TA 

Multi-objective Network ACO MONACO Multi-criteria population-based ACO 
MO-

PACO 

 

 

From military applications, a MOACO algorithm, called CHAC, has been designed to solve what 

is called military unit pathfinding problem (route speed and safety). Mora et Al. [27] have 

developed a version of CHAC called hCHAC, which models the scenarios as a grid of hexagons. 

The hCHAC uses two pheromone matrices and two heuristic functions (each pair is dedicated to 

one objective) and a single ant colony. Furthermore, two different state transition rules have been 

implemented: the first one combines heuristic and pheromone information of two objectives and 

the second one is based on dominance over neighbors; and ACS is integrated to have better 

control in the balance between exploration (of unvisited edges) and exploitation (of learned 

knowledge). 

 

 

Pareto Ant Colony Optimization (P-ACO) is an important approach that is applied to extend 

ACO to MOACO. It resolves the absence of information flow through its pheromone values. 

Doerner et Al. [28] developed the P-ACO algorithm for solving multiple objective portfolio 

selection problem. They defined multiple pheromone vectors (one pheromone vector for each 

objective), random objective weights for each objective, and the lifespan concept. (See also 

Doerner et Al. [29].) Thereafter, P-ACO is followed in similar and other applications. For 

instance, Stummer and Sun [30] adopted the model of Doerner et Al. [28] to develop P-ACO 

heuristic procedure to find efficient portfolios in capital investment planning. They added a 

neighborhood search routine to the P-ACO algorithm to improve its performance. Pasia et Al. 

[31] used P-ACO in solving a bi-objective capacitated vehicle routing problem with route 

balancing. In this approach, the individuals of each pool share information via the local 

pheromone update of P-ACO. This update allows the individuals to explore the regions of the 

search space that are not yet visited by the previous individuals. On the other hand, pools share 

information indirectly by the local pheromone update and directly by the global pheromone 
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update. The global pheromone update allows the current pool to lead next pool towards a better 

region. 

The set of parameters that used in MOACO algorithms differ from one to one and some of them 

are common. These include number of ants, visibility and pheromone relative weight, learning 

factor (MOAQ), optimality policy (MOAQ), pheromone evaporation rate, initial pheromone 

level, omicron factor (MOA), re-initiation factor (MAS), and exploration versus exploitation 

probability (MOACS) as presented in Lezcano et Al. [24]. 

 

 

Garcìa-Martínez et Al. [22] have offered a review and analysis for many MOACO algorithms. 

They summarized the existing algorithms and proposed a taxonomy that categorizes MOACO 

algorithms based on the number of pheromone matrices and the heuristic matrices involved. In 

addition, an empirical analysis is developed by analyzing their performance based on several 

instances of the bi-criteria Traveling Salesman Problem in comparison with two well known 

multi-objective genetic algorithms. Angus and Woodward [23] also have reviewed many existing 

algorithms and proposed another taxonomy that based on features common to ACO: choice of 

pheromone model, solution construction process, solutions are evaluated in terms of individual 

objectives or all objectives, how solutions are used to update the multiple or individual 

pheromone matrices, and how Pareto optimal solutions are treated. Both papers are found useful 

for intended modifications of MOACO. See also Lezcano et Al. [24]. 

 

 

From this review, a view is that modeling the factors involved in MOACO problems can be done 

easily aided by more flexible ways. Known decision systems can be nominated, for that purpose, 

such as AHP, ANP, ELECTRE, PROMETHEE, etc. (Figueira et Al. [32]). The author, as a start, 

proposes AHP (Saaty [33]), because of its simplicity and flexibility in building and weighting the 

relationships between the problem factors. In addition, AHP facilitates synthesizing composite 

rules from the given information and constructing linear combinations of the objectives. 

 

 

4. THE ANALYTIC HIERARCHY PROCESS 

 

The AHP is a weighting multicriteria decision system. It was developed by Saaty in 1980 (Saaty 

[33, 34]). The AHP arranges the problem factors (goal, criteria, subcriteria, and alternatives) in a 

descending hierarchic structure. The AHP becomes popular in solving complex decision 

problems. The AHP can be exhibited in a structured form as follows: 

 

Step 1—Hierarchy 

Create a hierarchy comprising all decision factors of the problem. 

