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In this paper, Simple food chain in chemostat when the predator produces unaffected toxin is 

considered. This inhibitor is not lethal to neither prey nor nutrient and results in decrease of growth rate of the 

predator at some cost to its reproductive abilities. A Lyapunov function in the study of the global stability of a 

predator-free steady state is considered. Local and global stability of other steady states, persistence analysis, as 

well as numerical simulations are also presented. 
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1- Introduction 

 The chemostat is a laboratory apparatus used for the continuous culture of 

microorganisms. It can be used to study competition between different populations of 

microorganism or between preys and predators, and has the advantage that the parameters are 

readily measurable. The monograph of Smith and Waltman (8) has various mathematical 

methods for analyzing chemostat models. Recently, the inhibitor has been introduced in the 

models for two competitors in a chemostat, and many authors have studied those models (see 

(1, 2, 3, 4, 5, 6 and 7)).  

In this paper, we consider a model of simple food chain in chemostat when the 

predator produces unaffected inhibitor. This inhibitor is not lethal to neither prey nor nutrient 

and results in the decrease of growth rate of the predator at some cost to its reproductive 

abilities.  

This paper is organized as follows: In the next section, the model is presented and 

some simplifications. Section 3, deals with the existence and local stability of steady states. In 

section 4, we shall provide global analysis, including global stability of the boundary steady 

states and persistence analysis. Discussion, comments and numerical simulation are found in 

final section. 

 

2- The model 

 The interest equations are 
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Where )(),(),( tytxts  and )(tp  are the concentration of the nutrient, prey, predator and 

inhibitor at time ,t  respectively. 0s  Denotes the input concentration of the nutrient, D  

denotes the washout rate. 
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   where ,2,1, imi  

the maximal growth rates, ,2,1, iai  the Michaelis- Menten constants and ,2,1, ii  the 

Yield constants. The constant fraction )1,0(k  is the potential growth due to inhibitor 

growth (see (3) for description the physical meaning of k ). 

 

For scaling, let 
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Substitute into (2.1) and then drop the bars, the model becomes 

 

.)(

),1)()1((

)2.2(,)()1)((

,)(1

2

2

21

1

pxfykp

xfkyy

yxfsfxx

xsfss









 

 

3- Existence and local stability 

Let ,pyxsT   then ,1 TT   or .1)(suplim 


tT
t

   

Since each component is non-negative, the system (2.2) is dissipative and thus, has a compact, 

global attractor. To simplify (2.2), let ,
1 k

yk
pz


  we find that the system (2.2) is taken the 

form,  
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Clearly 0)( tz  as ,t  so the system (3.1) may be viewed as an asymptotically 

autonomous system with limiting system 
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It is easy to show that (3.2) in positive cone. As a consequence, the global attractor of (3.1) 

lies in the set ,0z  where (3.2) is satisfied. When the analysis of (3.2) is completed, the 

work of Thieme (10), relates the corresponding dynamics of (3.1) and (3.2), and hence of 

(2.2). We will show that all solutions of (3.2) tend to rest points and hence, using Thieme (9), 

so do those of (2.2). 

The equilibrium point ),0,0,1(0 E  always exists. If ),1(1 1f  then there is an equilibrium of 

(3.2) of the form ),0,1,(1 ssE   where ,s  is the unique solution of .01)(1 sf   

Similarly, if  ),1(
1

1
2f

k



there is an equilibrium of the form  

),)1)(()1(,,( *

1

*

2  sfksE xx   where ,*s  is the unique value of ,s  such that 

,0)(1 1  sfs x  and ,x  is the unique solution of .01)()1( 2  xfk  

 

We now discuss the existence of steady state. The washout steady state ,0E  always exists. A 

predator-free steady state ,1E  exists when .1s  For the interior steady state  ,2E  exists 

when ,1s  and .1 xs   Note that ),(1)( 1 sfssH x   is decreasing function in 

,s  with ,0)(,1)0(0 *  sHH  and .1)( xssH    So ,*ss   if and only if 

.1 xs    

Next theorem will be investigated the local stability of these steady state by finding the 

eigenvalues of the associated Jacobian matrices. 

 

Theorem 3.1 

 If s1  then only 0E  exists and 0E  is locally asymptotically stable. If 1s  and 

,1 xs    then only 0E  and 1E  exist, 0E  is unstable, and 1E  is locally asymptotically 

stable. If 1s  and 1 xs   then 210 ,, EEE  exist, and ,, 10 EE  are unstable. ,2E  is 

locally asymptotically stable if 10 a  and 213 aaa   ( 3,2,1, iai  will be defined in 

proof) 

 

Proof 

 The variation matrix of (3.2) is taken the form 
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The eigenvalues are on the diagonal and the washout steady state will be locally 

asymptotically stable if and only if ,01)1(1 f   or .1 s   

At )0,1,( ss    the variation matrix becomes 
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The determinant of the upper left- hand 22   matrix is positive and its trace is negative, so its 

eigevalues have negative real parts. The third eigenvalue is .1)1()1( 2  sfk    Therefore 

the predator – free steady state is asymptotically stable if and only if ,01)1()1( 2  sfk   

or .1 xs    

The variation matrix at ,2E  takes the form 
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The eigenvalues of ,2E  satisfy ,032
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3  aaa   where  
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Clearly ,0 3a  so from the Routh-Hurwitz criterion, 2E  is locally asymptotically stable if 

and only if 10 a and .213 aaa   

 

