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ABSTRACT 
Parametric model, Optimization Two sided assembly lines are used for large sized 

products where assembly tasks are performed by two workers on both sides. Multi-

manned lines are mainly used in the assembly of relatively large products, with a number 

of workers moving around the product performing assembly tasks. This movement may 

lead to interference and congestion of man and material. In this paper a new line 

configuration is investigated by combining the two types of lines in what is designated as 

Two-Sided Multi-Manned (TSMM) assembly line. The proposed configuration benefits 

from the advantages of both lines by proposing four workers; two on each side, avoiding 

interference of the work and reducing the assembly stations. A model based on genetic 

algorithm was developed to balance the proposed TSMM line under the objectives of 

minimizing the number of workers and the number of mated-stations. A new method for 

generating the initial population is proposed leading to remarkably faster convergence of 

the solution. A controlling parameter is introduced to enable the tradeoff between the 

number of workers and the number of mated stations, adding flexibility to the line design.  

Results reveal that the proposed model gives competitive results to genetic algorithm and 

particle swarm optimization in the two-sided assembly line benchmark problems. It 

converges to a final solution in considerably less number of iterations. The application of 

the TSMM line concept results in considerable reduction in the number of mated stations 

with space saving up to 50% for the same number of workers. 

Keywords: Assembly lines, two-sided multi-manned, multi-objective, genetic algorithm 

 

 1. INTRODUCTION  

Assembly line balancing problems (ALBP) were first 

investigated in 1955. Since that time, the research in this 

subject is always opting to cope with the industry 

applications, and get closer to realistic assumptions. 

Assembly lines started as a series of stations, where a 

single worker is assigned for each station (Figure 1 a) 

performing assembly tasks on the product. Due to the 

limited computational capabilities then, only small-sized 

problems were solved. With technology advancements, 

products got more complicated. Also, computational 

technologies became capable of handling bigger, and more 

complex mathematical models. Therefore, two sided 

assembly lines (TSAL) appeared (Figure 1.b). In this type, 

two workers work at the same time at opposite sides of the 

product. This step allowed more products to be included in 

the research such as cars, small trucks, helicopters and 

buses. Özcan & Toklu [1] stated the advantages of the two 

sided assembly lines. They offer shorter line length, and 

reduce worker movement, setup time,  cost of fixtures, and 

material handling. The literature survey detected many 

efforts in solving TSAL balancing problem.  The single 

objective models were the most studied problems. The 

objective of  
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minimizing the number of stations was addressed in the 

first two-sided assembly line model by Bartholdi [2]. Hu et 

al [3], Ozbakır & Tapkan [4], and Tapkan et al [5] also 

considered the objective of minimizing the number of 

stations. Tang et al [6] proposed a model with a primary 

objective of minimizing the number of mated stations and 

a secondary objective of minimizing the number of 

stations. Other researchers studied the multi-objective two-

sided models seeking more realistic cases, and better 

results. Different objectives were under study. Taha et al 

[7] worked on minimizing the number of stations and the 

number of mated stations. Chutima & Chimklai [8] 

minimized the number of mated stations, number of 

stations (operators), workload smoothness, and maximized 

work-relatedness. Li et al [9] worked on maximizing the 

line efficiency, the smoothness index and the total relevant 

costs per product unit. Jawahar et al [10] considered 

minimizing number of workstations, and unbalanced time 

among workstations. Chutima & Olarnviwatchai [11] was 

interested in the car assembly industry. They considered 

the minimization of the number of paint color changes, the 

total number of ratio constraint violations and the utility 

work. Zhang et al [12] worked on minimizing cycle time 

and rebalancing cost. Gharoun et al [13] worked on 

minimizing cycle time and considered learning effect 

based on a predefined workstation and costs related to the 

assignment of skillful operators. Multi-manned assembly 

lines (MMAL) have more than one worker performing 

different tasks at the same time moving around the 

product, and possibly two or more workers work at the 

same side of the product at the same time (Figure 1.c). 

Multi-manned assembly lines can be applied to automotive 

industry.  It can also be applied to smaller products like 

refrigerators, and washers. Assembly of such lines started 

at the industry by "trial and error" methods before 

researchers tackled it. Research efforts started in 2006 to 

cope with such real cases. Dimitriadis [14] stated the 

advantages of the multi-manned assembly lines; they 

achieve a better space utilization with the same number of 

workers, and the same total idle time of the line. 

Dimitriadis [14], Kellegoz & Toklu [15] , and Sepahi et al 

[16] used different heuristics to solve multi-manned single 

objective models to minimize the number of stations. They 

found that the multi-manned line outperforms the single 

line in the space utilization. Cevikcan [17] studied the 

same line minimizing the smoothness index. His results 

 

Figure 1 Assembly line configurations 
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showed that the his model was more effective than that of 

Dimitriadis [14] by 20% shorter assembly line and about 

20% reduction of average lead time. Kazemi & Sedighi 

[18] used a Genetic Algorithm (GA) to solve medium and 

large-sized problems under the objective of minimizing the 

total cost per production unit (stations and workers cost). 

Their initial population composed of seven priority rules 

beside the random generation. Their results showed that 

the GA performed better than other heuristics. They also 

showed that the addition of the priority rules in the initial 

population gave better results than the use of random 

initial population only. Fattahi et al [19] proposed two 

approaches to solve multi-manned problems; Mixed 

Integer Programming technique for small-sized problems, 

and Ant Colony Optimization (ACO) for medium and 

large-sized problems. They considered minimizing the 

number of workers as the first objective and minimizing 

number of stations as the second objective. The ACO 

could reach the optimal number of workers for all tested 

problems. Roshani et al. [20] were the first to attempt 

solving multi-objective multi-manned assembly lines. 

Objectives were to minimize smoothness index, line length 

and increase line efficiency. Their results were comparable 

to those of Fattahi et al [19] in shorter computational time. 

Giglio et al [21] proposed a mixed integer programming 

formulation for the problem of multi manned assembly 

line with assigning tasks to workers according to their 

qualification and skills. The objective was to minimize the 

total operating cost of the line. Their results showed that 

the operating cost of the system was reduced by reducing 

the number of  stations and number of workers. However, 

their model could be applied to small-sized problems, 

which is not the normal application of the MMAL. 

