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Disruptions Using Monte Carlo Simulation 
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Abstract 

Although supply chain disruptions have been under study since the 1990’s, they attracted more attention last year due to 

the COVID-19 pandemic. Not only researchers, but all people realized how disruptions can negatively affect the 

performance of business, and supply chains. Mitigation strategies are the way to “be better prepared” for such disruptions. 

This paper aims at evaluating the performance of five different mitigation strategies for a multi-period supply chain under 

operational disruptions. The disruptions under consideration are capacity, and demand disruptions, whether separate or 

simultaneous. Integer linear programming is used to design the supply chain network. Monte Carlo simulation is used to 

evaluate the performance of the proposed mitigation strategies under different disruption scenarios. Results reveal that 

the mitigation strategies that perform better regarding financial performance measures, perform worse regarding customer 

satisfaction performance measures. The model helps decision makers to decide the most suitable mitigation strategy 

according to their priorities. 
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Nomenclature 

 

𝛿 : Demand variation percentage 

ℎ : Unit holding cost of product 

n : A supply chain network design, n = 

[1,2, 3,…N] 

𝑛′ : Number of periods when the fill 

rate was 100%, 1 ≤ 𝑛′ ≤ 𝑇 

𝑃 : Total number of potential plants p = 

[1, 2, 3…P] 

S : Disruption scenario s = [1,2,3,…S] 

𝑇 : Periods of planning t=[1,2,3…T] 

𝑈 : Unit unutilized capacity cost 

𝐶𝑜𝑠𝑡 : Total cost of operating the supply 

chain 

𝑃𝐶 : Unit production cost 

𝑆𝐶 : Losses per unit for shortage in 

customers’ demand 

𝑆𝑃 : Unit selling price of product 

𝐴𝑣𝑔𝐷𝑒𝑚𝑡  : Average demand during period t for 

undisrupted case 

𝐶𝑎𝑝𝑝 : Regular capacity of plant p 

𝐶𝑎𝑝′𝑝 : Overtime capacity of plant p 

𝐶𝑎𝑝𝑠𝑢𝑟𝑝𝑡 : Surplus capacity of plant p 

𝐶𝑜𝑠𝑡𝑠 : Total cost of supply chain under 

disruption scenario (s) 

𝐷𝑒𝑚𝑡  : Demand value during period t 

𝐹𝐶𝑝 : Fixed cost of operating plant p 

𝑃𝑠 : Probability of scenario (s) 

𝑅𝑝 : Reduced quantity from capacity of 

plant (p) due to disruption 

𝑄𝑑𝑒𝑙𝑡  : Quantities of product delivered to 

the customer during period t 

𝑄𝑑𝑖𝑠 :  Total quantities that were not 

satisfised from the customer 

demand  

𝑄𝑒𝑥𝑡𝑝𝑡 : Extra quantities produced at plant p 

than the demand during period t 

𝑄𝑖𝑛𝑣𝑝𝑡  : Quantities of product at the 

inventory of plant p during period t 

𝑄𝑖𝑛𝑣′𝑝𝑡  : Quantities used from the inventory 

of plant p during period t 

𝑄𝑝𝑙𝑎𝑛𝑝𝑡 : Quantities planned for production 

at plant p during period t 

𝑄𝑝𝑟𝑜𝑑𝑝𝑡  : Actual quantities produced at plant 

p during period t 

𝑄𝑝𝑟𝑜𝑑′
𝑝𝑡

 : Quantities produced using the 

overtime capacity of plant p during 

period t 

𝑄′𝑠𝑢𝑟𝑝𝑡 : Quantities produced using the 

surplus capacity of plant p during 

period t 

𝑇𝐶𝑝 : Unit transportation and production 

cost at plant p 

𝑇𝐶′𝑝 : Unit transportation and overtime 

production cost at plant p 
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 INTRODUCTION 

Supply chain management was introduced in the early 

1980s by Oliver and Webber [1] in order to respond to 

fierce competition among companies. It took years for 

corporations to realize how important it is to integrate their 

operations into successful supply chains. This led to 

extensive supply chain management studies in the middle 

1990’s trying to figure out the reality about supply chains. 

La Londe [2] published an article in 1997 entitled “Supply 

Chain Management: Myth or Reality?”. By the end of the 

1990’s supply chain management was one of the hottest 

topics under research. At that time, simple supply chain 

networks were considered. With the advancement of the 

computational machines, more complicated constraints 

and assumptions were added to the supply chain models.  

One of the supply chain topics that researchers studied 

extensively was the supply chain under disruptions. The 

supply chain disruptions have negative impact on the 

financial and operational performance of the entire supply 

chain as well as the supply chain members. In their study, 

Kumar et al [3] showed the implications of COVID-19 

pandemic on sustainable production and consumption 

trends. They stated that the availability and production of 

many essential products like grocery and pharmaceutical 

products were drastically reduced and created a huge 

mismatch between supply and demand. It was found that 

the resilience of the supply chain network to the pandemic 

was very poor, and that nearly 35% of the manufacturer 

reported failure in their supply chain network due to global 

coronavirus pandemic. For this reason, research goes 

through several study directions to investigate different 

disruption types and find methods to deal with them. 

Following is a literature review for the recent research 

studying supply chain under disruption. First, research 

articles are presented followed by review articles. Finally, 

a summary for all the literature review with comparisons 

are presented. 

Snyder et al. [4] defined disruptions as “random events 

that cause a supplier or other element of the supply chain 

to stop functioning, either completely or partially, for a 

(typically random) amount of time”. The literature 

classifies the disruption according to the location of the 

disruption into supplier disruption, facility disruption, 

distributor centre disruption, or a combination of the 

previous. It is also classified according to the type of 

disruption into operational disruptions, and disruption 

risks. The operational risks deal with the day-to-day 

disturbances in the supply chain operations e.g.  lead-time 

and demand fluctuations. However, the disruption risks 

belong to low-frequency-high-impact events e.g., tsunami 

in Japan in 2011 and its huge impact on the supply chain 

worldwide, the explosion at BASF factory in 2016 in 

Germany and the shortage of raw materials in global 

supply chains.  