Step 2—Pairwise comparisons 

At each level of the hierarchy, for each related group of factors, with respect to its grouping factor 

in the direct higher level, construct a pairwise comparison matrix. 

Comments: A set of factors is grouped by only one factor in the directly higher level except the 

alternatives. The alternatives are grouped by each factor in the direct higher level (criterion or 

subcriterion). The levels can be handled forward or backward. The quantitative (measurement) 

factors don‘t necessitate using pairwise comparison matrices. All comparisons and measurements 

must be unified in direction in the sense that larger value is superior and smaller value is inferior 
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or vice versa. A numerical scale should be used for the qualitative judgments. Each matrix is 

designated to relate the factors in rows to those in columns. 

Step 3—Consistency 

At each level, test the consistency of all pairwise comparison matrices. If a matrix isn‘t 

consistent, verify step 2. 

Step 4—Weight vectors 

At each level of the hierarchy, for each related group of factors, calculate the weight vector 

(relative weights) with respect to its grouping factor. 

Comments: The relative weights of a group of factors with respect to a qualitative factor are 

calculated using the corresponding pairwise comparison matrix. That with respect to a 

quantitative factor can be calculated with suitable mathematics. 

Step 5—Normalizations 

Use a mathematical method to normalize the weight vectors (optional according to the problem 

size and conditions). 

Step 6—Criteria combined weight matrix 

Construct a matrix, the criteria combined weight matrix, to collect all weight vectors except that 

of alternatives. 

Step 7—Criteria composite weight vector 

At the level directly higher than the alternatives, calculate the composite weight of each factor to 

yield a vector (say row wise), the criteria composite weight vector. 

Comments: A composite weight of a factor means its weight relative to the goal. Therefore, a 

composite weight of a factor, at a specific level, equals to multiplication of weights of the factors 

on the hierarchical path starting from this factor upward up to the second level. This can be done 

directly on the hierarchy. 

Step 8—Alternative weight vectors 

For each alternative, construct a vector (say column wise), the alternative weight vector, to collect 

the weights of this alternative with respect to the factors on the directly higher level (criteria or 

subcriteria). 

Step 9—Alternatives combined weight matrix 

Construct a matrix, the alternatives combined weight matrix, to collect the alternative weight 

vectors, say column wise (each alternative in a column). 

Step 10—Overall weight matrix 

Construct a matrix, the overall weight matrix, to collect the criteria composite weight vector, and 

the alternatives weight matrix, arranged all in columns/rows. 

Step 11—Alternatives score vector (Global decision vector) 

Calculate the alternatives score vector by multiplying the criteria composite weight vector (row 

wise) by the alternatives combined weight matrix (column wise). 

 

The majority often use the judgment scale {1/9, 1/8, …, 1/2, 1, 2, …, 9} of Saaty for pairwise 

comparisons. The weight vector  of a reciprocal pairwise comparison matrix  is estimated by 

the matrix equation . Where  is the number of compared factors,  is 

the principal eigenvalue of , and  is the principal eigenvector of . To make  unique, its 

entries are normalized by dividing by their sum.  can be estimated by normalizing the columns 

of  and averaging the rows of the normalized . Notice that if  is perfectly consistent, all 

columns of the normalized  become identical to .  is said consistent if , 
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where  is the consistency index and  is an experimental random 

consistency index. 

 

 

 

5. THE AHP ANT SYSTEM 

 

 

5.1. Transition Probability Logic 

 

The transition probability of AS can be analyzed in the following simple way. Suppose that  and 

 are the vectors of pheromone trails and visibility, respectively, of currently available edges. The 

values of  and  can be considered as two different weights for edge . Each entry in  can 

be normalized dividing by the sum of all entries as 

 

 
 

which weights the value of  amongst the others and gives the sense of probability that an event 

occur. Also, each entry in  can be normalized as 

 

 
 

which weights the value of  amongst the others and gives the sense of probability that another 

event occur. Then, each entry  becomes 

 

 
 

which can be renormalized as 

 

 
 

which gives the sense that both events occur. Formula (10) can be obtained directly by 

normalizing the entry . If the parameters  and  are used as exponents, Formula (10) 

becomes exactly as Formula (5). This analysis finds some relationship between the evaluation of 

transition probability and multicriteria analysis by explaining the pheromone and visibility as two 

different criteria with weights of  and , respectively. Thus, such analysis can be extended 
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easily to more than two criteria by incorporating additional heuristic and/or stigmergic 

information. 