Roshani & Giglio [22] formulated the MMAL balancing 

problem as a mixed-integer mathematical programming 

model. A primary objective minimized the cycle time for a 

given number of workstations and a secondary objective 

minimized the total number of workers. They proposed a 

two meta-heuristics approaches based on the simulated 

annealing algorithm. Results proved the reliability of the 

method. Chutima & Prasert [23] presented an adaptive 

extended coincident algorithm (AE-COIN). The multi-

objective model minimized the number of workers, the 

number of stations, balanced the workloads between 

stations, and maximized work relatedness. The multiple 

objectives were optimized in a hierarchical manner, where 

the third hierarchy was optimized in a Pareto sense since 

they were conflicting in nature. Yilmaz &Yilmaz [24] 

proposed two methods to balance the MMAL with 

assignment restrictions. The first was a mathematical 

model to minimize the total number of workers for a given 

cycle time. The second was a Tabu search algorithm under 

the same assignment restrictions. Solving benchmark 

problems and comparing the results verified the 

effectiveness and efficiency of the proposed Tabu search 

algorithm. 

Only three studies fixed the positions of the workers 

around the product in MMAL. They considered the 

position of the task (Right, Left or Either) instead of 

having the workers moving around the product. Zamzam et 

al [25] used a hybrid Genetic Algorithm (GA). They 

calculated a value for the maximum permissible number of 

workers in the station that prevents interference among 

workers, according to the size of the product, and the 

number of sides where assembly takes place. Their bi-

objective model minimized the number of workers, and the 

number of stations. Ferrari et al [26] proposed a mixed 

integer programming model for balancing MMAL with 

fixed positions for car industry. To decrease the 

interference of workers, they divided the assembly tasks of 

the car into four levels of different heights. For each height 

there were 13 different assembly positions. The objectives 

were to optimize the line length,  the line efficiency, and 

the workload smoothness. A simulated annealing 

algorithm with customized procedures was developed. A 

case study was solved to assess the efficiency of the 

proposed model. The results showed that the line 

efficiency was 89.85% with 20 workers, when the lower 

bound for the number of workers for the problem was 18. 

Yadav & Agrawal [27] developed a mathematical model to 

balance multi-manned parallel two-sided assembly line. 

The model gives a chance to assign one additional operator 

to each workstation per the product features. The 

objectives were to minimize the total idle time, and the 

cost related with tools. A Branch and bound algorithm was 

used to solve the problem. Results showed that less 

workstations were obtained as compared to the theoretical 

minimum number of workstations. That reduced the space 

as well as the cost of tools. Another exact solution 

approach was used for a small-sized case study with the 

option of tool sharing within the workstation or between 

different workstations.  

Genetic algorithm. With the evolution in meta-heuristic 

techniques and powerful computers, it was possible to 

balance large and different types of assembly lines, with 

their NP-hard nature, while considering multi objective 

optimization. Many heuristics were used to solve the 

assembly line balancing problems. A genetic algorithm 

was proposed by Keun et al [28] , Ant Colony 

Optimization was proposed by Baykasoglu & Dereli [29] 

and  Simaria & Vilarinho [30], enumerative algorithm was 

proposed by Hu et al [3] , Tabu search was proposed by  

Özcan & Toklu [1], and Bee colony was proposed by 
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Ozbakır & Tapkan [4]. Gen & Cheng [31] stated "During 

the last two decades, genetic algorithms have received 

considerable attention regarding their potential as a novel 

approach to multi-objective optimization problems".  

Among all meta-heuristics used in balancing assembly 

lines, the genetic algorithm (GA) was the most used 

heuristics. Taha et al [7] generated initial population 

randomly and divided it into three portions. The first 

portion was generated in the forward direction, the second 

in the backward direction, while the third portion in 

forward and backward directions simultaneously. This 

enabled the generation of feasible solutions in different 

areas of the search space. Yang et al [32] generated initial 

populations randomly and the model was a multi-objective 

for seasonal demand products. Kazemi & Sedighi [18] 

added seven priority rules beside the random generation of 

the initial population. Akpınar & Bayhan [33] added three 

heuristics. All results showed that adding the heuristics to 

the initial population performed better than just using the 

random generation of population. 

There are many approaches for multi-objective models. 

One approach is the minimum deviation method where all 

the objective functions are summed together. It is 

applicable when the analyst has partial information of the 

objectives, According to Özcan & Toklu [1]. This method 

gives a single optimum solution without considering any 

preferences among objectives. It does not allow any 

flexibility among objectives. Another method is the 

weighted sum approach where a weight is assigned to each 

objective then they are added in a single objective. It is 

very critical to estimate the values of the weights. Wrong 

estimations can result in undesirable solutions. Pareto 

approach is also another method for the multi-objective 

models. According to Gen & Cheng [31] "The Pareto 

approach assumes that no information on the preference 

among objectives is available and that all we know is that 

for each objective the greater value is preferred". It 

overcomes the weakness of the previous approaches. It 

gives all possible optimum solutions regarding either 

objective "non-dominated solutions". This gives flexibility 

to choose among solutions according to the strategy, and 

priorities of the decision maker. It can also be used when 

the objective functions are not conflicting. 

From the previous literature, it can be concluded that 

researchers either studied two-sided assembly lines 

(TSAL) assuming two workers at maximum on each side 

of the station, or studied multi-manned assembly lines 

(MMAL) with more than two workers at each station 

moving around the product. Only one study considered the 

Two-sided Multi-manned (TSMM) line, but its approach 

was suitable for small-sized problems only (up to 12 tasks) 

which is not a real application for TSMM lines that are 

used in the assembly of large-sized products. It was also 

concluded from the literature that the genetic algorithm 

(GA) was extensively used to solve the assembly line 

balancing problems. An important conclusion is that 

generating the initial population by using priority rules 

(heuristics) beside the random generation yields better 

solutions than the random generation only. No research 

examined using priority rules only in the generation of the 

initial population. 

Hence, the aim of this paper is to investigate the new line 

configuration; the two-sided multi-manned assembly line, 

and propose a model for the balancing of this type of line 

for large-sized problems. The proposed model uses GA to 

balance the line. The initial population is generated using 

few conventional assembly line priority rules only. The 

model is bi-objective; minimizing the number of workers 

and minimizing the number of mated stations.  

The paper consists of five sections. The following section 

presents the problem definition and assumptions. Section 3 

details the proposed heuristics. Section 4 presents the 

results and discussion, followed by the conclusion and 

future work in Section 5. 