Ivanov [5] presented a simulation-based study to identify 

the sustainability factors that mitigate and the factors that 

enhance the ripple effect in the supply chain. His results 

indicated that the sustainable single sourcing enhances the 

ripple effect, whereas facility fortification at major 

employers in regions mitigates the ripple effect and 

enhances sustainability. The results also indicated that 

reduction in facility storage in the supply chain 

downstream of a disruption-risky facility increases the 

sustainability but causes the ripple effect. 

Giri and B. R. Sarker [6] considered the Third-Party 

Logistics (TPL). The supply chain consisted of a 

monopolistic manufacturer, a third-party logistics service 

provider, and multiple retailers. The production was 

subject to unexpected disruptions, whereas the demand 

was uncertain. Their model considered buyback and 

revenue sharing contracts. They found that production 

disruption and third-party logistics had impacts on the 

performance of the supply chain. They also found that 

buyback and revenue sharing contracts tended to emerge 

indifferent in case of high probability of disruption.  

Hasani and Khosrojerdi [7] proposed six mitigation 

strategies. These strategies were facility dispersion, facility 

reinforcement, production of semi-manufactured products, 

multiple sourcing, keeping an inventory, and considering 

primary and alternative bill of material. They developed a 

mixed-integer non-linear model to design robust global 

supply chain networks under uncertainty with the objective 

to maximize the net profit (after-tax) for the global supply 

chain network under normal and disrupted conditions at the 

same time. Their results revealed that among the six 

strategies three strategies; namely facility reinforcement, 

multiple sourcing, and facility dispersion, had the most 

significant impact on the global supply chain performance. 

Taha et al. [8] formulated a multi-objective model Goal 

programming for robust optimization of a multi-product 

supply chain design problem. The objectives were to 

maximize contribution, minimize the investment and 

disruptions costs. Their mitigation strategy proposed was 

to have continuous installment of production modules with 

the increase of demand. The results proved that the strategy 

helps reduce considerably the investment cost represented 

by the present worth. 

Chen and Xiao [9] considered the manufacturer under 

production disruption risks and uncertainty of capacity 

allocation. Two extreme cases were clear; when the 

disruption risk is low and the production capacity is large 

the manufacturer will not outsource; when the disruption 

risk is high, the manufacturer will fully outsource 

production whatever the production capacity is. For the 

zone of order-difference outsourcing, the manufacturer just 

outsources the part in excess of the threshold value. Here, 

they compared two supply chain game models: retailer-

Stackelberg (RS) game and manufacturer- Stackelberg 

(MS) game. Under the RS game, the retailer was induced 

to order more items. Under the MS game, the retailer 

always ordered the quantity of the classic newsvendor 

model. 

Felice et al. [10] also used the outsourcing strategy. They 

proposed a multi-criteria tool to monitor and to improve 

the supply chain performance. They integrated the 

"Balanced Scorecard", and "Analytic Hierarchy Process" 

and generated a unified metric for supply chain 

performance analysis and sustainability. They also 

presented a real case study. 

Hatefi and Jolai [11] considered uncertain parameters 

and facility disruptions. A robust model was proposed for 

an "integrated forward-reverse logistics network design". 

The model was formulated based on a "robust optimization 
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approach" to protect the network against uncertainty. 

Furthermore, a mixed integer linear programming model 

with augmented p-robust constraints was proposed to 

control the reliability of the network among disruption 

scenarios. The objective function of the proposed model 

was minimizing the nominal cost, while reducing 

disruption risk using the p-robustness criterion 

Azad et al. [12] studied the design problem of a" reliable 

stochastic supply chain network with random disruptions 

in the location of distribution centres and the transportation 

modes". The disruption could fail the whole of the 

capacity, or a fraction of it. The rest of demand can be 

served by other distribution centres. They solved the 

problem at two phases; the first is an exact solution method 

by reformulating the problem as a "second-order cone 

programming model", and the second is a hybrid algorithm 

combining "Tabu search" and "simulated annealing 

algorithms". 

Marley et al. [13] adapted an "interactive 

complexity/tight coupling framework" to show how to 

mitigate disruptions with the use process simplification and 

the use of buffer inventories. The results of the analysis 

showed that "interactive complexity plays an important 

role in predicting the likelihood of supply chain 

disruptions". It was also found that "in more complex 

processes, increased buffers lead to an increased likelihood 

of supply chain disruptions occurring at downstream 

customers’ facilities". The results suggested that 

"simplifying processes may mitigate normal supply chain 

disruptions". The empirical results were presented in the 

context of limitations from the archival data source. The 

data used for analysis were collected from one steel 

processing plant, which limited the generalizability of the 

results. 

Taha et al. [14] proposed a genetic algorithm to design a 

reliable supply chain network under disruption with the 

objective of minimizing the design cost and regret cost. 

They combined three mitigation strategies: over-capacity 

production, inventory, outsourcing. They found that the 

regret and recovery costs represented a significant 

percentage of the total cost. The regret cost was even more 

significant for higher probabilities of disruptions. They 

proposed a facility fortification mitigation plan that 

showed high performance regarding demand satisfaction.  

Sawik [15] considered the supply chain under disruption 

for single and multiple outsourcing mitigation strategies. 

The supplier selection as well as customer order scheduling 

were studied. The problem was formulated using mixed 

integer programming adding a risk measure. The objective 

was either to minimize the expected worst-case cost or to 

maximize the expected worst-case customer service level.  

Xu et al. [16] used AnyLogic software. They modelled 

the supply chain as an agent system to study the supplier 

disruption and the recovery policies of the supply chain 

service level. 

Ivanov et al. [17] presented a hybrid control-theoretic 

approach on the basis of optimal and feedback control to 

cope with the ripple effect in the disruption management of 

the supply chain. 

Ivanov and Sokolov [18] proposed a model based on a 

combination of linear programming and optimal control to 

design a multi-period supply chain under disruption. Their 

mitigation plan included transportation reconfiguration.  

Hu et al. [19] assumed supply disruption that was 

dichotomous. They assumed the supplier to have sufficient 

capacity to meet the order in case of no disruption. In case 

of disruption, the supplier would lose all capacity. They 

considered Restoration Enhancement strategy for supplier. 

