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Abstract 

The time varying flow of an incompressible viscous non-Newtonian fluid above an 

infinite rotating porous disk in a porous medium is studied with heat transfer.  A uniform 

injection or suction is applied through the surface of the disk.  Numerical solutions of the 

nonlinear partial differential equations which govern the hydrodynamics and energy 

transfer are obtained.  The effect of the porosity of the medium, the characteristics of the 

non-Newtonian fluid and the suction or injection velocity on the velocity and temperature 

fields is considered.   

 

Keywords: Rotating disk flow, heat transfer, porous medium, non-Newtonian fluid, 

uniform inflow, numerical solution. 

 

Introduction 

 

The study of the hydrodynamic flow due to an infinite rotating disk was carried by von 

Karman [1] who gave a formulation of the problem and then introduced his famous 

transformations which reduced the governing partial differential equations to ordinary 

differential equations.  Cochran [2] obtained asymptotic solutions for the steady 

hydrodynamic problem formulated by von Karman.  Benton [3] improved Cochran's 

solutions and extended the problem to the transient state.  The steady state heat transfer 

from a rotating disk maintained at a constant temperature was first considered by 

Millsaps and Pohlhausen [4] for a variety of Prandtl numbers, then  Sparrow and Gregg 

[5] solved the problem for any Prandtl number.  Attia [6] extended the problem discussed 

in [4,5] to the unsteady state in the presence of an applied uniform magnetic field.  The 

steady flow of a non-Newtonian fluid due to a rotating disk with uniform suction was 
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considered by Mithal [7].  Then, Attia [8] extended the problem to the transient state with 

heat transfer.  The study of a Newtonian fluid flow in a porous medium is studied by 

Attia [9] in the presence uniform suction and injection. 

In the present paper, the time varying laminar flow through a porous medium of 

an incompressible viscous non-Newtonian fluid due to the uniform rotation of a porous 

disk of infinite extent is studied with heat transfer.  A uniform injection or suction is 

applied through the surface of the disk.  The flow in the porous medium deals with the 

analysis in which the differential equation governing the fluid motion is based on the 

Darcy’s law which accounts for the drag exerted by the porous medium [10-11].  The 

governing nonlinear partial differential equations are solved numerically using the finite 

difference method.  The effect of the porosity of the medium, the characteristics of the 

non-Newtonian fluid and the suction or injection velocity on the time varying flow and 

heat transfer is presented. 

 

Basic Equations 

 

Let the disk lie in the plane z=0 and the space z>0 is equipped by an incompressible 

viscous non-Newtonian fluid.  The motion is due to the impulsive rotation from rest of an 

insulated disk of infinite extent about an axis perpendicular to its plane with constant 

angular speed ω through a porous medium where the Darcy model is assumed [10].   

Otherwise the fluid is at rest under pressure p .  The disk is maintained at a constant 

temperature Tw.  A uniform injection or suction is applied at the surface of the disk for the 

entire range of suction or injection velocity. 

The non-Newtonian fluid considered in the present paper is that for which the 

stress tensor i
j  is related to the rate of strain tensor i

je  as [7], 

,0,22  i
j

i
j

k
j

i
kc

i
j

i
j epeee                                                                   

where p is denoting the pressure, μ is the coefficient of viscosity and μc is the coefficient 

of cross viscosity.  The equations of steady motion are given by 
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where u, v, w are the velocity components in the directions of increasing r,  , z 

respectively, P is denoting the pressure,   is the coefficient of viscosity,   is the density 

of the fluid, and 1K  is the Darcy permeability [10-11].  We introduce von Karman 

transformations [1], 

 

PvppvzHvwGrvFru   ,/,,,  

 

where is a non-dimensional distance measured along the axis of rotation, F, G, H and P 

are non-dimensional functions of  and t, and   is the kinematic viscosity of the fluid, 

 / .  With these transformations, Eqs. (1)-(4) take the form 

02 



F

H


                                                                                                     (5) 
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where  1/ KM   is the porosity parameter and K is the non-Newtonian parameter.  