2. PROBLEM DEFINITION AND 

ASSUMPTIONS 

This study investigates an assembly line configuration 

designated as two-sided multi-manned assembly line 

(TSMM) and tackles its balancing problem. The proposed  

two-sided multi-manned assembly line is represented in 

Figure 2. As a two-sided assembly line, a pair of two 

single stations can be installed on the opposite sides of the 

line / product. As a multi-manned assembly line, in each 

single station there can be multi-workers. These workers 

can work simultaneously on different tasks on the same 

product, at the same side.  This is expected to offer shorter 

lines (even shorter than the two-sided lines), without 

excess travelling distances or workers interference (as in 

multi-manned lines). 

2.1 Model assumptions 

In addition to the common assumptions of assembly line 

problems which were stated by Roshani et al. [20], the 

present model has the following assumptions: 

 Each position has one or two stations mated to each 

other.  
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 Each mated station has a maximum number of four 

workers; a maximum of two workers on each side. 

 Each mated station has a minimum number of one 

worker. 

 Tasks are constrained by the right side, or the left side, 

or can be on either sides of the line. 

 The task time is deterministic. 

 The cycle time is predetermined. 

 The sum of task times performed by any worker in 

any station should not exceed the cycle time. 

 

More considerations 

The model controls the upper bound of the permissible idle 

time per mated station. This is achieved by multiplying  

the value of the permissible idle time by a factor (β). 

According to the value of  (β), the solution is either 

oriented towards save in labor (by decreasing the number 

of workers compromising the number of stations) or 

towards space saving (by decreasing the number of 

stations for more workers).  

2.2 Nomenclature and abbreviations: 

 

𝛽 : A parameter to control the upper 

bound of idle time (UBMS) 

t : Task number , t = {1, … 𝑇} 

L : Left side of the station 

MS : Mated station as shown in figure (2). 

MS = {1,…,NMS} 

R : Right side of the station 

S : Station as shown in figure (2). S = 

{1, … , 𝑁𝑆} 

W : Worker, 𝑊 = {1, … 𝑁𝑊} 

AC : Set of available candidates  

CT        : Cycle time 

LCR : Largest candidate rule  

MMAL : Multi-manned assembly line 

NMS : Total number of mated stations in the 

line 

NS : Total number of stations in the line  

NW : Total number of workers in the line  

OSAL : One-sided assembly line 

TSAL : Two-sided assembly line 

TSMMAL : Two-sided multi-manned assembly 

line 

DtW : Delay time of worker W 

EFt : Early finish of task t 

ESt : Early start of task t 

Ft : Number of followers of task t 

FTPt : Finishing time of predecessors of task t 

IDTw : Average idle time per worker 

ITMS : Idle time per mated station 

LBTt : Earliest possible station of task t 

NWMSR/L : Number of workers in mated station S 

on Right or Left side; 

0 ≤ 𝑁𝑊𝑆𝑅/𝐿 ≤ 2 

𝑁𝑊𝑀𝑆 : Number of workers in mated station 

MS; 1 ≤ 𝑁𝑊𝑀𝑆 ≤ 4 

Ptj : Precedence matrix ,  

where Ptj = 

{
1  𝑖𝑓 𝑡𝑎𝑠𝑘 𝑡 𝑝𝑟𝑒𝑒𝑐𝑒𝑑𝑠 𝑡𝑎𝑠𝑘 𝑗
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 

RPWt : Ranked positional weight of 

task t 

𝑅𝐸𝑇𝑈𝐴𝐿 : Remaining time of unassigned 

tasks on left side 

𝑅𝐸𝑇𝑈𝐴𝑅 : Remaining time of unassigned 

tasks on right side 

𝑅𝐸𝑇𝑈𝐴𝐷 : Remaining time of unassigned 

tasks on either sides 
ScR : Sequence of tasks according to a 

certain rule 

ScUA : Set of candidate of unassigned tasks 

SLt : Slack of task t 

Tmt : Time of task t 

TWLW : Total workload of worker W 

TWLWMSR/L : Total work load of worker W in mated 

station MS in the right or left side 

UBMS : Upper bound of idle time per mated 

station 

UBTt : Latest possible station of task  t 

WLB : Lower bound of the number of 

workers 

 

Figure 2 Two-sided multi-manned assembly line (TSMM) 
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Wmax : Maximum number of workers per 

mated station 

Wmin : Minimum number of workers per 

mated station 

WWMSR/L : Worker number W in mated station 

MS in the right or left side  

 

 

3. THE PROPOSED TWO-SIDED 

MULTI-MANNED (TSMM) 

HEURISTICS 

The objective of the proposed heuristics is to minimize 

the number of workers and the number of mated stations. 

A bi-objective model using Genetic Algorithm (GA) is 

proposed for optimization. The Pareto approach is used 

to solve the bi-objective problem. As mentioned in the 

introduction, it gives flexibility in the choice among 

solutions. 

The TSMM heuristics for assembly line balancing 

consists of two main stages; sequencing and assignment. 

They are sometimes designated in the literature as 

encoding and decoding. In the sequencing stage 

(encoding), the tasks are arranged in a feasible order after 

considering the precedence constraints. In the assignment 

stage (decoding), the tasks are assigned according to the 

previous sequence to one of the workers at appropriate 

side by applying certain assignment rules. 

3.1 Sequencing (Encoding) stage and initial 

population  

The proposed chromosome uses a task-based 

representation scheme. Each gene represents a task 

number. Hence, the chromosome resembles the sequence 

of the tasks.  

The initial population consists of six chromosomes 

generated using six conventional assembly line balancing 

heuristics chosen from Baykasoglu [34]. Each follows a 

certain priority rule. The precedence relationships are 

preserved by the following steps: 

 A set of Available Candidates {AC} is initially 

generated as the set of tasks with no predecessors. 

 The task that satisfies the heuristic /rule is selected , 

removed from {AC} and added to the ScR. ScR is the 

sequence of tasks generated by a certain rule. It also 

represents the chromosome of the genetic algorithm. 

Ties are broken randomly. 

 {AC} is updated such that the followers of the 

chosen task are added to {AC} without violating the 

precedence.  

 Repeat until all tasks are added to ScR (the 

chromosome). 

 

The six conventional heuristics as mentioned by 

Baykasoglu [34] are: 

 Maximum Ranked Positional Weight (RPW); the 

tasks are arranged in descending order according to 

the value of the RPW. 