 

 

 

 

 

 

5.2. AHP Transition Probability 

 

 

5.2.1. Model I 

Suppose that the transition state of an ant  at node  is explained by a set  of  active 

maximization criteria and a set  of  available unvisited edges. The goal, , is that the 

ant should choose the best edge for the next travel. Following AHP, this situation can be 

represented by the hierarchy shown in Fig. 1. The criteria become pheromone in addition to 

unlimited number of visibilities. (A visibility may be related to distance, cost, time, profit, etc.) 

The alternatives become the currently available unvisited edges. (This hierarchy can be enlarged 

by merging subcriteria if that is necessary.) Referring to Appendix A, the corresponding 

transition probability function is 

 

 
 

Fig. 1. A hierarchy expresses the ant‘s transition state. 

 

 
 

where,  is weight of criterion  relative to  and  is weight of edge  relative to 

criterion . Model I for transition probability, Formula (11), has the advantage of flexible 

operations for combining several criteria. Furthermore, it can be adopted as a general formula for 

the transition probability in ACO with multiple objective; that in turn generates other algorithms. 

 

 

… 

… 

Best Next Node:  

Criterion:  Criterion:  

Edge:  Edge:  Edge:  

Criterion:  Level-2: Criteria 

Level-3: Alternatives 

Level-1: Goal 
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If we reduce the number of criteria to only two criteria (say pheromone and visibility) with 

parameters  and , Formula (11) reduces to 

 

 
which becomes exactly as that used in ANTS algorithm (see Dorigo and Stützle [6]) if we impose 

. With rearrangement, Formula (12) becomes 

 

 
 

 

Model I for transition probability sets all criteria on the same level under the goal including the 

pheromone as shown in Fig.1. Other models can be derived by reconstructing the hierarchical 

relationships between the ant‘s decision criteria such as merging subcriteria. In other words, 

different hierarchies can be constructed to express the ant‘s transition state as exhibited in the 

next models, Model II and Model III. 

 

 

5.2.2. Model II 

Suppose that the transition state of an ant  at node  is explained by pheromone ( ) and visibility 

( ), and a set  of  available unvisited edges. Consider the visibility as a combined set 

 of  active sub-visibilities. (A sub-visibility may be related to distance, cost, time, profit, 

etc.) The goal, , is that the ant should choose the best edge for the next travel. Following AHP, 

this situation can be represented by the hierarchy shown in Fig. 2. 

 

 
 

Fig. 2. Visibility enlarged hierarchy: expressing the ant‘s transition state. 

 

 

Notice that this structure, Fig.2, places the pheromone (stigmergic information) and the visibility 

(heuristic information) on the same level and moves the other criteria down one level grouped 

under visibility. Referring to Appendix B, 

… 

… 

Visibility:  

Visibility:  Visibility:  

Edge:  Edge:  Edge:  

Visibility:  

Pheromone:  

Best Next Node:  
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where,  and  are weights of visibility and pheromone, respectively, relative to ;  is 

weight of sub-visibility  relative to ;  is weight of edge  relative to sub-visibility ; 

and  is weight of edge  relative to . Model II for transition probability, Formula (14), 

can be also adopted as a general formula in ACO with multiple objective. Model II sets 

stigmergic information in one group and heuristic information in another group. Therefore, 

Model II proves some degree of weighting homogeneity more than Model I. 

 

 

5.2.3. Model III 

Suppose that the transition state of an ant  at node  is explained by pheromone ( ), visibility 

( ), and a set  of  available unvisited edges. Consider the visibility as a combined set 

 of  active sub-visibilities and the pheromone as a combined set  of  active 

sub-pheromones. The goal, , is that the ant should choose the best edge for the next travel. 

