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Abstract: 
 The magneto-hydrodynamic peristaltic flow of an incompressible  Newtonian 
fluid was investigated between two eccentric tubes. The problem is measured in 
cylindrical coordinates. Geometrically, we considered two eccentric tubes in which the 
inner tube is rigid while the outer tube is tapered and have a sinusoidal wave generated 
on its walls. The governing equations are observed nonlinear second order partial 
differential equations. Under the conditions of long wavelength  approximation the 
problem has been solved with the help of  the homotopy  perturbation method (HPM). 
The obtained results are then plotted to see the influence of  the different physical 
parameters on the velocity profile, pressure gradient , pressure rise and frictionless 
force expressions. The velocity profile is drawn in the two and three dimensions. The 
trapping bolus phenomena is also discussed through the contour plot of the streamlines. 
Keywords   Peristaltic Flow ; Magneto Fluid;  Taper  Eccentric Cylinders; HPM. 
 

3. 1 Introduction 
Peristalsis pumping is a phenomenon in which fluid transport happens when a 

gradual wave of area contraction orexpansionpropagates along the length of distensible 
duct. Peristalsis is oneof thetopic highlyimportant in applied mathematics, engineering, 
physiological world and its have many applications in real life. It is an automatic and 
vital process that moves food through the digestive tract, transport from kidney to 
bladder, in the vasomotion ofsmall blood vessels such as venues, capillaries and 
arterioles. And also the mechanism of peristaltic transport has beenexploited for 
industrial applications like sanitary fluid transport, corrosive fluids, a toxicliquid 
transport in the nuclear industry.The peristaltic transport with long wavelength at low 
Reynolds number [1,2] with all  Reynoldnumbers [3] or for long and short wavelength 
[4] have been analyzed.Tsui, Yeng-Yung, et al.[5] Pumpingflow in a Channel with a 
peristaltic wallRACHID, Het al.[6]The effect of a pulsatile   flow onthe Peristaltic 
Output: Case of a Newtonian Fluid.And with through a porous mediumby Afifi NAS et 

mailto:Kh_Mekheimer@yahoo.com�


2 
 

al.[7].Mekheimer [8] have shown the effect of the induced magnetic fieldon peristaltic 
flow of acouple stressfluid.N.Nagendra[9]MHD flow of a Newtonian  fluid througha 
porousmedium inan asymmetricchannel with peristalsis.The non-Newtonian effects 
ofdifferenttypes offluids [1--13]or of the Nonlinear and curvature effects [14] on the 
peristaltic flow have been studied.Investigations are available in the literature to study 
the effectof an endoscope on peristaltic motion of  Newtonian and non-Newtonianfluids 
[15-16] . Theeccentric annulus is normally not easy to discuss even without peristalsis. 
There are only a fewstudiestake intoattentiontheeffect of the eccentricitywith peristalsis  
[16].In the present work  we discussthe peristaltic flow of Newtonian fluidsunder the 
effect of the magnetic fieldin an eccentriccylinders.which the inner tube is  rigid while 
theouter have asinusoidal waves generated on  it  taperedwalls.Peristalticpumping 
characteristics are discussed in detail.The flow analysis is developed in the unsteady 
state by using the long wavelength approximation.Theproblem is firstmodeledand then 
solved analyticall for the axial velocity, axialpressuregradient andpressurerise.This 
analysisgivesa betterjudgement forthe speed of injection andthefluid flowcharacteristics 
within the syringe. Also,theinjection canbecarried out more proficientlyandpain of 
thepatient can be extenuated. 

2 Mathematical formulation of the problem: 
Consider a MHDflow of anincompressible    Newtonian  fluid through eccentric 

tubes. The inner tube is rigid(endoscope or catheter) andtheouter havea sinusoidalwaves  
generated  on  the  walls  of tapered. The radius ofthe inner tube is  δ ′but we need to 
reference the  fluidmotion to the center of the outer tube. The center of the inner tube 
isnowat position 0, =′′=′ yz ε   where  and   are coordinates in the cross-section of 
the pipe asshown in figure 1.b Then the boundary of the inner tube isdescribed 
toorderε ′by ].cos[1 θεδ ′′+′=′r (obtained by using the cosine rule) where( δε ′<<′  ) 
is theparameter that controls theeccentricity of the inner tube position. Thegeometry of 
the walls surface is described in fig.(1)  
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The equations for the radii are  
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where )(1 za′ is the radius of the tapered tube segment in theannulus region, a is the radiu 
of tubeofthe non-tapered wall, ξ is the tapering parameter,δ ′ is the radius of the inner 
tube, b′  is the amplitude of the wave,λ′  is the wavelength, c′ is the propagation 
velocity and t ′ is the time. The problem has beenstudiedin cylindrical coordinate 
system ),,( zr ′′ θ radial, azimuthal and axial coordinatesrespectively. 
The equation of motion of the flow in the gap between the inner and the outer tubes are 