𝑅𝑃𝑊𝑡 = 𝑇𝑚𝑡 + ∑ 𝑃𝑡𝑗

𝑇

𝑗=1

∗  𝑇𝑚𝑗           

 

(1) 

 Largest Candidate Rule (LCR); the tasks are 

arranged in descending order according to the value 

of the task time. 

𝐿𝐶𝑅𝑡  =  𝑇𝑚𝑡        
 

(2) 

 Maximum Number of Followers (F), the tasks are 

arranged in descending order according to the value 

of the number of followers 

𝐹𝑡 =  ∑ 𝑃𝑡𝑗

𝑇

𝑗=1

 

 

(3) 

 Maximum Slack (SL), the difference between the 

latest and earliest possible station of assignment. The 

tasks are arranged in descending order according to 

the value of the slack. 

𝑆𝐿𝑡 =  𝑈𝐵𝑇𝑡 − 𝐿𝐵𝑇𝑡  (4) 

where  

   𝑈𝐵𝑇𝑡

= 𝑁𝑆 + 1

− [
𝑇𝑚𝑡  +  ∑ 𝑃𝑡𝑗 ∗  𝑇𝑚𝑗

𝑇
𝑗=1

𝐶𝑇
]

+

 ∀ 𝑡, 𝑗

= 1, … . . 𝑇 

 

(5) 

   𝐿𝐵𝑇𝑡

= [
𝑇𝑚𝑡  +  ∑ 𝑃𝑡𝑗 ∗  𝑇𝑚𝑗

𝑇
𝑗=1

𝐶𝑇
]

+

 ∀  𝑡

= 1, … . . 𝑇 

 

(6) 

 Maximum Processing time divided by upper 

bound of task t (PT_UB), the tasks are arranged in 

descending order according to the value of PT_UB.  

𝑃𝑇_𝑈𝐵𝑡 =  
𝑇𝑚𝑡

𝑈𝐵𝑇𝑡

 
 

(7) 

 Minimum Early start (ES) of task. It is the 

maximum early finish (EF) of the predecessor tasks. 

The tasks are arranged in ascending order according 

to the value of ES.  

𝐸𝑆𝑡 = 𝑚𝑎𝑥(𝐸𝐹𝑗 ∗ 𝑃𝑗𝑡)        ∀𝑗 = 1, … 𝑇 (8) 
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3.2 Assignment (Decoding) stage 

In this stage the sequence of the tasks obtained from the 

initial population are assigned to workers (decoded) 

according to the following steps: 

STEP 1: Calculations and initial values 

Calculate the lower bound of number of workers (WLB), 

the average idle time per worker (IDTw), and the upper 

bound of the idle time per mated station (𝑈𝐵𝑀𝑆). This 

bound varies from one mated station to another according 

to the number of its workers. Set the initial values for β, 

MS, Wmax, Wmin, WWMSR/L, and TWLWMSR/L. 

𝑊𝐿𝐵 = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝 ( 
∑ 𝑇𝑚𝑡

𝑇
𝑡=1

𝐶𝑇
)  

 

(9) 

𝐼𝐷𝑇𝑤 =  
𝐶𝑇 ∗ 𝑊𝐿𝐵  − ∑ 𝑇𝑚𝑡

𝑇
𝑡=1

𝑁𝑊
 

(10) 

𝑈𝐵𝑀𝑆 = 𝛽 ∗ 𝐼𝐷𝑇𝑤 ∗ 𝑁𝑊𝑀𝑆     ∀𝑀𝑆 (11) 

 

From eq. 11, the parameter β controls the upper bound of 

the permissible idle time (UB) per mated station. It helps 

increase or decrease this bound.     

Initial values: 

 𝜷 = 𝟐, 

 Mated station to be assigned tasks (MS) =1,  

 Maximum number of workers per mated station    

(Wmax ) = 4,  

 Minimum number of workers per mated station   

(Wmin) = 1, 

 Worker to be assigned tasks (WWMSR/L) = 0,  

 Total work load of worker W in mated station MS in 

the right or left station (TWLWMSR/L) =0     

 

STEP 2: Task selection 

Select the first element of ScR. If ScR = {∅} go to step 4 

STEP 3: Assigning task 

      3a- If task t has a specific side (Right or left): 

 For the workers on this side, assign the task to the 

worker who satisfies the following relations 

𝑇𝑊𝐿𝑊𝑀𝑆𝑅/𝐿 +  𝑇𝑚𝑡   

≤ 𝐶𝑇         𝑎𝑛𝑑          𝐹𝑇𝑃𝑡 +  𝑇𝑚𝑡  ≤ 𝐶𝑇   (12) 

 If both workers satisfy the previous relations, 

assign the task to the worker who has minimum 

delay time  (DtW). 

𝐷𝑡𝑊 =  𝐹𝑇𝑃𝑡 −  

∑ 𝑇𝑚𝑗  𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 𝑡𝑎𝑠𝑘𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜  

𝑤𝑜𝑟𝑘𝑒𝑟 𝑊 
(13) 

 If both workers satisfy the previous condition, assign 

the task to the worker who has minimum TWLW. 

 If both workers satisfy the all the previous 

conditions, assign the task arbitrary. 

 Update the attributes of the workers, the tasks, and 

the stations (FTPt, TWLW, TWLWMSR/L,…etc.) 

according to the assigned tasks to workers. 

 Remove t from ScR then go to step 2  

 If task t can’t be assigned to any worker move Tt 

from ScR to ScUA, then go to step 5 

 

3b- If task t does not have a specific side (either): 

▼ If all positions are empty calculate and compare for 

each side (Right and Left), assign the task to the 

side of minimum 𝑅𝐸𝑇𝑈𝐴𝐷  

𝑅𝐸𝑇𝑈𝐴𝐷 = ∑ 𝑇𝑡       𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ 𝑆𝑐𝑈𝐴  (14) 

 

 If 𝑅𝐸𝑇𝑈𝐴𝑅 = 𝑅𝐸𝑇𝑈𝐴𝐿 , assign task t to the same 

position of its immediate follower 

 If its immediate follower is of “either side” assign 

the task to any side arbitrary.  

 Remove t from ScR then go to step 2 

▼ If at least one position is occupied 

 For all workers, assign the task to the worker who 

satisfies the relations in eq.(12) 

 If more than one worker satisfy the previous 

relation, assign the task to the worker of minimum 

TWLW. 