The firm should use an incentive to motivate the supplier 

to invest in capacity restoration. Also, they studied the 

supplier diversification strategy, where the firm depends 

on reliable and unreliable suppliers. The results showed 

that restoration enhancement was preferred than supplier 

diversification strategy in case that the unreliable supplier 

restoration outcome was more predictable or when it is 

more likely to have a high restoration outcome. 

Review articles that studied supply chains under 

disruption made a great contribution in the development of 

the research. Here are some recent review articles. Xu et 

all [20] presented a comprehensive bibliometric overview 

and visualization of the field of supply chain disruptions 

based on 1,310 publications. They found out that the 

number of publications in the domain of supply chain 

disruptions slightly increased during the years 1999 to 

2012, but it increased sharply from 2012 to 2019. The 

paper pointed out the research gaps as well as the potential 

future research opportunities based on bibliometric 

analysis. The authors suggested considering transportation 

disruptions. They also suggested combining different 

methodologies to “mutually justify the correctness of the 

proposed managerial insights”. They suggested combining 

quantitative modelling, simulations, and empirical studies. 

Hosseini et al [21] introduced a structured analysis and 

recommendations for which quantitative methods to be 

used at different levels of capacity resilience. They 

recommended developing a multi-objective two-stage 

stochastic model to build resilience capacity. Ivanov et al 

[22] classified the research streams and application areas 

for quantitative methods subject to different disruption 

risks and recovery measures. They highlighted the gaps in 

the research. They suggested for future work integrating 

operability objectives e.g., resilience, stability, and 

robustness, as new key performance indicators into supply 

chain disruptions decisions. They also suggested 

considering the temporary absence of some supply chain 

elements, as the previous research always considered 

complete absence of the elements. In this case, the research 

should consider the duration of disruptions with the 

recovery capacity and the recovery costs.  

Govindan et al [23] presented a comprehensive review 

for supply chain network under disruption. Their review 

was divided into two parts. One for discussing the aspects 

related to supply chain management. The other for the 

reviewing the optimization techniques for dealing with 

uncertainty e.g., risk-averse stochastic programming, 

recourse-based stochastic programming, robust 

optimization, and fuzzy mathematical programming. One 

of their suggestions for future work was to study inventory 

and design decisions simultaneously for supply chains with 

highly perishable products, e.g., blood, under uncertainty. 

Snyder et al. [4] reviewed the literature on supply chain 

disruptions to provide an overview of the research 

questions that have been addressed. First, disruptions in the 
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context of other forms of supply uncertainty were 

illustrated and the common modelling approaches were 

discussed. Then, a discussion on a nearly 150 scholarly 

works on the topic was presented, organized into six 

categories: evaluating supply disruptions; strategic 

decisions; sourcing decisions; contracts and incentives; 

inventory; and facility location. Heckmann et al. [24] 

reviewed the approaches for quantitative supply chain risk 

management by setting the focus on the definition of 

supply chain risk and related concepts. 

The previous review can be summed up in the following 

points: 

 There are several sources of disruptions: production 

capacity disruptions, supply disruption, demand 

uncertainty, transportation disruptions, and many 

others. Most of the research studied one type of 

disruption as in the work of Giri and B. R. Sarker [6], 

Sawik [15], Taha et al. [14], Taha et al. [8], Marley et 

al. [13], Xu et al. [16], Ivanov and Sokolov [18], Hasani 

and Khosrojerdi [7], and Hu et al. [19]. Only limited 

work considered two types of disruption at the same 

time, as in the work of Chen and Xiao [9], Hatefi and 

Jolai [11], and Azad et al. [12] 

 Heuristic and conventional optimization techniques 

(e.g., linear and nonlinear programming) can be reliable 

in reaching an optimum solution. This was used by 

Sawik [15], Hasani and Khosrojerdi [7], Taha et al. [8], 

Hatefi and Jolai [11], and Azad et al. [12]. However, 

such techniques suffer from unsatisfactory performance 

for large-sized problems, when many assumptions need 

to be considered simultaneously. On the other hand, 

meta-heuristics (e.g., genetic algorithms) can obtain 

satisfying results for large-sized problems within 

acceptable computational time. That was used by Taha 

et al. [14], and Azad et al. [12]. Combining two solving 

techniques help find a better solution in relatively short 

computational time. That was applied in the work of 

Ivanov and Sokolov [18].  Simulation is even more 

capable of considering more assumptions and variables 

that help modelling a more realistic supply chain. That 

was used by [9], Xu et al. [16], and Ivanov [5]. 

 Adopting a mitigation strategy is one of the ways to 

decrease the negative impacts of supply chain 

disruptions. Several mitigation strategies have been 

studied in the literature, and several others have been 

suggested. Some research applied a single mitigation 

strategy (Giri and B. R. Sarker [6], Felice et al. [10], 

Taha et al. [8], and Ivanov and Sokolov [18]). Each 

mitigation strategy has its cons and pros. A strategy 

may perform well under one type of disruption, and 

badly under others. This creates a need to compare 

among strategies under different disruption types to 

help corporations decide which strategy to apply. Some 

researchers compared between two mitigation 

strategies as in the work of Hu et al. [19], Chen and 

Xiao [9], Sawik [15], and Marley et al. [13]. Limited 

research compared multiple mitigation strategies as 

Hasani and Khosrojerdi [7], and Ivanov [5]. Combined 

strategies have proven to have an emphasized effect in 

overcoming the disruption impacts that was proposed 

in the work of Taha et al. [14]. 

From the previous review, the motivation of this research 

is to fill the gap between realistic supply chains under 

disruption, and the studied model. Hence, the the 

contribution of this research is to take one more step 

towards a more realistic model for a supply chain under 

disruption. The research considers a supply chain under 

more than one type of disruption. The model combines 

more than one solving technique, including simulation. It 

compares multiple mitigation strategies versus multiple 

performance measures. The strategies include combined 

strategies.  

A more formal problem statement: modelling a multi-

period supply chain under capacity and demand disruptions 

using Monte Carlo simulations and using integer linear 

programming for the optimization of the network. Five 

mitigation strategies will be investigated: higher 

production capacity, building inventory of finished product 

at the plants, working overtime shifts, combined inventory 

and higher production capacity, and combined inventory 

and overtime shifts. Several performance measures will be 

evaluated for each strategy. 