0
θ
w

r
1

r
v

r
v

z
u

=
′∂
′∂

′
+

′
′

+
′∂
′∂

+
′∂
′∂

            (2) 

][][ 2

2

22

2

2

2

θ
u

r
1

r
u

r
1

r
u

z
uμ

z
p

θ
u

r
w

r
uv

z
uu

t
uρ

′′′′ ∂
′∂

+
′∂
′∂

′
+

∂
′∂

+
∂

′∂
+
′∂
′∂

−=
′∂
′∂

′
′

+
′∂
′∂′+

′∂
′∂′+

′∂
′∂ u

ρ
(r)Bσa 2

0
2

′−  

(3) 

][

][

2

2

222

2

22

2

2

2

2

θ
w

r
2

r
v

θ
v

r
1

r
v

r
1

r
v

z
vμ

r
p

r
w

θ
v

r
w

r
vv

z
vu

t
vρ

′′′′′′′

′

∂
′∂

−
′

−
∂

′∂
+

′∂
′∂

′
+

∂
′∂

+
∂

′∂
+

′∂
′∂

−

=
′

−
′∂
′∂

′
′

+
′∂
′∂′+

′∂
′∂′+

′∂
′∂

 

(4) 

][

][

θ
v

r
2

r
w

θ
w

r
1

r
w

r
1

r
w

z
wμ

θ
p

r
vw

θ
w

r
w

r
wv

z
wu

t
wρ

222

2

22

2

2

2

′∂
′∂

+
′

−
∂

′∂
+

′∂
′∂

′
+

∂
′∂

+
∂

′∂
+
′∂
′∂

−

=
′
′′

+
′∂
′∂

′
′

+
′∂
′∂′+

′∂
′∂′+

′∂
′∂

′′′′′′

            

(5) 
 

Fig 3.1 The simplified model of geometry of the problem 
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Where  u,w,v ′′′   are the velocity components in  r′ ,θ′ and  z ′ -directions respectively,  
ρ   is the density,  p′  is the pressure and  µ   is theviscosity, )(0 rB  is the magnetic 
field, σ is the electrical conductivity.  
The boundary conditions are: 

 
(6) 

It isconvenient to non-
dimensionalize thevariables appearing inequations(2-5)andintroducingReynoldsnumber 
Re ,wave number ratio δ as follows: 
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(7) 
where Re   is the Reynolds number, M  is the Hartmannnumber, where the parameter of 
taper is(ξ = tan φ ), φ  is calledtaperangle andfor the converging tapering (ξ< 0), non-
tapered artery (ξ = 0) and the diverging tapering (ξ> 0)as shown in( fig.3.1) . 0δ is 
thedimensionless wave number  and ε is eccentricityparameter. *φ is the amplitude ratio. 
After using the above assumption andthe long wavelength approximation )0( 0 →δ  then 

taking 
r

MM = , the equations of motion in the dimensionless form become :  

,0
z
u
=

∂
∂

                         (8) 

u
r

Mu
rr

u
rr

u
z
u

z
p

2

2

2

2

22

2

2

2
2
0

11
−








∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

θ
δ      (9) 

,0
r
p
=

∂
∂

          (10) 

,0p
=

θ∂
∂

   (11) 

 
Eqs. (10, 11) showsthat p is not a function of  r and θ The corresponding  boundary 
conditions in non-dimensional form are 
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3 Solution of the problem 
Solution of the above boundary value problem is obtained by series solution method 
[21]. The deformation equation for thegiven problem is defined as 

0)
z
p

θ
u~

r
1]u~[f(]u~[]u~[f)((1f)H(u, 2

2

20 =
∂
∂

−
∂
∂

++−−=   

       (14) 

,rrat      ,Vu
,rrat      0,u

1

2

′=′′=′
′=′=′

http://en.wikipedia.org/wiki/Magnetic_field�
http://en.wikipedia.org/wiki/Magnetic_field�
http://en.wikipedia.org/wiki/Magnetic_field�


5 
 

where  , the linear operator is assumed to be
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Using the above equation into Eq. (14) and then finding theterms of first two orders of 
embedding parameter f ,we get thefollowing problems including boundary conditions 
Zeroth order system: 
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simply found as 

=f)t,z,θ,(r,u 0 ])]
r
r(Log[ Csch[M]))

r
r(Log[ Sinh(M Vu~

2

1

2
0 = (20) 

First order system: 

0
dz
dp

θ
u

r
1]u~[][u 2

0
2

201 =+
∂
∂

−−   

or 
 

dz
dpu

r
M

θ
u

r
1u

r
M

r
u

r
1

r
u

12

2

2
0

2

212

2
1

2
1

2

=−
∂
∂

+−
∂
∂

+
∂
∂

(21) 21 rrat  0,u ==   (22) 

11 rr at 0,u ==    (23) 
 

The solution of the above linear ordinary differential equation is given in appendix 
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Finally, for 1f → , we approach the final solution. So from Eq. (16),  
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we get 
10),,,(~ uutzru +=θ         (24) 

where 0u and 1u are defined in Eq. (20). 
The instantaneous volume flow rate ),( tzQ  is given by 
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The mean volume flow rate Q over one period is given as[22] 
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Now pressure gradient 
dz
dp

will be evaluated by using Eqs.(26) and (27) and is defined 

in appendix 
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(28) 

The pressure rise )(tp∆  in non-dimensional form is defined as 
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4  Results and discussion 
The analytical and numerical results obtained above for the given analysis are 

discussed graphicallyThe graphical treatment for the data of pressure rise ∆p, pressure 

gradient and velocity profileu(r, θ, z, t) with thevariation of all emerging 

dimensionlessparameters like time t, flow rate Q,  the taper parameterζ , the velocity of 
the inner tube V, the eccentricity parameter ε and the MHD parameter M has been 
analyzed. In the end, the stream lines observing the peristaltic flow aredrawn forthe 
parametersM, Q and ζ while other parameters remain fixed. The comparison graph for 
the values obtained in present work with the results of R. Ellahi et. al. [68] is displayed 
in figures. The graphs for the pressure rise∆ p(t) versus flow rate Q under the effects of 
givenparameters are drawn in figs2-6. These graphs showthepumpingregions, that is, 
the peristaltic (Q > 0,∆ p > 0) , the augmented pumping (Q > 0,∆ p < 0)  and 

theretrogradepumping(Q < 0,∆ p > 0)The pressure gradient against the the coordinatez  
with the variation of pertinent parameters are shown in figs7-10. The velocity field 
u(r,θ, z, t) versus the radial coordinate r is plotted in fig.s 11-15 for both two and three 
dimensions. Thestream line graphs are shown in fig16-18 fig2 is plotted to seethe 
variation of pressure risefor differentvaluesof theeccentricityparameter ε andthe angle θ 
while all other parameters are keptfixed. It isobserved that peristaltic pumping region 
isinbetweenQ ∈ [0, 0.7] , augmented pumping is in Q ∈ [0.7, 2] and retrograde pumping 
part is Q∈ [−1, 0]. Itis also observed from this graph that the pressure rise increases  
with thevariation of ε but decreases with the angle θ in between the region Q ∈ [−1, 0.7] 
and opposite behavior is seen in the remaining part. The graph of pressure rise for 
theparameter M and δ is plotted in fig3. Fig4. shows that theperistalticpumping partisQ 
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∈[0, 0.3]when 1.0* =φ and  varies valuesof ε  , while augmented and retrograde 
pumping regions are Q∈ [0.3, 2] and Q∈ [−1, 0] , respectively. that the pressure rise in 
fig 5. decreases with parameterζ in case(ζ > 0 and ζ <0)  when it is  increases with  
thetaperparameterζ   in case (ζ = 0),    The variation   of pressure rise∇p  for V is 