 If more than one worker satisfy the previous 

condition assign the task to the worker who has 

minimum delay time  (DtW) 

 If more than one worker satisfy the previous 

condition, assign the task to the worker with 

minimum 𝑅𝐸𝑇𝑈𝐴𝐷 + 𝑇𝑊𝐿𝑊 

 If more than one worker satisfy all the previous 

conditions, assign the task arbitrary. 

 Update the attributes of the workers, the tasks, and 

the stations (FTPt, TWLW, TWLWMSR/L,…etc.) as in 

eq 13. 

 Remove Tt from ScR then go to step 2 

 If task t can’t be assigned to any worker move Tt 

from ScR to ScUA, then go to step 5 

 

STEP 4: Evaluating the idle time of workers 
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 Calculate average idle time per mated station (ITMS) 

𝐼𝑇𝑀𝑆 =  
 𝐶𝑇 ∗ 𝑁𝑊𝑀𝑆−  ∑ 𝑇𝑚𝑖

𝑁𝑊𝑀𝑆

 (15) 

 If ITMS > UB and NWMS > Wmin cancel one worker  

(according to rule 4a  ) at a time and restart 

assigning the tasks as in STEP 2,  until ITMS  < UB  

or NWMS = Wmin 

According to step 4, if the average idle time per worker is 

longer than the permissible, a worker is unassigned from 

the station, and the assignment process restarts. Note that 

the maximum permissible number of workers per mated 

station is controlled by the value of UB. The value of UB 

is in turn controlled by β (as mentioned at the end of 

STEP1). Hence, the permissible number of workers per 

mated station is highly affected by the value of β.  

Rule:  

 Evaluate NWMSR and NWMSL and compare both 

values 

 If  NWMSL ≠ NWMSR,  remove a worker from 

the side of maximum value 

 If  NWMSL = NWMSR  remove a worker from the 

side of minimum RETUAD 

 If RETUAR  =  RETUAL remove the 

worker of maximum IDTW 

IDTW = CT- TWLWMSR/L (16) 

 If more than one worker satisfies the condition, 

remove worker/s arbitrary so that one worker is 

left. 

 

STEP 5:  

Select the first element of ScUA. If ScUA= {∅} go to step 7 

 

STEP 6: 

Open a new mated station (MS= MS +1), then go to step 

3 and repeat until ScUA= {∅} 

 

STEP 7: END  

The six generated chromosomes of the encoding stage 

are the initial population. According to the fitness 

function of each, selection, mutation, and crossover are 

applied.  

3.3 The fitness function 

The fitness function evaluates the performance of each 

chromosome in the GA. According to the fitness value, 

the chromosome is selected or replaced in the next 

generation. In the proposed model two objectives are 

considered: minimizing the number of workers (NW), 

and the number of mated stations (NMS). A bi-objective 

model using the Pareto approach is used to minimize 

both objectives. The Pareto Approach gives equally good 

solutions.  This is the essence of Multi-objective 

optimization. 

3.4 The Genetic algorithm parameters 

The different parameters of the genetic algorithm 

proposed are listed in Table 1. Parameters include the 

selection, crossover, mutation, and other parameters. 

Preliminary examination has been held to find the best 

values for such parameters. Finally, Table 1 shows the 

values selected. The stopping criteria is either reaching 

the lower bound of the number of workers, or after 20 

generations; the earliest of both. 

Table 1. GA parameters 

Parameter Value / Type 

Population size 6 

Crossover rate 0.8 

Mutation rate 0.2 

Elite 2 

Number of generation 20 

Selection technique Stochastic remainder 

Crossover technique Two point crossover technique 

Mutation technique Scramble mutation 

3.5 The general form of the proposed model 

The proposed model is a general model that can be used 

to balance different assembly line configurations. It can 

used for the one-sided (OSAL), two-sided (TSAL), 

multi-manned (MMAL), and the two-sided multi-manned 

(TSMMAL) assembly lines. Table 2 shows the 

parameters used or neglected for each line configuration. 

The minimum number of workers in all cases is one. 

Table 2 Selecting parameters to decide types of assembly 

line 

Line type Side of tasks 

Max. number 

of workers 

on left side 

Max. number 

of workers 

on right side 

OSAL Left only one zero 

TSAL L, R, Either one one 

MMAL Either Four 

TSMMAL L, R, Either Two Two 

 

4. RESULTS AND DISCUSSION 

 The aim of these experiments is to study the following: 
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 Evaluate the performance of the proposed TSMM 

heuristics in solving the assembly line balancing 

problems. This is achieved by solving benchmark 

problems and comparing the results to other  

algorithms in the literature. 

 Investigate the advantages of the two-sided multi-

manned line configuration regarding the space saving, 

and the ability to reach the lower bound of the number 

of workers. This is achieved by solving the benchmark 

problems and comparing the results of the two-sided 

multi-manned line to the results of the two-sided line. 

 Prove the capability of the proposed TSMM heuristics 

in being a general one that can deal with different line 

configurations. This is achieved by using the model to 

solve benchmark problems for different line 

configurations.  

 Assess the performance of the initial population 

proposed. This is achieved by comparing the 

convergence and consistency of the TSMM heuristics 

to other available data from the literature with different 

initial population. 

4.1 Evaluating The Performance Of The 

Proposed Tsmm Heuristics 

The evaluation of the performance of the proposed model 

is done by comparing its results to the available results of 

Yadav & Agrawal [27] who considered the two-sided 

multi-manned line. Their two small-sized problems are 

not enough for comparison. Therefore, more results will 

be obtained by solving two-sided assembly line balancing 

benchmark problems by the proposed TSMM heuristics 

as a two-sided line. Then, comparing the results to other 

two-sided assembly line balancing models in the 

literature. This evaluates the proposed encoding and 

decoding stages, as well as the proposed initial 

population. 