The initial and boundary conditions for the velocity problem are given by 

 

,0,0,0:0  HGFt                                                                                   (9a) 

 

,,1,0:0 SHGF                                                                                   (9b) 

   

,0,0,0:  PGF                                                                           (9c) 

 

where /owS  is the uniform suction or injection parameter, which takes constant 

negative values for suction and constant positive values for injection, and ow  is the 

vertical velocity component at the surface.  The above system of Eqs. (5)-(7) with the 

prescribed boundary conditions given by Eq. (9) are sufficient to solve for the flow 

velocity.  Equation (8) can be used to solve for the pressure distribution if required. 

Due to the difference in temperature between the wall and the ambient fluid, heat 

transfer takes place.  The energy equation without the dissipation terms takes the form [4-5]; 
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where T is the temperature of the fluid, cp is the specific heat at constant pressure of the 

fluid, and k is the thermal conductivity of the fluid.  The boundary conditions for the 

energy problem are that, by continuity considerations, the temperature equals Tw at the 

surface of the disk.  At large distances from the disk, T tends to T∞ where T∞ is the 

temperature of the ambient fluid.  In terms of the non-dimensional variable               

θ=(T-T∞)/(Tw-T∞) and using von Karman transformations, Eq. (10) takes the form; 
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where Pr is the Prandtl number, Pr=cpμ/k.  The initial boundary conditions in terms of θ 

are expressed as 

 

0:0  t                                                                                                             (12a) 

 

0)(,1)0(                                                                                                     (12b) 

 

The heat transfer from the disk surface to the fluid is computed by application of 

Fourier's law 

w
dz

dT
kQ )(  

 

Introducing the transformed variables, the expression for q becomes 
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By rephrasing the heat transfer results in terms of a Nusselt number defined as, 

)(//  TTkQN wu   the last equation becomes 








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)0,(t
Nu  

 

Numerical solution for the governing nonlinear Eqs. (5)-(7) with the conditions 

given by Eq. (9), using the finite-differences, leads to a numerical oscillation problem 

resulting from the discontinuity between the initial and boundary conditions (9a) and 

(9b).  The same discontinuity occurs between the initial and boundary conditions for the 

energy problem (see Eq. (12)).  A solution for this numerical problem is achieved using 

proper coordinate transformations, as suggested by Ames [12] for similar problems.  

Expressing Eqs. (5)-(7) and (11) in terms of the modified coordinate t2/  , we get 
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Equations (13)-(16) represent a coupled system of non-linear partial differential 

equations which are solved numerically under the initial and boundary conditions (9) and 

(12), respectively using finite difference approximations.  A linearization technique is 

first applied to replace the nonlinear terms at a linear stage, with the corrections 

incorporated in subsequent iterative steps until convergence is reached.  The Crank-

Nicolson implicit method is then used at two successive time levels [12].  An iterative 

scheme is used to solve the linearized system of difference equations.  The solution at a 

certain time step is chosen as an initial guess for next time step and the iterations are 

continued till convergence, within a prescribed accuracy.  Finally, the resulting block tri-

diagonal system is solved using the generalized Thomas-algorithm [12].  Finite difference 

equations relating the variables are obtained by writing the equations at the mid point of 

the computational cell and then replacing the different terms by their second order central 

difference approximations in the η-direction.  The diffusion terms are replaced by the 

average of the central differences at two successive time-levels. The computational 

domain is divided into meshes each of dimension t and η in time and space 

respectively.  The modified Eqs. (13)-(16) are integrated from t=0 to t=1.  Then, the 

solution obtained at  t=1 is used as the initial condition for integrating Eqs. (5)-(7) and 

(11) from t=1 up till the steady state. 

The resulting system of equations has to be solved in the infinite domain 0<ζ<∞.  

A finite domain in the ζ-direction can be used instead with ζ chosen large enough to 

ensure that the solutions are not affected by imposing the asymptotic conditions at a finite 
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distance.  The independence of the results from the length of the finite domain as well as 

the grid density was ensured and successfully checked by various trial and error 

numerical experimentations.  Computations are carried out for ζ∞=10 and step size 

∆ζ=0.04 which are found adequate for the ranges of the parameters studied here.  Larger 

finite distance or smaller step size do not show any significant change in the results.  

Convergence of the scheme is assumed when all of the variables F, G, H, θ, ∂F/∂ζ, ∂G/∂ζ, 

and ∂θ/∂ζ  for the last two approximations differs from unity by less than 10
-6

 for all 

values of ζ in 0<ζ<10 and all t.  