Following AHP, this situation can be represented by the hierarchy shown in Fig. 3. (The term 

sub-pheromone is a paradox will be discussed later in §6.) Referring to Appendix C, 

 

 
 

Fig. 3. Enlarged hierarchy expressing the ant‘s transition state. 

 

 
 

where,  and  are weights of visibility and pheromone, respectively, relative to ;  is 

weight of sub-visibility  relative to ;  is weight of edge  relative to sub-visibility ; 

and  is weight of edge  relative to sub-pheromone . Model III for transition 

probability, Formula (15), is more general than Model II. 

… 

… 

Visibility:  

Visibility:  

Edge:  Edge:  Edge:  

Visibility:  

Pheromone:  

Best Next Node:  

Pheromone:  Pheromone:  … 
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5.3. Remarks 

 

The literature showed that AHP is used combined with ACO to construct a hybrid algorithm. 

Nevertheless, this approach isn‘t the same as that proposed in this paper. Up to this point, the 

approach proposed in this paper is by applying AHP to modify AS itself to have room for 

multiple objective, specifically modifying and extending the transition probability function. Two 

papers are found combining AHP with ACO. Fischer et Al. [35] introduced a decision support 

approach for selection of the competence cells, in a virtual enterprise, by a combination of ACO 

and AHP. It includes economic factors as well as social factors as soft-facts by applying AHP. 

The ACO is used for selection of the variant of manufacture and the according competence cells 

and AHP is used for the computation of the objective function value. The same approach of 

Fischer et Al. [35] has been followed by Kang et Al. [36] to solve a very similar problem. 

 

 

6. STIGMERGY REVISITED 

 

The concept of stigmergy was first introduced in 1959 by French entomologist Pierre-Paul Grassé 

to describe a form of indirect communication mediated by some local modifications of shared 

environment that he observed in two species of termites (Dorigo et Al. [37]). Grassé‘s original 

definition of stigmergy was ―stimulation of workers by the performance they have achieved.‖ In 

other words, he observed that these species react to what he called ―significant stimuli‖ (Dorigo 

et Al. [4]). The term stigmergy has later been used to describe indirect communication in other 

social insects. See Johnson and Rossi [38] for recent quantification for ant‘s foraging trails. 

 

 

Stigmergy helped researchers to understand the connection between the level of individual and 

the level of colony, showing that an alternative theory could explain the ―paradox‖ of 

coordination in social insects: although the behavior of the colony as a whole looks wonderfully 

organized and coordinated, it seems that every insect is pursuing its own agenda without paying 

much attention to its nestmates (Theraulaz and Bonabeau [39]). 

 

 

Two main stigmergic mechanisms were identified: quantitative stigmergy and qualitative 

stigmergy. Quantitative stigmergy is a self-organization-based mechanism, where the stimulus 

response sequence comprises stimuli that don‘t differ qualitatively (such as pheromone fields and 

gradients) and only modify the probability of response of the individuals to these stimuli. 

Qualitative stigmergy is based on a discrete set of stimulus types with different responses: for 

example, a type-1 stimulus triggers action A by individual I1; action A transforms the type-1 

stimulus into a type-2 stimulus that triggers action B by individual I2. (See Theraulaz and 

Bonabeau [39].) Some species use multiple pheromone flavors (Van Dyke Parunak [40]); thus, 

quantitative and qualitative stigmergy occur. Table 2 distinguishes four varieties of stigmergy 

with examples. 

 

 

Self-organization is a set of dynamical mechanisms whereby structures appear at the global level 

of a system from interactions of its lower-level components. The main four features that govern 
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self-organization in the insect colonies are positive feedback (amplification), negative feedback 

(for counter-balance and stabilization), amplification of fluctuations (randomness, errors, random 

walks), and multiple interactions. (This is stated from Das et Al. [41].) Tummolini and 

Castelfranchi [42] defined stigmergy as the process of indirect communication of behavioral 

messages using traces as implicit signals and exploiting the ability of others to explain such 

signals. They stated that the indirect interaction or the interaction through the environment is 

necessary to understand self-organizing systems but self-organization is just a function of indirect 

interaction and not a defining feature. (Notice that ant‘s pheromone is explicit signal left implicit.) 