The rest of the paper is organized as follows: Section 2 

states the problem definition and assumptions. Section 3 

presents the proposed model. Section 4 shows the results 

and the discussion; finally, section 5 presents the 

conclusion and the future work of this research. 

 PROBLEM DEFINITION AND MODEL 

ASSUMPTIONS 

Supply chain network design is the phase when the 

company decides how to structure the supply chain over 

the next several planning periods. Strategic decisions 

include the location and capacities of production and 

warehousing facilities, the products to be manufactured or 

stored at various locations, the modes of transportation, etc. 

The supply chain configuration must support the strategic 

objectives of the company and increase the supply chain 

profit during this phase. When the supply chain is under 

disruption, the problem becomes even harder. Mitigation 

plans help overcome the negative influences of the 

disruption, although they add extra cost when disruptions 

do not occur. In this work, we study a multi-period supply 

chain that consists of two echelons: the plants, and the 

customers. It goes under operational disruptions which are 

capacity and demand disruptions. The capacity of the 

plants is subject to variability due to failure, availability, 

etc. This causes the capacity disruptions of the plants. 

Capacity disruption is  

represented by a reduction in the capacity of plants; in 

terms of number of units produced. Such disruptions might 

be low, moderate, or high. They occur at a variable failure 

rate (fr). Customer demand is subject to variability due to 

several reasons. This causes demand disruptions. This is 

represented by a demand variation percentage (𝛿) which 

may increase or decrease the average demand value (±𝛿). 

Its value is variable. For such supply chain five mitigation 

strategies are considered during the design phase of the 

supply chain. Integer linear programming is used to 

determine the links and the quantities flowing in the 
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network. The mitigation strategies are evaluated using 

Monte Carlo simulation and compared to one another. 

The proposed model has the following assumptions: 

1. All potential plants have predetermined, deterministic 

capacities during regular operation. 

2. The supplier capacity is indefinitely large. 

3. All the links between the different echelons are 

available. 

4. Customers’ average demands are deterministic. 

5. The failure probability of the plant capacities varies. 

6. Demand variation percentage varies. 

2.1 Research methodology 

The research methodology for this work is summarized 

in the following steps: 

Step1: Select a mitigation plan 

Step2: Generate all the possible network designs of the 

supply chain. This is achieved by listing the possible 

combinations of potential plants being open or closed. By 

eliminating the combinations of having all plants closed, 

the number of possible network designs (N) is calculated 

using Eq. (1).  

N =  (2𝑃 − 1) (1) 

Step3: Generate disruption scenarios over the planning 

periods by simulation. Each scenario (denoted by s) has its 

probability of occurrence (Ps) according to the parameters 

set in the simulation. 

Step4: Select a network design (n). 

Step5: Run a disruption scenario over the planning periods 

using Monte Carlo simulation. 

Step6: Use integer linear programming to find the 

optimum links and quantities of products flowing through 

the network design (n) under the selected disruption 

scenario (s) with the objective of minimizing the cost as 

will be given later in Eq. (4).  

Step7: The cost resulting from the optimization of the 

integer linear programming model in step 6 is weighted by 

the probability of its scenario as in Eq. (2) 

Cost𝑠  = 𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑢𝑚 × P𝑠 (2) 

Step8: Repeat steps 5 to 7 for other disruption scenarios, 

until all the scenarios are solved.  

Step9: The overall cost of the network (n) selected in step 

4 is the summation of the costs obtained in step 7 for all the 

scenarios as given in Eq. (3) 

𝐶𝑜𝑠𝑡𝑛 =  ∑ 𝐶𝑜𝑠𝑡𝑠

𝑆

𝑠=1

 (3) 

 Step10: Repeat steps 4 to 9 for another network (n), until  

all the networks generated in Step2 are solved.  

Step11: Compare the overall cost (𝐶𝑜𝑠𝑡𝑛 calculated in step 

9) of all networks. The network that provides the minimum 

cost is the optimum network for the mitigation strategy 

selected in Step1. 

Step12: Repeat steps 1 to 11 for another mitigation 

strategy until all strategies are studied. 

Step13: END 

 PROPOSED MODEL 

The Supply Chain Network Design (SCND) is a critical 

stage in implementing an efficient and effective supply 

chain. Many models were proposed in literature for optimal 

SCND. However, most of the studies assumed that 

facilities are always reliable and available, and the working 

environment is stable. Such models fail to consider 

disruptions in the design phase and therefore lack 

countermeasures when disruptions do strike. The aim of 

this model is to consider mitigation strategies during the 

design phase of a multi-period supply chain network under 

operational disruptions. Then, the different mitigation 

strategies are evaluated and compared. Operational 

disruptions are capacity and demand disruptions that are 

studied independently and simultaneously. A Monte Carlo 

simulation is applied using Microsoft Excel to evaluate 

mitigation strategies regarding the cost, profit, percentage 

in full, and fill rate. 

An Integer Linear Programming (ILP) is used to find the 

optimum links and quantities of products flowing through 

a certain design with the objective of minimizing the cost. 

Each mitigation strategy has specific constraints. However, 

some constraints are common. The main outline of the 

integer linear programming model used is given below. 

3.1 The integer linear programming model 

As mentioned in Step6 in Section 2, the integer linear 

programming model is used to find the optimum links and 

quantities of products flowing through the network design 

(n) under the selected disruption scenario (s).  

Objective function. The objective function of the integer 

linear programming model is to minimize the total cost. 

The total cost includes several cost elements. Not all cost 

elements exist in all mitigation strategies. According to Eq. 

