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Abstract 

 In this paper, the unsteady flow in a porous medium of a dusty viscous 

incompressible fluid through a circular pipe is studied taking the Hall effect into 

consideration.  A constant pressure gradient in the axial direction and a uniform magnetic 

field directed perpendicular to the flow direction are applied.  The particle-phase is 

assumed to behave as a viscous fluid.  A numerical solution for the governing equations 

of motion is developed using the method of finite differences.   

 

Keywords:  Fluid mechanics, porous medium, computational fluid, flow in channels, 

circular pipe flow. 

 

1. Introduction 

The flow of a dusty fluid through a circular pipe has important applications in pumps, 

accelerators, and flow meters.  The performance and efficiency of these devices are 

influenced by the presence of suspended solid particles in the form of ash or soot as a 

result of the corrosion and wear activities and/or the combustion processes in accelerators.  

There have been many articles dealing with theoretical modeling and experimental 

measurements of the particle-phase viscosity in a dusty fluid (Soo 1969, Gidaspow et al. 

1986, Grace 1982, and Sinclair et al. 1989). 

 The flow of a Newtonian conducting fluid in a circular pipe has been investigated  

by many authors.  Gadiraju et al. (1992) investigated steady two-phase vertical flow in a 

pipe.  Dube et al. (1975) and Ritter et al. (1977) reported solutions for unsteady dusty-gas 

flow in a circular pipe in the absence of a magnetic field and particle-phase viscous 

stresses.  Chamkha (1994) obtained exact solutions which generalize the results reported 
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in Dube et al. 1975 and Ritter et al. 1977 by the inclusion of the magnetic and particle-

phase viscous effects.   

In the present study, the unsteady flow through a porous medium of a dusty 

viscous incompressible fluid through a circular pipe is investigated.  The particle phase is 

assumed to be incompressible pressureless.  The flow in the pipe starts from rest through 

the application of a constant axial pressure gradient while a uniform magnetic field is 

applied perpendicular to the flow direction. The flow in the porous medium deals with 

the analysis in which the differential equation governing the fluid motion is based on the 

Darcy’s law which accounts for the drag exerted by the porous medium (Ingham et al., 

2002; Khaled et al., 2003).  Closed form solution for the governing momentum equations 

for both the fluid and particle-phases are obtained.  The effect of the porosity of the 

medium, and the particle-phase viscosity on the velocity of the fluid and particle-phases 

are investigated. 

 

Notation 

a: pipe radius, 

K: Darcy permeability, 

C: fluid-phase skin-friction coefficient, 

Cp: particle-phase skin-friction coefficient, 

 : porosity parameter, 

N: momentum transfer coefficient, 

P: pressure gradient, 

Q: fluid-phase volumetric flow rate, 

Qp: fluid-phase volumetric flow rate, 

r: distance in the radial direction, 

t: time, 

V: fluid-phase velocity, 

Vp: particle-phase velocity, 

z: axial direction, 

α: inverse Stokes number, 

B: viscosity ratio, 

 : particle-phase volume fraction, 

k: particle loading, 

μ: fluid-phase viscosity, 

μp: particle-phase viscosity, 

ρ: fluid-phase density, 
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ρp: fluid-phase density, 

 

2. Governing Equations 

Consider the unsteady, laminar, and axisymmetric horizontal flow of a dusty conducting 

fluid through an infinitely long circular pipe of radius a pumped by a constant pressure 

gradient.  We assume that both phases behave as viscous fluids and that the volume 

fraction of suspended particles is finite and constant (Chamkha 1994).  The flow is 

through a porous medium where the Darcy's model is assumed (Ingham et al., 2002; 

Khaled et al., 2003).  The governing momentum equations for both fluid and dust 

particles phases are, respectively given as 
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where K is the Darcy permeability (Khaled et al., 2003), ∂P/∂z is the fluid pressure 

gradient, and N is a momentum transfer coefficient (the reciprocal of the relaxation time, 

the time needed for the relative velocity between the phases to reduce e
-1

 of its original 

value (Chamkha 1994).  In the present work it is assumed that ρ, ρp, μp, and φ are all 

constants where the particle-phase pressure is neglected and the particles are being 

dragged along with the fluid-phase. 