 

Table 2. Varieties of stigmergy (Van Dyke Parunak [40]). 

 

 Marker-Based (based on other agents‘ traces) 
Sematectonic (based on 

current solution state) 

Quantitative Gradient following in a single pheromone field Ant cemetery clustering 

Qualitative Decisions based on combinations of pheromones Wasp nest construction 

 

 

In general, stigmergy in natural Complex Adaptive Systems (CAS) allows a collection of agents 

to achieve global results for hard task through local interactions. Fortunately, stigmergy can be 

artificially synthesized for the Multi-Agent Systems (MAS) as done in ACO algorithms. Special 

models for synthesizing stigmergy were presented. For instance, O‘Reilly and Ehlers [43] have 

presented a model called ACEUS that can be used in a business environment to build a software 

system that imitates a CAS as well as synthesizes stigmergy for interactions between agents and 

agents and the environment. The design of ACEUS entailed three layers, namely: organic agent 

layer, insilica agent layer, and stigmergy layer. These layers give some modularity to this model. 

 

 

However, stigmergic coordination isn‘t limited to insects. Human stigmergy has been also 

identified to describe human-human interaction, based on human-level cognition. Fig. 4 

summarizes the basic components of a stigmergic system: a population of agents sharing an 

environment. 

 

 
 

Fig. 4. Basic architecture of stigmergy (Van Dyke Parunak [40]). 

 

 

As stated in Van Dyke Parunak [40]: the most important distinction between agents and the 

environment is that the internal state of agents is hidden, while the state of the environment is 

Agent’s 
State 

Environment’s 
Dynamics 

Agent’s 
Dynamics 

Environment’s 
State 
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accessible to an agent with appropriate sensors. In most cases, a second distinction can be 

observed. Each agent is monolithic, a self-contained computational object with a well-defined 

boundary. Typically, the environment isn‘t monolithic, but is structured according to some 

topology. Ricci et Al. [44] have adopted the term cognitive stigmergy to denote stigmergy in the 

cognitive MAS, i.e. societies of goal/task-oriented/driven agents interacting at the cognitive level. 

In other words, the term cognitive stigmergy supports high-level, knowledge-based social 

activities. Because of having cognitive capabilities, such agents (cognitive agents) aren‘t 

necessarily simple and reactive ones, as in the ant case, but can typically be rational, 

heterogeneous, adaptive, and capable of learning. Cognitive stigmergy uses what is called 

artifacts (environment abstractions perceived by agents) to model stigmergic mechanisms with 

the shared knowledge and information upon which emergent coordination processes are based. 

Artifacts are (i) the subject of cognitive agent activity, (ii) the enabler and rulers of agent 

interaction, and (iii) the natural loci for cognitive stigmergy processes. (For more details, review 

Ricci et Al. [44].) Intuitively, pheromone is a non-cognitive. 

 

 

Sreevalsan-Nair et Al. [45] have described a tool for visualizing and interacting with an ACO 

algorithm, which is challenging in a 3D environment. That is an interface interacting directly with 

the operation of this ACO algorithm by allowing the user to deposit some pheromone. That, in 

turn, influences the coming paths selection to help faster convergence. Thus, the user can be seen 

here as an external ant/agent having direct interaction, but not a cognitive agent. This approach 

represents a continuation for the ―human-guided search‖ of Mitsubishi research labs. Notice that 

direct interactions don‘t denote stigmergy, since they are based on physical senses of agents. 

Nevertheless, using internal or external direct interactions can be useful for right solution 

conversion in MAS. 

 

 

A stigmergic application seems to be recent; that is modeling the artificial emotion. Aqel et Al. 

[46] have described a simulation model for analyzing artificial emotion supplied to design the 

interactive game characters. They exploited the pheromone update formula of AS to present a 

formula for emotional state and mood update. They have identified five types of pheromone 

labels for emotion: acceptance, rejection, frustration, astonishment with fear, and tolerance. Thus, 

they mimic the behavior of ants to formulate the human emotion. That is human is seen as 

ants/agents, or in other words ants playing a game. Notice that pheromone decay can mimic 

human dissatisfaction. 