(4), the total cost consists of the fixed costs of operating 

plants (𝐹𝐶𝑝), the transportation and production cost for 

quantities produced at regular shifts (𝑇𝐶𝑝 ∙ 𝑄𝑝𝑟𝑜𝑑𝑝𝑡), 

transportation and overtime production cost  for quantities 

produced during overtime shifts (𝑇𝐶′𝑝 ∙ 𝑄𝑝𝑟𝑜𝑑′𝑝𝑡), the 

holding cost at inventories (ℎ ∙ 𝑄𝑖𝑛𝑣𝑝𝑡), the unutilized 

capacity cost (𝑈(𝐶𝑎𝑝𝑝 − 𝑄𝑝𝑟𝑜𝑑𝑝𝑡)), and the losses due to 

shortage in satisfying the demand (𝑆𝐶(𝑄𝑑𝑒𝑙𝑡 − 𝐷𝑒𝑚𝑡)).  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  

 𝐶𝑜𝑠𝑡 = ∑ (𝐹𝐶𝑝 + ∑ (𝑇𝐶𝑝 ∙ 𝑄𝑝𝑟𝑜𝑑𝑝𝑡 + 𝑇𝐶′𝑝 ∙ 𝑄𝑝𝑟𝑜𝑑′𝑝𝑡 + ℎ ∙ 𝑄𝑖𝑛𝑣𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

+ 𝑈(𝐶𝑎𝑝𝑝 − 𝑄𝑝𝑟𝑜𝑑𝑝𝑡) + 𝑆𝐶(𝑄𝑑𝑒𝑙𝑡 − 𝐷𝑒𝑚𝑡))) 

(4) 
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The previous cost elements may not be included all at the 

same time. It is according to the mitigation strategy that 

each cost element may or may not be considered. Likewise, 

constraints differ according to the mitigation strategy.  

Plant capacity constraints: The quantity planned for 

production (𝑄𝑝𝑙𝑎𝑛𝑝𝑡) at plant (p) during period (t) should 

be less than the capacity of the plant as in Eq. (5). However, 

the actual quantity produced (𝑄𝑝𝑟𝑜𝑑𝑝𝑡) is even lower 

because of the quantities reduced due to disruption as 

shown in Eq. (6). 

𝑄𝑝𝑙𝑎𝑛𝑝𝑡 ≤ 𝐶𝑎𝑝𝑝                     ∀ 𝑝, 𝑡 (5) 

𝑄𝑝𝑟𝑜𝑑𝑝𝑡 = 𝑄𝑝𝑙𝑎𝑛𝑝𝑡 − 𝑅𝑝          ∀𝑝, 𝑡 (6) 

Integer constraints and non-negativity constraints for all 

the quantities are also imposed. 

3.2 Operational disruptions 

Since simulation allows considering different cases at the 

same time, the proposed simulation will study two types of 

disruptions simultaneously: capacity and demand 

disruptions. Capacity disruptions are represented as a 

reduction in the capacities of plants by value (𝑅𝑝). The 

level of disruption of each plant is low, moderate, or high. 

For simplicity, the probability of occurrence of the 

disruption is assumed to be the same for the three levels. 

This is called failure probability (fr). The demand 

disruption is represented by fluctuation within a percentage 

(𝛿) of its average value as in Eq. (7).  

(1 − 𝛿)  ∙ 𝐴𝑣𝑔𝐷𝑒𝑚𝑡 ≤ 𝐷𝑒𝑚𝑡

≤ (1 + 𝛿)  ∙ 𝐴𝑣𝑔𝐷𝑒𝑚𝑡 (7) 

3.3  Mitigation strategies 

Five mitigation strategies are investigated and compared 

to the basic case of applying no mitigation strategy. These 

strategies are: 

 Using higher production capacity machines 

 Working overtime shifts 

 Building inventory of finished products 

 Combined inventory and working overtime shifts. 

 Combined inventory and higher production capacity 

The special constraints for the basic case and each of the 

five mitigation strategies are given in the following 

subsections. 

3.3.1 Basic case: No mitigation strategy 

This case will be denoted as “regular production design” 

when comparing strategies in section 4. 

Plant capacity constraints: the following constraints are 

additionally considered. The surplus capacity of plant (p) 

during period (t) is the difference between the regular 

capacity and the quantity planned for production as shown 

in Eq. (8). Quantity produced from the surplus capacity of 

plant (p) during period (t) must be less than the surplus 

capacity of the plant as given in Eq. (9). It should be equal 

to the difference between demand and quantity produced 

as in Eq. (10). 

𝐶𝑎𝑝𝑠𝑢𝑟𝑝𝑡 = 𝐶𝑎𝑝𝑝 − 𝑄𝑝𝑙𝑎𝑛𝑝𝑡                     ∀ 𝑝, 𝑡 (8) 

𝑄′𝑠𝑢𝑟𝑝𝑡 ≤ 𝐶𝑎𝑝𝑠𝑢𝑟𝑝𝑡                                   ∀ 𝑝, 𝑡 (9) 

𝑄′𝑠𝑢𝑟𝑝𝑡 = 𝐷𝑒𝑚𝑡 − 𝑄𝑝𝑟𝑜𝑑𝑝𝑡                   ∀ 𝑝, 𝑡 (10) 

 

Demand constraints: The sum of the quantity produced, 

and quantity used from surplus capacities of all the plants 

during period (t) must be less than the demand of that 

period as formulated in Eq. (11). 

∑ 𝑄𝑝𝑟𝑜𝑑𝑝𝑡 + 𝑄′𝑠𝑢𝑟𝑝𝑡

𝑝

𝑝=1

≤ 𝐷𝑒𝑚𝑡           ∀ 𝑡 (11) 

3.3.2 Using higher production capacity machines 

This mitigation strategy considers higher production 

capacities at the plants. In this case, the same constraints as 

the basic case are considered, except that the plant 

capacities are higher than those of the basic ones. 

3.3.3 Building inventory of finished products 

This mitigation strategy allows for inventory at the 

plants. The proposed model assumes that the inventory 

capacity is indefinitely large. It also assumes that the plant 

operates using full capacity. Units that are not delivered to 

the customers are held in the inventory.  

Plant capacity constraints: The plant is planned to operate 

under full capacity whatever the demand was. This is 

formulated in Eq. (12). The actual quantity produced is as 

in Eq. (6) and Eq. (12).  