Table 3 presents the comparison with Yadav & Agrawal 

[27]. They solved two small sized problems; 12 tasks and 

13 tasks. It is worth mentioning that their model can have 

up to three workers on one side of the mated station, and 

it has tool sharing constraints. These main two 

differences in the model explain the difference in the 

results. 
Table 3 Number of workers (NW) and Number of mated 

stations (NMS) for TSMMAL problems 

 CT 
Yadav [27] 

TSMM 

heuristics 

NW NMS NW NMS 

P12 Yadav 

[27]  
6 10 3 8 3 

P13 Yadav 

[27] 
6 9 3 9 4 

 

For the P12 problem, the proposed TSMM heuristics 

could reach a lower number of workers (NW), and the 

same number of mated stations (NMS). Perhaps it is 

because of the tool sharing constraints that their model 

could not reach the 8-workers solution. For P13 we 

could reach the same number of workers, and one more 

mated station. Their model resulted in three workers on 

one side of the third mated station. Our model has up to 

two workers on one side of the station. This is the 

reason of having one more mated station than Yadav & 

Agrawal [27]. 

 

Table 4 presents the seven benchmark problems.  Four 

small-sized problems namely; P9, P12, P16, and P24 

were presented by Kim et al [35].  Three large-sized 

problems namely; P65, P148, and P205 were presented 

by Lee et al [36]. Each of the previous problems has 

several instances for different cycle times. As all GA 

models, the problem has to be solved more than once as 

results may not coincide. In our case, each instance is 

solved five times. Although it seems to be too little for 

judgment, however, all five results always coincide. 

This has to do with the consistency of the solution 

discussed in section 4.3. 

 

Table 4 compares the number of stations (NS) resulting 

from the proposed TSMM Genetic Algorithm and from 

four other heuristics in the literature; Ant colony-based 

algorithm by Kellegoz & Toklu [15], Tabu Search 

algorithm by  Özcan & Toklu [1], Enumerative algorithm 

by Jawahar [10], Bee colony intelligence by Yuan et al 

[37], and Genetic algorithm by Taha [7]. In the table, 

highlighted values indicate the highest NS value among 

other heuristics. From figure (1.b) each station has one 

worker. Hence, the number of workers is the same as the 

number of stations. So, the lower bound for the number 

of stations is the same as the lower bound for the number 

of workers (WLB). From Table 4, it can be seen that no 

model is superior to the others in all the instances. There 

is always one model that performs better in some 

instances and worse in other instances. It can also be seen 

that the proposed TSMM heuristics proved to be 

competitive, as it could reach the lower bound for the 

number of stations in most cases. This set of experiments 

proves that the proposed TSMM heuristics is competitive 

and reliable to be used in solving assembly line balancing 

problems. 
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Table 4 Number of stations (NS) of two-sided benchmark problems resulting from different heuristics 

 CT 
Lower 

Bound 

Kellegoz 

[15] 

Özcan 

[1] 

Jawahar 

[10] 

Yuan 

[37] 

Taha 

[7] 
TSMM 

P9 

4 5 5 5 5 5 5 5 

5 4 4 4 4 4 4 4 

6 3 3 3 - 3 3 3 

P12 

5 5 6 6   6 6 6 

6 5 5 5 5 5 5 5 

7 4 4 4 4 4 4 4 

8 4 - 4 4 4 4 4 

P16 

15 6 - - - 6 6 6 

16 6 - 6 6 6 6 6 

18 5 - - - 6 6 6 

19 5 - 5 6 5 5 5 

20 5 - - - 5 5 5 

P24 

18 8 - 8 8 8 8 8 

20 7 8 8 8 8 8 8 

24 6 - 6 7 6 6 6 

25 6 6 6 6 6 6 6 

30 5 5 5 - 5 5 5 

35 4 4 4 - 4 4 4 

40 4 4 4 - 4 4 4 

P65 

326 16 17 17 - 17 17 17 

381 14 15 15 - 14 14 14 

435 12 13 13 - 13 13 13 

490 11 12 11 - 11 11 11 

544 10 10 10 - 10 10 10 

P148 

255 21 21 21 - 21 21 21 

306 17 18 18 - 18 18 18 

357 15 15 15 - 15 15 15 

408 13 14 13 - 13 13 13 

459 12 12 12 - 12 12 12 

510 11 11 11 - 11 11 11 

P205 

1133 21 24 24 - 22 22 22 

1322 18 22 21 - 20 20 19 

1510 16 18 18 - 17 17 17 

1699 14 18 17 - 16 15 15 

1888 13  15 16 - 14 14 14 

2077 12 14 14 -  12 12 12 

2266 11 12 13 - 12 11 12 

2454 10 11 12 - 10 10 11 

2643 9 11 11 - 10 10 10 

2832 9 10 10 - 10 9 9 
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4.2 Advantages of the Two-sided multi-

manned assembly line. 

It is expected that the two-sided multi-manned assembly 

line requires smaller space compared to that of the two-

sided line. This can be tested by comparing the results 

obtained from using the proposed model as two-sided 

multi-manned to those of the two-sided line. Notice that 

the results of the two-sided line are given in Table 4, 

section 4.1. comparison will be carried twice; based on 

the number of mated stations (NMS), and based on the 

number of workers (NW). 

4.2.1 Comparison Based On The Number Of 

Mated Stations (Nms) 

The model is tested for a set of TSAL benchmark 

problems. Each instance was solved five times. The 

results of the proposed model were compared to the 

results of Taha et al. [7] using Genetic algorithm (GA), 

and Tang et al [6] using hybrid Particle swarm algorithm 

(PSO). They were able to find the best results when 

compared to others. However, none of them was able to 

outperform the other in all the instances. 

 Table 5 presents the results of the three models 

regarding the number of workers and the number of 

mated stations.  The first three columns list the 

benchmark problem size, the instance cycle time, and the 

lower bound for the number of workers(WLB). The 

following columns give the results of the number of 

workers (NW) and the number of mated stations (NMS) 

of the three heuristics. Finally, the column of 

“SAVINGS” shows the saving in the number of workers, 

and the percentage of saving in the space by applying the 

TSMM heuristics. Saving in the space is represented by 

the saving in the number of mated stations. Although the 

saving in the number of workers is detailed in the next 

section, however, it is mentioned here in order to show 

that the space saving was not compromised by the 

number of workers.  

It is clear that the space savings in the small-sized 

problems are relatively small. These problems have few 

numbers of stations that cannot show much 

improvement. On the other hand, for large-sized 

problems, we could reach space saving up to 50% than 

Tang et al [6] and Taha et al. [7] for the same  number of 

workers (or less). More space saving can be achieved for 

larger number of workers. This proves the advantages of 

multi-manned two-sided assembly lines that can yield 

space saving greater than the regular two-sided lines.  