 

 

We can conclude that the term stigmergy was originally defined and used in the context of social 

insects. Stigmergy was used in MAS to describe and realize growing coordination between ant-

like nonrational agents. The two main differentiating characteristics of stigmergy are: (i) it is an 

indirect, non-symbolic communication mechanism via agents‘ environment, and (ii) stigmergic 

information is local; see Dorigo et Al. [4]. The term cognitive stigmergy (Ricci et Al. [44]) has 

been defined in the context of social cognitive/rational agents. We can synthesize advanced forms 

of stigmergy composed of both classes, say hybrid stigmergy, to be adopted in MAS. For 

instance, we can identify an artificial ant having both classes of stigmergy; that can yield more 

global results. Ricci et Al. [44] proposed their conceptual framework for cognitive stigmergy to 

be a basic reference for engineering practical experimentation in the field of MAS. They 

identified three main objectives of their framework: (i) constructing a model for stigmergic 
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coordination in MAS going beyond ant-like metaphors; (ii) providing predictive models for MAS 

based on cognitive stigmergy; and (iii) hybridize MAS behavior through both, cognitive 

stigmergy and non-cognitive stigmergy. 

 

 

Thus, we can summarize the terms that can come coherent with the term stigmergy as cognitive, 

non-cognitive, emotional, non-emotional, quantitative, qualitative, tangible, intangible, explicit, 

implicit, positive, negative, and user-based (external). In addition, we can use the term pseudo-

pheromone to express intangible signs of stigmergy. Thus, we can synthesize composite 

structures of stigmergy and forms for updating their signs. For instance, we can synthesize a 

pseudo-pheromone, for ACO, to express satisfaction/dissatisfaction of an ant, as if it is human, 

providing all information, during all solution steps, such as number of accompanying ants, ant‘s 

achievement, achievements of other ants, and all problem information. Investigating topics like 

human needs and motivation (Corning [47]; Wilk [48]) can help to identify paradoxes for a 

human-like artificial ant or briefly human ant. That requires information and knowledge sharing. 

A helpful concept called accumulated experience was introduced for ACO based on ACS and 

information sharing-weighting system (Montgomery and Randall [49]). The AHP and other 

decision systems can help such aims. Fig. 5 illustrates a basic structure for decision making at 

transition states by the human ant. This structure can be adopted as a base/guide/reference for 

developing ACO algorithms for multiple objective problems. Here, each visibility (heuristic 

information) is a function of an objective. 

 

 
 

Fig. 5. A basic structure for the human ant‘s decisions with hybrid stigmergy. 

 

 

7. CONCLUSIONS AND FUTURE INSIGHTS 

 

The ACO algorithms are construction algorithms based on assigning ants as simple agents, which 

can iteratively solve NP-hard problems guided by artificial pheromone trails (stigmergic 

information) and heuristic information. Mainly, an ACO algorithm is configured by investigating 

these two kinds of information. The main determinants of an ACO algorithm become the 

transition probability and the way for pheromone update, which control the ants‘ travel. Other 

characteristics can be also considered. The ant simulates the decision maker, when it has to 

choose a path to follow on the construction graph. Therefore, this paper proposes that integrating 

a decision system like AHP into ACO will derive and improve a variety of ACO algorithms 

suiting the problems of multiple objective. Stigmergy is discussed in the context of insects and 

human societies and some stigmergic paradoxes have been viewed. The term human ant is 

… 
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Best Next Node:  

User-based Cognitive 

Emotional Non-emotional 
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viewed for the artificial ants if they are actuated with some cognitive stigmergy. The term 

emotional stigmergy is viewed to formulate positive and negative feedbacks; that can be also 

viewed for all types of cognitive stigmergy. 

 

 

The AHP can be used in ACO for several purposes: (1) constructing the transition probability 

function; (2) switching pheromone update way during iterations; and (3) rank the performance of 

the ants during iterations to make presumable decisions of removing some ants from the system 

or reinforcing others. Here, the focus has been on the first one. The developed function (Formula 

(16)) has the advantages of simpler operations and availability to integrate unlimited number of 

guiding information (criteria). This function can primarily replace that in AS (Formula (5)) to 

provide the system called, in this paper, the AHP Ant System (AHPAS). 