𝑄𝑝𝑙𝑎𝑛𝑝𝑡 = 𝐶𝑎𝑝𝑝                      ∀ 𝑝, 𝑡 (12) 

Inventory balance constraints: The entering quantities, as 

given in Eq. (13), are any extra quantities (𝑄𝑒𝑥𝑡𝑝𝑡) that 

were produced in plant (p) in excess of the demand of the 

period (t), if they exist.  The quantity remaining in the 

inventory of plant (p) by the end of period (t) is represented 

in Eq. (14). This is the sum of the quantities that were 

remaining by the end of the previous period (t-1), and the 

difference between the entering and the used quantities 

(𝑄′𝑖𝑛𝑣𝑝𝑡) during period (t). 

𝑄𝑒𝑥𝑡𝑝𝑡

=  {
(𝑄𝑝𝑟𝑜𝑑𝑝𝑡 − 𝐷𝑒𝑚𝑡)               𝑄𝑝𝑟𝑜𝑑𝑝𝑡 ≥ 𝐷𝑒𝑚𝑡

0                                                 𝑄𝑝𝑟𝑜𝑑𝑝𝑡 < 𝐷𝑒𝑚𝑡

 

(13

) 

𝑄𝑖𝑛𝑣𝑝𝑡 = 𝑄𝑖𝑛𝑣𝑝𝑡−1 + 𝑄𝑒𝑥𝑡𝑝𝑡

− 𝑄𝑖𝑛𝑣′𝑝𝑡          ∀𝑝, 𝑡 

(14

) 

Demand constraints: The quantity delivered to the 

customer from all plants during period (t) should not 

exceed the demand during this period. The quantity 
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delivered is represented by the sum of the quantity 

produced, and the quantity used from the inventory of all 

plants during the period. This is shown in Eq. (15) 

∑(𝑄𝑝𝑟𝑜𝑑𝑝𝑡 + 𝑄𝑖𝑛𝑣′𝑝𝑡)   ≤ 𝐷𝑒𝑚𝑡   ∀𝑝, 𝑡 

𝑝

𝑝=1

 
(15) 

3.3.4 Working Overtime shifts 

Plant capacity constraints: The surplus capacity of plant 

(p) during period (t), as shown in Eq. (16), is the difference 

between the regular capacity and the quantity planned for 

production. Units produced from the surplus capacity of 

plant (p) during period (t) must be less than the surplus 

capacity of the plant as given in Eq. (17).  
Units produced from surplus capacity of plant (p) during period 

(t) equals the difference between demand and quantity produced 

as in Eq. (18). 

Quantity produced using the overtime of plant (p) during period 

(t) must not exceed overtime capacity of the plant. This is 

formulated in Eq. (19). 

 

𝐶𝑎𝑝𝑠𝑢𝑟𝑝𝑡 = 𝐶𝑎𝑝𝑝 − 𝑄𝑝𝑙𝑎𝑛𝑝𝑡                     ∀ 𝑝, 𝑡 (16) 

𝑄′𝑠𝑢𝑟𝑝𝑡 ≤ 𝐶𝑎𝑝𝑠𝑢𝑟𝑝𝑡                                     ∀ 𝑝, 𝑡 (17) 

𝑄′𝑠𝑢𝑟𝑝𝑡 = 𝐷𝑒𝑚𝑡 − 𝑄𝑝𝑟𝑜𝑑𝑝𝑡                     ∀ 𝑝, 𝑡 (18) 

𝑄𝑝𝑟𝑜𝑑′𝑝𝑡 ≤ 𝐶𝑎𝑝′
𝑝   

                                 ∀ 𝑡 (19) 
 

Demand constraints: During period (t), the quantity delivered to 

the customer from all plants should not exceed the demand. The 

quantity delivered to the customer is the sum of the quantities 

regularly produced at the plants, the quantities produced using the 

surplus capacity, and the quantities produced using the overtime 

capacity of the plants. This is formulated in Eq. (20). 

 

3.3.5 Combined mitigation strategies 

Constraints of two combined mitigation strategies is a 

combination of the constraints of both strategies. 

3.4 Performance measures 

Different performance measures can be used to evaluate 

the results of a certain mitigation strategy. Monte Carlo 

simulation is used for this evaluation over many time 

periods under many disruption scenarios. The selected 

performance measures are: 

3.4.1 Total cost of the supply chain 

This includes both the fixed cost, and the variable cost 

for operating the plants as in Eq. (4). 

3.4.2 Profit of the supply chain 

The profit of the supply chain, as in Eq. (21), is the 

difference between the revenue and the total cost. The 

revenue is the product of the selling price and the quantities 

delivered to the customer. The total cost is as given in Eq. 

(4). 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑆𝑃 ∙ (∑ 𝑄𝑑𝑒𝑙𝑡

𝑇

𝑡=1

) − 𝑇𝐶 (21) 

3.4.3 Supply chain robustness 

The indicator of the supply chain robustness is the 

shortage cost, for simplicity. Minimizing the shortage cost 

of the disruption scenario corresponds to maximizing the 

supply chain robustness. This is calculated as in Eq. (22). 

𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑠)  

= ∑ 𝑃𝑠  ×

𝑆

𝑠=1

 𝑆𝐶 × 𝑄𝑑𝑖𝑠 
(22) 

3.4.4 Percentage in full 

The percentage in full represents the percentage of the 

number of time intervals (𝑛′) when the customer received 

exactly its demand, with respect to the total time intervals 

(T). The percentage in full is formulated in Eq. (23). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛 𝑓𝑢𝑙𝑙 =
𝑛′

𝑇
% (23) 

3.4.5 Average fill rate 

 

The average fill rate is the average value of the fill rate 

among all periods (T). The fill rate of one period is the ratio 

between the delivered quantities to the customer and his 

demand. This is given in Eq. (24). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 =
∑ (

𝑄𝑑𝑒𝑙𝑡

𝐷𝑒𝑚𝑡
)𝑇

𝑡=1

𝑇
  

(24) 

 COMPUTATIONAL RESULTS AND 

DISCUSSION 

The Monte Carlo simulation model was applied using 

Microsoft Excel as a tool to evaluate the five performance 

measures for the five mitigation strategies. The parameters 

used for the integer linear programming, and the simulation 

are shown in Table 1. The values for mitigation strategies 

are given in Table 2. 