The initial and boundary conditions for the fluid and particle phase are  
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Introducing the following dimensionless variables and parameters 

,
),(

),(,
),(

),(,
)1(

,,,
222 aG

trV
trV

aG

trV
trVk

z

P
G

a

t
t

a

r
r

o

p

p

o

p

o


















  

 /2Nd  is the inverse Stoke's number, 

 /pB   is the viscosity ratio, 

Ka /2  is the porosity parameter. 
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in Eqs. (1)-(3) we obtain (the bars are dropped for simplicity), 
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The volumetric flow rates and skin-friction coefficients for both the fluid and particle 

phases can be defined, respectively, as (Chamkha 1994) 
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3. Results and Discussion 

Equations (4) and (5) represent a coupled system of partial differential equations which 

are solved numerically under the initial and boundary conditions (6), using the finite 

difference approximations.    The Crank-Nicolson implicit method (Mitchell et al. 1980 

and Evans et al. 2000) is used at two successive time levels.   The resulting block tri-

diagonal system is solved using the generalized Thomas algorithm (Mitchell et al. 1980 

and Evans et al. 2000).  Computations have been made for α=1 and k=10.  Grid-

independence studies show that the computational domain 0<t<∞ and 0<r<1 can be 

divided into intervals with step sizes Δt=0.0001 and Δr=0.005 for time and space 

respectively.  It should be mentioned that the results obtained herein reduce to those 

reported by Dube et al. (1975) and Chamkha (1994) for the cases of non-magnetic, 

inviscid particle-phase (B=0), and when neglecting the Hall effect (m=0).  These 

comparisons lend confidence in the accuracy and correctness of the solutions. 

Table 1 presents the steady state values of the fluid-phase volumetric flow rate Q, 

the particle-phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C, and 

the particle-phase skin friction coefficient Cp for various values of the parameters B and 

 .  In these computations 1  and 10k .  It is clear that increasing the parameter B 
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decreases the quantities Q, Qp, and C, but increases Cp for all values of  .  This can be 

explained by the fact that increasing B increases viscosity and therefore the flow rates of 

both phases as well as the fluid-phase wall friction decreases considerably.  However, 

since Cp is defined as directly proportional to B, it increases as B increases at all times.   

Increasing the porosity parameter   decreases the quantities Q, Qp, C and Cp for all 

values of B.  This is attributed to the fact that the porosity of the medium gives rise to a 

drag-like or resistive force and it has the tendency to slow down or suppress the 

movement of the fluid in the pipe, which in turn, reduces the motion of the suspended 

particle-phase.  This is translated into reductions in the average velocities of both the 

fluid- and the particle-phases and, consequently, in their flow rates.  In addition, the 

reduced motion of the particulate suspension in the pipe as a result of increasing the 

strength of the magnetic field causes lower velocity gradients at the wall.  This has the 

direct effect of reducing the skin-friction coefficients of both phases.    

 

         4. Conclusion 

The unsteady flow through a porous medium of a particulate suspension in an 

incompressible viscous fluid in a circular pipe is studied.  The governing partial 

differential equations are solved numerically using the method of finite differences.  The 

effect of the porosity of the medium   and the particle-phase viscosity B on the transient 

behavior of the velocity, volumetric flow rates, and skin friction coefficients of both fluid 

and particle-phases is investigates.  It is shown that increasing the porosity parameter 

decreases the fluid and particle velocities. 
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                                          Table 1 

             The steady state values of Q, Qp, C, Cp  

                   for various values of B and   

           B=0  =0.25  =1 

Q 0.3032 0.2471 

         Qp 0.2582 0.1855 

       C 0.4125 0.3579 

       Cp 0 0 

 

         Β=0.5  =0.25  =1 

Q 0.1764 0.1675 

         Qp 0.0426 0.0403 

       C 0.2818 0.2726 

      Cp 0.2111 0.2003 

 

        B=1  =0.25  =1 

Q 0.1640 0.1564 

         Qp 0.0226 0.0215 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

7 

 

       C 0.2702 0.2622 

       Cp 0.2231 0.2129 

 

 

 

 
 

          