 

 

Integrating AHP into ACO can be strengthened by the possibility of describing the foraging 

behavior of ants using fuzzy modeling (Rozin and Margaliot [50]), since AHP itself is highly 

amenable to fuzzy modeling (see Fuzzy AHP in Chang [51], Lien and Chan [52], and Jaganathan 

et Al. [53]). Analytic Network Process (ANP) developed by Saaty in 1996 (Saaty [54]) is a direct 

extension for AHP; therefore, it can be also used to extend this work. Fortunately, ANP is also 

highly amenable to fuzzy modeling (see Fuzzy ANP in Mikhailov and Madan [55]). Other 

decision systems can be used such as ELECTRE and PROMETHEE (see Figueira et Al. [32]). 

 

 

However, this paper is a trial to open new topics of research in ACO based on decision systems 

and cognitive stigmergy. These topics can be called Decision Support ACO and Cognitive ACO, 

respectively. This will be promising for MOACO. Therefore, the current work still needs to a 

series of numerical experiments for the purposes of verification, validation, modification, and 

extension. 
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APPENDICES 

 

Appendix A 

 

Suppose that the pairwise comparison matrices are constructed at each level of the hierarchy and 

the weight vectors are computed. Weight vector of criteria  relative to the goal, , is represented 

as 

 

 

Weight vector of the edges , relative to the criterion  is represented as 
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Thus, weight matrix of the edges  relative to the criteria  becomes 

 

 
 

and score vector of the edges  is then computed as 

 

 
 

Each entry in the vector  represents the weight, , of edge , relative to . This 

entry is computed as 

 

 
 

which can be normalized to yield the transition probability as Formula (11), where  replaces  

and  replaces . 

 

 

Appendix B 

 

Suppose that the pairwise comparison matrices are constructed at each level and the weight 

vectors are computed. Let the weight vector of the pheromone and visibility, relative to the goal, 

, be 

 

 
 

where  and  are pheromone and visibility weights, respectively, relative to . Weight vector 

of sub-visibilities , relative to the visibility  can be represented as 

 

 
 

then, the corresponding composite weight vector of sub-visibilities  relative to  becomes 

 

 
 

and combining the pheromone weight  with  yields 
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Weight vector of the edges , relative to the sub-visibility  can be represented as 

 
 

Thus, weight matrix of the edges  relative to the sub-visibilities  becomes 

 

 
 

Weight vector of the edges , relative to the pheromone  can be represented as 

 

 
 

Combining  and  yields 

 

 
 

Score vector of the edges  is then computed as 

 

 
 

Each entry in the vector  represents the weight, , of edge , relative to , 

 

 
 

which can be normalized to yield the transition probability as Formula (14), where  replaces  

and  replaces . 

 

 

Appendix C 

 

Suppose that the pairwise comparison matrices are constructed at each level and the weight 

vectors are computed. Let the weight vector of the pheromone and visibility, relative to the goal, 

, be 
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where  and  are pheromone and visibility weights, respectively, relative to . Weight vector 

of sub-visibilities , relative to the visibility  can be represented as 

 

 

then, the corresponding composite weight vector of sub-visibilities  relative to  becomes 

 

 
 

Weight vector of sub-pheromones , relative to the pheromone  can be represented as 

 

 
 

then, the corresponding composite weight vector of sub-pheromones  relative to  becomes 

 

 
 

Combining  with  yields 

 

 

 
 

Weight vector of the edges , relative to the sub-visibility  can be represented as 

 

 
 

Weight vector of the edges , relative to the sub-pheromone  can be represented as 

 

 
 

Thus, weight matrix of the edges  relative to the sub-visibilities  becomes 

 

 
 

Weight matrix of the edges , relative to the sub-pheromones  can be represented as 
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Combining  and  yields 

 
 

Score vector of the edges  is then computed as 

 

 
 

Each entry in the vector  represents the weight, , of edge , relative to , 

 

 
 

which can be normalized to yield the transition probability as Formula (15), where  replaces  

and  replaces . 
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