 

 

 

∑(𝑄𝑝𝑟𝑜𝑑𝑝𝑡 + 𝑄′𝑠𝑢𝑟𝑝𝑡 + 𝑄𝑝𝑟𝑜𝑑′𝑝𝑡)

𝑝

𝑝=1

≤ 𝐷𝑒𝑚𝑡   ∀ 𝑡 

(20) 
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Table 1. Parameters for Linear Programming and 

Monte Carlo Simulation 

Parameter Value 

Production cost per unit PC = 10-unit cost 

Selling price per unit SP = 5 × PC 

Transportation and production 

cost between echelons per unit 
TP = 1.1 × PC 

Unutilized capacity unit cost  U = 0.5 × PC 

Shortage unit cost SC = 3 × PC 

Overtime transportation and 

production unit cost 
𝑇𝐶′𝑝 = 2.5 × PC 

Plant fixed cost 
𝐹𝐶𝑝 = Max. plant 

capacity × PC 

Regular plant capacity  
𝐶𝑎𝑝𝑝 = 500 

units/plant 

Capacity disruption at each 

plant (Low level) 
𝑅𝑝 = -1, and -5 units 

Parameter Value 

Capacity disruption at each 

plant (Moderate level)  

𝑅𝑝 = -4, and -20 

units 

Capacity disruption at each 

plant (High level) 

𝑅𝑝 = -20, and -100 

units 

Failure probability 
fr = 0%, 5%, and 

10% 

Average Demand 
𝐴𝑣𝑔𝐷𝑒𝑚𝑡  = 1000 

units 

Demand variation 
δ = 0%, 5%, 10%, 

15%, 20%, 25% 

 

In order to compare the performance of all mitigation 

strategies, results are divided into groups according to the 

performance measure under study. For each performance 

measure, the results of all the strategies are compared in 

two sets of experiments. The two sets represent two 

operational disruptions schemes. In the first set of 

experiments, only demand disruptions occur, without 

capacity disruption. In the second set of experiments, both 

demand and capacity disruptions occur. 

 

 

Table 2.  Values for mitigation strategy  

Mitigation strategy / 

Parameter 
Range 

High production capacity 

Increased capacity 
1.1 × Max. plant 

capacity 

Inventory 

Inventory capacity in units Unlimited 

Holding unit cost per unit 0.1 × PC 

Overtime 

Overtime capacity in units 
0.1 × Max. plant 

capacity 

Overtime unit cost per unit 2 × PC 

 

4.1 Supply chain cost  

To study the behaviour of different mitigation plans 

regarding the total cost, five cost elements are individually 

quantified in the results to better understand the 

performance of the strategy. The cost elements are the total 

production cost, the penalty cost, the unutilized capacity 

cost, the overtime cost, and the holding cost. The results of 

the first set of experiments; with demand disruption only, 

are shown in Fig. 1 to Fig. 6.  

As expected, the total cost is directly proportional to the 

demand variation percentage. Comparing Fig. 1 to Fig. 4, 

the value of the total cost is comparable in the four cases 

of regular design, higher capacity strategy, overtime 

strategy, and inventory strategy. However, the cost 

elements of the four cases are not the same. In the regular 

production design (Fig. 1), the shortage cost is the highest 

of all strategies and increases as the demand variation 

increases. This can be interpreted as the demand variation 

increases, the regular production cannot satisfy the 

increased demand, and shortage cost is added.  In the 

higher capacity strategy in Fig. 2, the production cost 

represents the main component of the total cost. The 

overtime strategy (Fig. 3) behaves the same as the higher 

capacity strategy because both strategies lead to increased 

production quantities. In both strategies the shortage cost 

and the unutilized cost slightly exist at higher demand 

variations. This can be interpreted as the higher variation 

the demand is highly increased or decreased leading to 

added shortage cost and added unutilized capacity cost. 

The cost elements of the inventory strategy in Fig. 4 are 

also comparable to the previous mitigation strategies; 

production cost is the main cost element, but the shortage 

cost is very low, with relatively high holding cost. This 

means that the inventory capacity was higher than the 

increase in demand in the high demand variations. Fig. 5, 

and Fig. 6 show the combined mitigation strategies. Their 

total costs are remarkably higher than the previous ones. 

Their main cost element is the holding cost. It is more than 

the sum of all other costs. This indicates that the demand 

was much lower than the available quantities produced and 

kept in inventory. A remarkable difference exists between 

both strategies in Fig. 5 and Fig. 6. The inventory and 

overtime strategy (Fig. 5) have a low total cost for low 

demand variations. As the demand variation increases, the 

total cost increases. The increase is mainly due to the 

increase in holding cost. However, total cost in the 

inventory and higher capacity strategy (Fig. 6) is high for 

all values of demand variation. The holding cost is the main 

component. 
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Fig. 1. Regular production design 

 

 
Fig. 2. Higher capacity strategy 

 

Fig. 3. Overtime strategy 

 

 
Fig. 4. Inventory strategy 

 

 
Figure 5: Inventory & overtime strategy 

 

 
Figure 6: Inventory & higher capacity strategy 

The main difference between both is that the higher 

capacity strategy produces increased amounts in all 

intervals as there is inventory capacity to keep the for later 

demand. However, in case of overtime, the produced 

quantities are limited, especially for low demand variation. 
For the second set of experiments, both demand and 

capacity disruptions occur. The failure probability for 

capacity disruption is (fr = 0.1).  Results of total cost for 

different strategies are given in Fig. 7 to Fig. 12.  

The behaviour of the regular production design, and the 

three single mitigation strategies (Fig. 7 to Fig. 10) are very 

close to their complements in Fig. 1 to Fig. 4 respectively 

in the first set of experiments when no capacity disruptions 

occurred. The increased shortage cost is the main 

difference between both sets as the capacity disruptions 

lead to decreased production. This consequently leads to an 

increase in the shortage cost, and hence in the total cost.  

Remarkable differences show in the combined mitigation 

strategies. For the inventory and overtime strategy (Fig. 

11) the production cost is higher than before in Fig. 5. 

However, the total cost is much lower as the inventory cost 

decreased than before. For the inventory and higher 

capacity strategy in Fig. 12, the production cost increases, 

and the holding cost decreases compared to Fig. 6 such that 

the total cost highly decreases. The reason for this change 

is attributed to decreased production resulting from the 
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capacity disruption. This means less quantities are 

produced, less quantities are held in the inventory, less 

holding cost, and less total cost. 