 

Results and Discussion 

 

The evolution of the axial velocity component at infinity Hf  for K=0 and M=0 is shown 

in Fig. 1a for various values of the parameter S.  It is clear that increasing the suction 

velocity increases the axial velocity towards the disk and decreases its growth time up to 

the steady state.  For small values of the suction parameter, the effects of the radial flow 

in addition to the suction through the disk help to increase the quantity of fluid drawn 

with time.  Then, two paths are available for the incoming fluid, one through the suction 

holes of the disk and another in the radial direction.  Higher values of the suction velocity 

provide an easier path for the flow through the wall than that in the radial direction and 

result in an almost time-independent inflowing stream towards the disk.  For the case of 

injection, Hf  initially equals the injection velocity and for few radians of the rotation of 

the disk it keeps its positive direction.  With time progression, the radially ejected fluid 

pumps the flow towards the disk and a crossover point in time that depends on the 

injection parameter S occurs and the axial flow reverses direction till its steady state value.  

The greater the injection velocity the more strongly the inflow opposed and, consequently, 

the later appearance of the crossover of the axial velocity.  Notice that, the axial velocity 

towards the disk increases monotonically with time.  It is also depicted that the fluid 

injection at the disk results in the familiar inflection-point shapes, especially for large 

values of the injection parameter S.  Therefore it is expected that high injection velocities 

tend to destabilize the laminar flow and lead to transition to turbulence. 
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 Figure 1b indicates the effect of the non-Newtonian fluid characteristics on Hf  for 

different values of the parameter S with K=1 and M=0.  The figure shows that Hf 

overshoots for all suction or injection velocities.  The overshooting is more pronounced 

for the case of injection than suction and it increases with the increment in the parameter 

S while the time at which it occurs decreases.  Comparison between Figs. 1a and 1b 

indicates that the time of appearance of the crossover points in the case of injection 

increases with increasing  K.  It is also shown in Fig. 1b that in the case of zero velocity 

at the disk (S=0), there is a reversal in the direction of Hf and a crossover in time occurs 

in this case.  The parameter K tends generally to resist the axial flow towards the disk and 

reduces its velocity and growth time.  It is evident from the figure that increasing K gives 

rise to the inflection-point shapes of Hf   with time for all values of the injection velocities 

and even in the case of zero injection velocity.  Consequently, the increment in K is 

expected to destabilize the laminar flow.  Notice that, in the case of large suction 

velocities, the incoming flow velocity reaches a steady state value lower than that at the 

disk.  It is also clear that for large values of time, the parameter K has more apparent 

effect on Hf  in the case of suction more than that in the case of injection. 

 Figure 1c indicates the effect of the porosity on Hf for different values of the 

suction or injection parameter S with K=0 and M=1.  The porosity leads generally to a 

reduction in the magnitude of the axial velocity at infinity and its growth time.  For the 

case of uniform suction, the porosity has an apparent effect on the flow for small values 

of the suction parameter while its effect becomes negligible for large values of S.  In the 

case of uniform injection, the porosity restrains the azimuthal and radial flows and then 

supports the out flowing stream of injected flow to stop completely the drawn inflow and 

prevent the occurrence of the crossover points during time progression.  It is clear that the 

porosity has an apparent effect in controlling the shape of the inflection-point profiles in 

the case of high injection velocities.  Consequently, the porosity works to stabilize the 

laminar flow and stops the transition to turbulence.  With porosity, varying the injection 

velocity becomes more effective on the flow than in the non-porous case.  The porosity 
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has a marked effect on the flow for the whole range of the injection velocities.  However, 

its effect is much lower for small suction velocities and almost neglected for higher 

suction velocities. 

 Figure 1d indicates the evolution of Hf  for various values of the parameter S with 

K=1 and M=1.  The reduction in Hf, the appearance of the overshoots (as an effect of K) 

as well as the suppression of the crossover points in the case of injection (as an effect of 

the porosity M) are shown in the figure.  However, the most interesting result is the 

reversal of the direction of the axial flow with time progression up till the steady state in 

the case of S=0.  The combined effect of the porosity and the non-Newtonian fluid 

characteristics results in closing the two paths for the axial flow towards the disk and then 

reverses its direction. 