Due to the pareto approach used in the  proposed bi-

objective model, each of  P16CT18 and P16CT21 

resulted in two alternative solutions. One of them 

matches the results of Taha [7] and Tang [6]. The other 

solution saves one worker on the account of increasing 

one mated stations. This offers more flexibility to the 

decision maker either to save in the space or to save in 

the labor. 

4.2.2 Comparison based on the number of 

workers (NW) 

The results of the 44 instances of Table 5 were compared 

again to both Taha et al. [7] and Tang et al [6] regarding 

the number of workers. Table 6 summarizes the results. 

Eight instances are not listed in the table because the 

three models could not reach the lower bound of number 

of workers. These instances are  P12 CT5, P24 CT 20, 

P65 CT326, P205 CT1133, P205 CT1322, P205 CT1510, 

P205 CT1699, and P205 CT2643.  Table 6  shows only 

the instances where a heuristic outperformed another. 

Comparison aspect is the number of workers (NW) 

reached by the three heuristics. The proposed model 

outperformed both Taha et al. [7] and Tang et al [6] in 

three instances; (P16 CT18, P16 CT21, and P65 CT 435) 

where it reached the lower bound for the number of 

workers. In four instances (P148 CT204, P148 CT306, 

P205 CT1322, and P205 CT1888) the proposed TSMM 

model outperformed Taha et al. [7].  In one instance 

(P205 CT2266) the TSMM model outperformed Tang et 

al [6] and reached the lower bound as Taha et al. [7]. In 

one instance only (P205 CT2454) Tang et al [6] and Taha 

et al. [7]. 
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Table 5 Benchmark problems NMS comparison results  

Prob. CT WLB 

Taha [7] Tang [6] TSMM GA SAVINGS 

NW NMS NW NMS NW NMS 
compared to Taha [7] compared to Tang [6] 

NW Space % NW Space % 

P9 

4 5 5 3 5 3 5 3 0 0 0 0 

5 4 4 3 4 2 4 2 0 33 0 0 

6 3 3 2 3 2 3 2 0 0 0 0 

p12 

4 7 7 4 7 4 7 4 0 0 0 0 

5 5 6 3 6 3 6 2 0 33 0 33 

6 5 5 3 5 3 5 2 0 33 0 33 

7 4 4 2 4 2 4 2 0 0 0 0 

8 4 4 2 4 2 4 2 0 0 0 0 

P16 

15 6 6 4 6 4 6 3 0 25 0 25 

16 6 6 4 6 3 6 3 0 25 0 0 

18 5 6 3 6 3 
6 3 0 0 0 0 

5 4 1 -33 1 -33 

19 5 5 3 5 3 5 3 0 0 0 0 

20 5 5 3 5 3 5 3 0 0 0 0 

21 4 5 3 5 
3 5 3 0 0 0 0 

3 4 4 1 -33 1 -33 

22 4 4 2 4 2 4 2 0 0 0 0 

P24 

18 8 8 4 8 8 8 3 0 25 0 - 

20 7 8 4 8 8 8 3 0 25 0 - 

24 6 6 3 6 6 6 3 0 0 0 - 

25 6 6 3 6 6 6 2 0 33 0 - 

30 5 5 3 5 5 5 2 0 33 0 - 

35 4 4 3 4 4 4 2 0 33 0 - 

40 4 4 2 4 4 4 2 0 0 0 - 

P65 

326 16 17 9 17 9 17 7 0 22 0 22 

381 14 14 8 14 7 14 7 0 13 0 0 

435 12 13 7 13 7 12 5 1 29 1 29 

490 11 11 6 11 6 11 5 0 17 0 17 

544 10 10 5 10 5 10 4 0 20 0 20 

P148 

204 26 27 14 26 13 26 9 1 36 0 31 

255 21 21 11 21 11 21 6 0 45 0 45 

306 17 18 9 17 9 17 7 1 22 0 22 

357 15 15 8 15 8 15 4 0 50 0 50 

408 13 13 7 13 7 13 4 0 43 0 43 

459 12 12 6 12 6 12 3 0 50 0 50 

510 11 11 6 11 6 11 3 0 50 0 50 

P205 

1133 21 22 13 22 11 22 10 0 23 0 9 

1322 18 20 10 19 10 19 8 1 20 0 20 

1510 16 17 9 17 9 17 7 0 22 0 22 

1699 14 15 8 15 8 15 7 0 13 0 13 

1888 13 14 7 13 7 13 6 1 14 0 14 

2077 12 12 6 12 6 12 4 0 33 0 33 

2266 11 11 6 12 6 11 4 0 33 1 33 

2454 10 10 5 10 5 11 4 -1 20 -1 20 

2643 9 10 5 10 5 10 4 0 20 0 20 

2832 9 9 5 9 5 9 3 0 40 0 40 
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Table 6 Number of workers (NW) for benchmark problems resulting from three heuristics.   

Prob. CT WLB 

TSMM Taha [7] Tang [6] Comparison 

NW NMS NW NMS NW NMS TSMM Taha [7] Tang [6] 

P16 
18 5 5 4 6 3 6 3 √ *   

21 4 4 4 5 3 5 3 √ *   

P65 435 12 12 5 13 7 13 7 √ *   

P148 
204 26 26 9 27 14 26 13 √*  √* 

306 17 17 7 18 9 17 9 √*  √* 

P205 

1322 18 19 8 20 10 19 10 √  √ 

1888 13 13 6 14 7 13 7 √*  √* 

2266 11 11 4 11 6 12 6 √* √*  

2454 10 11 4 10 5 10 5  √* √* 

√ Reached the least number of workers (NW) 
* Reached the lower bound for the number of workers (WLB) 
outperformed the proposed TSMM heuristics. It is clear 

that the results of TSMM heuristics are closer to the 

lower bound of the number of workers. 

From Table 5 and Table 6, it is clear that solving the two-

sided benchmark problems as a multi-manned assembly 

line has shown considerable improvement in the number 

of mated stations. This is because it gave shorter 

assembly line with space saving up to 50% and the 

results of the present model are close to the lower bound 

of the number of workers. This proves the advantages of 

the two-sided multi-manned line over the two-sided line. 