similar to that of M (See fig6)The pressure gradient for the parameters M and δ is 
drawn in fig 3.6. It is measured from this figurethat pressure gradient is in linear relation 
with both of the parameters in narrowest parts of thecylinders but inverse relation is 
seen in thewider parts.The variation of pressure gradient with the parameters φ and ε is 
very much similar to that of the parameters M and δ and is shown in fig8. The only 
difference is that the pressure gradient is minimum on the left and right sides of the 
cylinder while appears maximum at the centre. It means that flow can easily pass 
without imposition of large pressure gradient in the two sides of the channel while much 
pressure gradient is required to maintain the flux in thecentral part near z = 0.8. This is 
in good agreement with the  physical  condition.  Also,  for a divergingtapering with  
angleζ .Figs(8a)   extending case ζ >0figs( 8b), the pressure gradient values higher 
than all other existing results corresponding to converging tapering  case ζ <0 .It can be 
observed from  figs9 and 10  that the pressure gradient increases with the parameters Q 
and V,while when δ is increased the pressure gradient decreaseson the left and right 
sides but increases at the centre of the cylinders. It is also seen thatthe variation of 
pressure gradient remains same in the two sides of the channel and become different at 
the central part with changing V but this variation remains same throughout for the 
parameter Q.Thefig11  shows that the velocity field is anincreasing function of the 
parameterδ while decreasing with the parameter M. The velocity field is in 
inverserelation with Q but have a direct variation with ε (see fig12).It is also observed 
that the presence of magneticfield for fluid causes to slow down the flow. It is observed 
from fig13  that  the  velocity distribution is increasing withδ and *φ  while reducing for 
t. Fig14 shows that the velocity profile  is linearlychanging with *φ  and V.shows the 
Fig 15 that  velocity  in the case ζ > 0 at (15.a)  higher than reported in the case ζ  ≤ 0  
at  (3.15.b). Fig 3.16 is drawn to see the stream lines for the parameter M. It is measured 
from this figure that numbers of bolus are not changing but size is increasing with the 
increasingeffects of M in the bottom of the cylinder,while bolus are lessened in number 
when seen in the upper part. The boluses are reduced both in size and number when 
seen for the parameter Q in both parts of the geometry (see fig17).Fig 16 is drawn to see 
the stream lines for the parameter M..It is measured from this figure that numbers of 
bolus are not changing but size is decreasing with the increasing effects of M in  upper 
part of the cylinder, while bolus are disappears when seen in the the bottom part. The 
boluses are reduced both in size and number when seen for the parameter Q in both 
parts of the geometry (see fig 17). It is seen from fig 18 that the numbers of bolus are 
decreasing with different values of the parameterζ  in both sides of the cylinder but in 
the lower half of the tube, the bolus becomes smaller with increasing magnitude of the 
parameterζ >0 and fade out with less values of ζ <0. 
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Fig 4pressure rise versus flow rate  for fixed parameters 
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Fig 5pressure rise versus flow rate  for fixed parameters 
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Fig 6pressure rise versus flow rate for fixed parameters 
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Fig10Variation of pressure gradient with z 
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Fig12Variation of velocity profile uwith rfor fixed parameters 
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Fig 15Variation of velocity profile uwith rfor 
fixedparameters 5.0,1.0,2.0,5.0,1.0,2.0,50 *0 ======= MtQ εδφθ
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Fig  16:Stream lines for different values of  M for The other 

parameters are 0,4.0,05.0,2.0,1,3.0,02.0,50 *0 ======== ζεδφθ tQV  
 

Fig  17: Stream lines for different values of  Q for The other parameters 
are 0,4.0,05.0,5.0,1,3.0,05.0,50 *0 ======== ζεδφθ tMV  
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Fig  18: Stream lines for different values of  a for (ζ >0), b  for (ζ ≤0.0) The other 
parameters are 3.0,4.0,05.0,5.0,6.0,3.0,2.0,50 *0 ======== MtQV εδφθ  
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5 Concluding remark 
In the present investigation Homotopy Perturbation method solutions are presented 

for the peristaltic flow of MHD  fluid between two eccentric tubes.the inner  tube  is  rigid  
and the outer havea sinusoidal waves generated on the walls of tapered. The problem is 
measured under the assumptions of long wave length and low Reynolds number. The 
following observationshave been found: 

• It is observed that pressure rise is a decreasing function of  taper parameterζ and 
θ while increasing function of  radius δ , magnetic field  M 

• pressure rise  is a increasing function of  eccentricity parameterε ,amplitude 
ratio *φ  andthe velocity   of  the   inner  tube V. 

• The pressure gradient  increases with radius δ , eccentricity parameterε andthe 
velocity   of  the   inner  tube V while decreas with flow rate Q, taperparameterζ  and 
magnetic field  M . 

• The velocity profile is increase with the increase in radius δ ,amplitude ratio *φ  
and eccentricity parameterε while decreas with theflow rate Q, magnetic field   M an d 
taper parameter ζ , 

• The velocity in  the case of eccentric cylinders  higher than concentric one 
• It is depicted that number of  bolus is changing inversely with taper parameterζ  

and  flow rate Q while not changing increasing effects of  magnetic field  M but 
dimensions.  
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