 Figure 2a presents the time development of the Nusselt number Nu for different 

values of the suction or the injection velocities with K=0, M=0 and Pr=0.7.  It is clear 

that the effect of the fluid injection is to decrease the heat transfer significantly (and, 

hence, the Nusselt number) by blanketing the surface with fluid whose temperature is 

close to Tw.  Suction has an opposite effect on the heat transfer, since fluid at near-

ambient temperature is brought to the neighborhood of the disk surface.  Figure 2b 

presents the time development of the Nusselt number Nu for different values of the 

suction or the injection velocities with K=1, M=0 and Pr=0.7.  It indicates that, for all 

values of suction or injection velocities, increasing K decreases Nu due to its effect in 

decreasing the axial velocity towards the disk.  Figure 2c presents the time development 

of the Nusselt number Nu for different values of the suction or the injection velocities 

with K=0, M=1 and Pr=0.7.  Figure 2c shows that increasing M decreases Nu due to its 

effect in restraining the axial flow towards the disk. Figure 2d presents the time 

development of the Nusselt number Nu for different values of the suction or the injection 

velocities with K=1, M=1 and Pr=0.7.  Figure 2d indicates the same findings in Figs. 1c 

and 1d. 

 Figures 3a,b,c,d present the steady state velocity components and temperature, F, 

G, H, and  , respectively, for various values of K and for M=0 and 1. In these figures,  
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S=0 and Pr=0.7.  It is clear from Fig. 3a that increasing K increases G for all  .  Figure 

3a shows also the damping effect of the porosity which results in a reduction in the 

velocity component G for all  . Figure 3b indicates that, for M=0, increasing the 

parameter K decreases F for small and moderate values of  .  However, for larger values 

of   a crossover point that depends on K appears and an increment in K increases F.   

Figure 3b presents an interesting effect for the porosity in the suppression of the 

crossover points that appear with the variation of K.  Also, it is shown that the influence 

of the porosity, for large values of K, in reversing the direction of the velocity component 

F with S=0.  The porosity has the effect in reducing the magnitude of F for all   and for 

various values of K.  Figure 3c shows that increasing the parameter K or M increases the 

resistance for the incoming axial flow and consequently reduces the axial velocity 

towards the disk H for all  .  For large values of K, due to the reversal of the direction of 

F which is the source for H, a resistance is imposed on the axial flow towards the disk 

and consequently the direction of H is reversed.  Figure 3d indicates that increasing K or 

M increases   for all   due to the effect of K or M in damping H which prevents 

bringing the fluid at a near-ambient temperature towards the surface of the disk.  It is 

noticed that, for large values of K, the combined effect of K and M results in the 

diminishing of the effect of the term   /H  and then leads to a linear dependence of 

  on  . 

 Figure 4a presents the influence of the axial flow at the surface of the disk on the 

steady state radial velocity profile F for the case of suction or injection with K=0 and 

M=0.  It is clear that increasing the suction velocity leads to a rapid decrease in F while 

increasing the injection velocity increases F.  Figure 4b presents the steady state radial 

velocity profile F for various values of suction or injection velocities and for K=0.5 and 

M=0.  A comparison between Figs. 4a and 4b shows that, for the whole range of injection 

velocities and small suction velocities, increasing K decreases F for all  .  When the 

suction velocity is large, increasing the parameter K reverses the direction of F.  With 

K=0.5 increasing the suction velocity leads to an increment in the magnitude of F for 
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small   while decreases its magnitude as   increases which results in the appearance of 

crossover points with  .  The distance from the disk at which the crossover appears 

decreases with increasing the suction velocity.  This is due to the fact that increasing the 

suction velocity pumps the reversed flow in the negative radial direction near the disk and 

increases its velocity.  At greater distances from the disk, increasing suction helps the 

axial flow towards the disk which stops the reversed radial flow and then decreases its 

velocity.  The influence of the porosity on the steady state profiles of F is shown in Fig. 

4c with K=0 and M=1 and for various values of the parameter S.  The porosity effect is to 

sustain the flow in the radial direction for all values of the suction or injection velocities.  

However, its effect is more pronounced in the case of injection more than that in the case 

of suction. 

 Figure 4d presents the steady state radial velocity profile F for various values of 

suction or injection velocities and for K=0.5 and M=1.  Increasing the two parameters 

leads to a great reduction in F for all values of the injection velocities.  In the case of 

suction, the parameters K and M result in reversing the direction of F and increasing its 

magnitude for all values of the suction velocity.  The figure also presents the appearance 

of the crossover points in F profiles due to changing the parameter S. 