4.3 Effect of the proposed initial population on 

the convergence and consistency 

Convergence of the solution in the genetic algorithm 

occurs when all individuals in the generation are 

identical. Consistency occurs wen all runs of a problem 

result in the same solution. The convergence and 

consistency of a Genetic Algorithm are good indicators 

of the performance of the algorithm. Two large-sized 

benchmark instances are compared to Taha et al. [7]. All 

results were obtained by solving each instance five times.  

Table 7 summarizes the results. Table 7 compares the 

number of workers (NW) obtained by each algorithm. It 

also compares the number of generations that were run to 

reach NW. From the table, for both benchmark problems, 

the proposed TSMM algorithm reached a better solution 

faster than Taha et al. [7]. The smaller NW indicates a 

better solution. The fewer number of generations 

indicates the faster solution. TSMM converged in the 

third generation to 17 workers, while the random initial 

population of GA could not reach the same value till the 

100th generation, which is one of the stopping criteria for 

Taha et al. [7].  Although data is not available to compare 

the computational time; yet, the number of generations 

for convergence can be a good indicator that the 

proposed model consumes less time. 

Table 7 Convergence comparison for P205 CT1510, and 

CT1312 

 Taha [7] TSMM 
P

2
0

5
 C

T
1

5
1
0

 NW 19 17 

Generation that 

reached min. NW 
35 3 

No. of generations till 

stopping 
100 20 

P
2

0
5

 C
T

1
3

1
2

 NW 21 19 

Generation that 

reached min. NW 
15 4 

No. of generations till 

stopping 
100 20 

 

To test consistency, the proposed TSMM heuristics was 

used to solve each instance five times. It resulted in the 

same solution for each of the five runs. Moreover, the 

mean fitness value and the best fitness value coincided 

after few generations. This proves the high consistency. 

Figure 3 shows a comparison between Taha et al [7] and 

the TSMM heuristics. In the figure, the black dots (dark 

dots) indicate the best fitness value, and the blue dots 

(light dots) indicate the mean fitness value. From Figure 

3(a), the mean fitness value and the best fitness value do 

not coincide. Besides, convergence of the mean fitness 

value started in the 50th generation at a value of 19 (NW 

= 19). It is worth mentioning that their best solution was 

(NW=19) till the 100th generation. From Table 5, we 
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know that Taha et al could reach (NW=17). It was not 
reached till the 100th generation. In Figure 3.b. of TSMM, 

both types of dots coincide at fitness value of 17 starting 

the third generation. This means that the GA reached 

(NW = 17) at the 3rd generation. Convergence of the 

results also started in the 3rd generation. 

 

 

Figure 3 P205 CT1510 Convergence and consistency of 

 (a) Taha  (b) TSMM  

 

4.4 Using TSMM heuristics for balancing 

different assembly line configurations 

The proposed TSMM heuristics exist in a general-form 

used to solve different types of assembly lines by 

adjusting the number of workers, the location of the 

worker in the station and the positioning of the tasks. A 

medium-sized benchmark problem (P65 of five 

instances) is solved for four different line types; one 

sided (OSAL), two sided (TSAL), multi-manned 

(MMAL), and two-sided multi-manned line (TSMM). 

The number of workers is compared for the four lines. 

The results are shown in Table 8.  

P65 

CT 326 381 435 490 544 

WLB 16 14 12 11 10 

A
ss

em
b

ly
 l

in
e 

co
n

fi
g

u
ra

ti
o

n
 

O
S

A
L

 NW 17 14 12 11 10 

NS 17 14 12 11 10 

T
S

A
L

 

NW 17 14 13 11 10 

NMS 9 7 7 6 5 

M
M

A
L

 NW 17 14 12 11 10 

NS 6 5 5 4 4 

T
S

M
M

A
L

 

NW 17 14 12 11 10 

NMS 7 7 5 5 4 

 

From Table 8, it is found that the proposed model could 

reach the lower bound of the number of workers in most 

of the instances for the four line configurations. It can be 

seen that the one-sided assembly line always yields the 

largest number of stations (occupying the largest space), 

while the multi-manned line yields the smallest number 

of stations (occupying the smallest space). The MMAL 

sometimes yields a smaller NMS than the TSMMAL as 

MMAL is not constrained with the side of tasks. Hence, 

it has more flexibility with the assignment of the tasks 

among workers. It is worth mentioning that the MMAL 

has the disadvantage of interference of man and material 

around the product. 

5. CONCLUSION AND FUTURE WORK 

This work proposes a genetic algorithm to balance the 

two-sided multi-manned assembly line (TSMMAL). The 

TSMMAL is a two-sided assembly line that uses multi-

manned on both sides. This line configuration benefits 

from the two-sided line fixing the workers in their sides 

which reduces the man and material handling, and 
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reduces the congestion during work. It benefits from the 

multi-manned lines allowing more than multiple workers 

in each station which reduces the number of stations and 

saves space. 

The research has two main directions. The first direction 

proves the competitiveness of the proposed TSMM 

heuristics in balancing assembly lines. The second 

direction is to study the applicability and benefits of the 

two-sided multi-manned assembly line (TSMMAL) over 

the two-sided line.  

For the first direction of research, the TSMM heuristics is 

proven to be competitive with the best results of the 

heuristics in the literature of balancing benchmark two-

sided assembly lines. It can reach the lower bound of the 

number of workers in most of the assembly line 

problems. Moreover, the usage of limited priority rules 

for the initial population is efficient in solving the 

assembly line balancing problem. Besides, the solution 

converges to the optimal value in much fewer 

generations than the random initial population. It reduces 

considerably the time for searching for the elites. This 

results in considerably shorter computational time. 

For the second direction of research, the results 

emphasize the advantage of the two-sided multi-manned 

assembly line (TSMMAL) over the two-sided line. It can 

save up to 50 % of the line length without increasing the 

number of workers. This leads to better area utilization, 

lower cost of fixtures and less waste in workers’ 

movement.  

Additionally, the proposed TSMM heuristics can be 

adopted easily to solve the assembly line balancing 

problem of different line configurations; one-sided, two-

sided, multi-manned, and two-sided multi-manned. 

For future work; the TSMM heuristics can be extended to 

include features such as synchronous and non-

synchronous tasks, positional constraint, and zoning 

constraint. Further study should be made to determine the 

effectiveness of using limited number of chromosomes 

(elite chromosomes) in other problems as scheduling. It 

is also recommended to study extensively the effect of 

the parameter β on the results of the problem, and its 

recommended values. 
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