4- Global analysis 

 

Theorem 4.1 

For s1  and for large ,t  all solutions of (3.2) tends to .0E  

 

Proof  

For s1  and for large ,t  we get 1)( ts  and .1)1(1 f  Therefore, the second 
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(3.2) becomes ,tey   which leads to .0)(lim 


ty
t

 The first equation of (3.2) has a solution 

1)tan(1  tetconss  as .t  

 

Theorem 4.2 

If xss   1,1  and for large ,t  then all solutions of (3.2) tend to .1E  

 

Proof  
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Note that )(uC  is linear on ].,1[ xs   We may construct a Lyapunov function as follows: 
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Differentiate (4.4) with respect to time ,t  we obtain 
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0 xors s  and .0y  More further, V  is bounded above, any point of the form 

)0,0,( s  can not be in the  limit set   of any solution initiating in the interior of .3
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,)0,,( Mxs   implies that ss   and from the first equation of ( 3.2 ), we get .1 sx   

Therefore }.{ 1EM   This complete the proof. 

  

Theorem 4.3 

   If 1s and ,1 xs   then the system ( 3.2) is uniformly persistence. 

 

Proof 

 Let },]1,0(,,]1,0[:),,({1  yxsyxsY  

        2Y represents ,1,0:  xsplanesx    

        3Y represents ,1,0:  ysplanesy    

            and .32 YYY   

We want to show that Y is a uniformly strong repeller for .1Y Since 0E  and 1E  are the only 

steady states in .Y 0E  is saddle in 
3R and its stable manifold is }.0:),0,({ yys  Also, 1E  

is saddle in 3R  and its stable manifold is }.0:)0,,({ xxs  Then, they are weak reppelers 

for .1Y The stable manifold structures of 0E  and 1E  imply that they are not cyclically chained 

to each other on the boundary .Y  Therefore Y is a uniform strong repeller for 1Y (see 

proposition (1.2) of Thieme (10)). 

So, there are 01   and 02   such that 1)(inflim 
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tx
t

 and 2)(inflim 
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ty
t

 with 1 and 

2  are not depending on the initial values in .1Y By proposition (2.2) of Thieme (10) to the 

first equation of (3.2) yields that there is 03   : 3)(inflim 


ts
t

 with 3 is not depending 

on the initial values in .1Y Proof is completed. 
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Conclusion and numerical simulation  

 In this work, we consider a food chain with one prey and one predator in the 

chemostat, when the predator produces unaffected toxin. This inhibitor is not lethal to neither 

prey nor nutrient and results in decrease of growth rate of the predator at some cost to its 

reproductive abilities. We found that the washout steady state is the global attractor, if it is the 

only steady state and .1s  When the washout and the predator free steady states are the 

only steady states, we found that 0E  is unstable and 1E is locally asymptotically stable. 1E  is 

global attractor by constructing a Lyapunov function under condition that 1s  and 

.1 xs   We also showed that 2E  is locally asymptotically stable if and only if 

10 a and .213 aaa   2E  exists in the sense that the system is uniformly persistent.  

We find by numerical simulation that its dynamical behavior is complex. Eight iterative 

examples are presented here to show the influence of increasing the parameter k  on the 

dynamical behavior. In all examples, parameters values of (3.2) are as follows: 

.5.0,6.0,0.5,0.4),8.0,7.0,1.0())0(),0(),0(( 2121  aammyxs   

When [,4.0,0]k  the solution appears to approach a periodic solution. So, 10 , EE  and 2E  

lose their stability ( see figs. 1a, 1b, 2a, 2b, 3a and 3b ). These oscillatory solutions appear to 

be the results of Hopf bifurcations. The numerical simulation shows that the system (3.2) has 

an attracting limit cycle.  

At [,5.6,4.0[k  the solution approaches a positive steady state. Both 0E  and 1E  are 

unstable and 2E  is globally asymptotically stable ( see figs. 4a, 4b, 5a, 5b, 6a, 6b, 7a and 7b ).  

For [,1,5.6[k  the solution approaches the predator-free steady state. 0E  is unstable and 1E  

is globally asymptotically stable ( see figs. 8a and 8b ). All left figures plot in time courses 

and all right figurers plot the trajectory in ),,( yxs  space. 
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                      Fig.(1a). k = 0.1                                            Fig.(1b). k = 0.1 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S
,x

,y

 

 

S

x

y

  
0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sx

y

 
                      Fig.(2a). k = 0.2                                            Fig.(2b). k = 0.2 
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                      Fig.(3a). k = 0.3                                            Fig.(3b). k = 0.3 
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                      Fig.(4a). k = 0.4                                            Fig.(4b). k = 0.4 
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                      Fig.(5a). k = 0.5                                            Fig.(5b). k = 0.5 
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                      Fig.(6a). k = 0.55                                            Fig.(6b). k = 0.55 
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                      Fig.(7a). k = 0.6                                            Fig.(7b). k = 0.6 
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                      Fig.(8a). k = 0.7                                            Fig.(8b). k = 0.7 
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