 Figure 5a presents the influence of the axial flow at the disk surface on the steady 

state axial velocity profile H for the case of suction or injection with K=0 and M=0.  

Increasing the suction velocity increases the axial flow towards the disk for all   while 

the magnitude of the axial velocity at infinity is larger than that at the disk.  Increasing 

the injection velocity reduces the axial flow towards the disk.  With increasing injection 

velocity, the outflow penetrates to greater distances from the disk surface.  Consequently, 

the crossover point between the positive and negative axial velocity is pushed farther 

outward in the  -direction.  It is seen also that the fluid injection gives rise to the 

familiar inflection-point profiles, especially for high values of the injection parameter S.  

Then, high injection velocities are expected to destabilize the laminar flow and lead to 

transition to turbulence.  Figure 5b shows the steady state axial velocity profile H for 
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different values of the parameter S with K=1 and M=0.  Increasing the parameter K 

decreases the axial flow towards the disk for all values of the parameter S.  In the case of 

suction, for K=1, the magnitude of the axial velocity at infinity is smaller than that at the 

disk.  The crossover points appear in H profiles are pushed further in the   -direction 

when increasing K.  Figure 5c presents the steady state axial velocity profile H for 

various values of the parameter S with K=0 and M=1.  The porosity effect is to sustain the 

flow in the axial direction.  It leads to a reduction in the axial flow towards the disk for 

small suction velocities and its effect becomes negligible for larger suction velocities.  

With injection applied at the disk, the increasing the porosity parameter decreases the 

azimuthal and radial flows and, consequently, the injection stream sustains its axial 

motion towards the disk.  It is also seen in the figure, the influence of the porosity in the 

suppression of the crossover of the axial component of velocity and then the reversal of 

the direction of the axial motion.  It is clear that the porosity has a marked effect in 

changing the shape of the inflection-point profiles in the case of high injection velocities.  

Consequently, the porosity works to stabilize the laminar boundary layer and prevents the 

transition to turbulence.  Figure 5d presents the steady state axial velocity profile H for 

different values of the parameter S with K=1 and M=1.  Introducing the two parameters K 

and M results in the reversal of the direction of the axial flow for S=0 and in the 

suppression of the crossover points of H profiles in the case of injection. 

 

Conclusions 

In this study the time varying flow of a non-Newtonian fluid induced by a rotating disk 

with heat transfer in a porous medium was studied in the presence of uniform suction and 

injection.  The effect of the porosity of the medium, the non-Newtonian fluid 

characteristics and the uniform suction or injection velocity on the velocity and 

temperature distributions was considered.  It is shown that the porosity results in the 

suppression of the crossover points of the axial component of velocity in the non-porous 

case with uniform injection, while the non-Newtonian parameter K leads to the earlier 

time appearance of these crossover points.  The parameter K has an interesting effect on 
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reversing the direction of the axial velocity at infinity during time even in the case of zero 

suction velocity and in the non-porous case.  The inclusion of the porosity, with the non-

Newtonian behavior of the fluid, results in reversing the direction of the axial velocity for 

S=0 for all time.  Another interesting result is the effect of the parameter K in reversing 

the direction of the radial velocity for large suction velocities in the non-porous case.  

The combined effect of both parameters K and M has an interesting feature in reversing 

the direction of the radial flow for all suction velocities and even in the case of zero 

suction velocity.  One more effect for the porosity is to suppress the crossover occurs in 

the radial velocity profiles due to the variation of K.  The porosity works to stabilize the 

flow while the non-Newtonian fluid characteristics tend to destabilize the flow. 

 The porosity has a more pronounced effect on the flow in the case of injection 

than suction and its effect can be neglected for large suction velocities.  On the other 

hand, the non-Newtonian characteristics has an apparent effect on the flow for all values 

of suction or injection velocities while its effect on the flow in the case of suction is more 

pronounced than the case of injection.  Therefore, the two parameters K and M together 

have an apparent effect on the flow for the whole range of the axial velocity at the surface 

of the disk.  The non-Newtonian fluid characteristics leads generally to a reduction in the 

heat transfer from the disk for all suction or injection velocities, while the effect of the 

porosity on the heat transfer can be neglected.   
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