4.2 Supply chain profit 

Here we compare between different mitigation strategies 

from the profit point of view. The results of the first set of 

experiments; with demand disruptions only, are illustrated 

in Fig. 13. 

From Fig. 13, it is found that in case of zero demand 

variation, the profit of all strategies (except the two 

strategies with higher initial capacity) is the same and equal 

to the maximum value. For the higher capacity strategy, the 

profit decrease by the amount of fixed cost related to the 

higher capacity instalment. For the combined strategy of 

higher capacity with inventory consideration the profit 

decrease by both the fixed cost and the holding cost of the 

inventory built during the periods and not utilized. In case 

of higher demand variation 5% to 20%, the overtime 

strategy has the highest profit. However, the difference 

between the overtime strategy and the inventory strategy is 

relatively small compared to the difference with the other 

strategies. In case of high variation in demand more than 

20%, the inventory strategy only has the highest profit.  

 

 

 
Figure 7: Regular production design 

 

 
Figure 8: Higher capacity strategy 

 

 
Figure 9: Overtime strategy 

 

 
Figure 10: Inventory strategy 

 

 
Figure 11: Inventory & overtime strategy Figure 12: Inventory & higher capacity strategy 
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The results of the second set of experiments; in which 

both demand and capacity disruptions occur, are shown in 

Fig. 14.  The inventory and overtime strategy yields the 

highest profit. This is because this strategy allows the use 

of built-up inventory from the periods of low demand and 

the use of overtime in case the amount in the inventory is 

insufficient. At very high demand variation (25%) and 

capacity disruptions, this strategy has significantly higher 

profit than the other strategies.

Figure 13: The profit under demand disruption only 

  

Figure 14: The profit under demand and capacity disruptions 

4.3 Supply chain robustness 

The robustness is measured in terms of disruption cost, 

represented by the shortage cost. In the first set of 

experiments, with demand disruption only, two strategies 

have the highest robustness. This is shown in Fig. 15. The 

most robust strategy is the one with the lowest shortage 

cost. This is the case for the combined inventory and 

overtime strategy. The strategy of combined inventory 

and higher capacity comes second, while the inventory 

strategy is the third. It is clear that building inventory has 

a significant effect on the shortage cost. This is because 

using the inventory will allow the network to recover from 

the disruptions easily. This is even emphasized in 

combined strategies where extra capacity is allowed. Fig. 

16 illustrates the second set of experiments of demand 

and capacity disruptions. The inventory and higher 

capacity strategy is the most robust at lower demand 
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variations.  However, as the demand variation increases 

the robustness of the strategy applying both inventory and 

overtime is more competitive. 

 

Figure 15: Shortage Cost under demand disruption only 

 

Figure 16: Shortage cost under demand and capacity disruptions 

4.4 Percentage in full 

The effect of the different strategies on the percentage in 

full is shown in Fig. 17 and Fig. 18. For the first set of 

experiments with demand disruption only, the percentage 

of orders delivered in full fall to 50% for the regular 

production design. However, the combined inventory and 

overtime strategy, and the combined inventory and higher 

capacity strategy are not affected by the demand 

disruption. All of these statements can be observed from 

Fig. 17.   The second set of experiments is under demand 

and capacity disruption.  At the zero-demand variation, the 

best strategy regarding the percentage in full is the 

combined inventory and higher capacity strategy as shown 

in Fig. 18. However, for higher demand variation, the 

combined inventory and overtime strategy becomes 
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competitive. The regular production design has the worst 

behaviour regarding the percentage in full for all demand 

variations. 

 

Figure 17: Percentage in full under demand disruption only 

 

Figure 18: Percentage in full under demand and capacity disruptions 

4.5 Average fill rate 

The last performance measure is the average fill rate. 

Results of this measure are illustrated in Fig. 19 and Fig. 

20. For the first set of experiments with demand disruption 

only, all plans have 100% fill rate at zero demand variation 

(Fig. 19). However, as demand variation increases the 

average fill rate for different strategies behave differently. 

Regular production design decreases significantly till it 

reaches 94.5% fill rate. The higher capacity strategy, and 

the overtime strategy almost coincide, and decrease to 

98%. All the strategies that include inventory have the 

highest fill rate. The inventory strategy decreases slightly 

to 99.5%. The combined strategies almost coincide at the 

100% fill rate at all demand variations. 

For the second set of experiments under demand and 

capacity disruptions, again, the combined strategies almost 

coincide for the best fill rate at all demand variations. The 

higher capacity strategy and the overtime strategy almost 

coincide and have the second-best performance. The 

inventory strategy is not affected by the demand variation. 
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The regular production design gives the worst fill rate for 

all demand variation percentages.

 

Figure 19: Average fill under demand disruptions only 

 

Fig. 20. Average fill rate under demand and capacity disruptions 

4.6 Comparison of Mitigation strategies for 

Different Performance measures under study 

To better evaluate and compare mitigation strategies, all 

strategies are compared with regards to the five 

performance measures. Extra results were added 

considering capacity disruption only. In Table 3, six 

columns represent the regular case, and the five mitigation 

strategies, while the rows represent the five performance 

measures: with three disruption cases for each measure. 

The three cases are: “C” for capacity disruption only, “D” 

for demand disruption only, and “C+D” for capacity and 

demand disruptions simultaneously. Extra rows were 

added for the average of some performance measures, and 

for the sum, and the average of all measures.  

For each performance measure, the six cases are ranked 

according to their performance. The strategy of the worst 

performance is ranked “0”. The strategy of the best 

performance is ranked “5”. The strategies in-between are 

ranked each according to its order. Strategies of the same 

performance are ranked equally. Shading colours are used 

on the table to indicate good and bad performance.  

For the cost and profit performance measures, the 

averages of these two measures are compared. The 
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overtime strategy is the best. Its score is either “5” or “4” 

for all cases, and it scored “5” for the average. However, 

the combined inventory and higher capacity strategy is the 

worst. Its score is “0” for all cases and scored “0” for the 

average. For the robustness, percentage in full, and fill 

rate performance measures, the averages of these three 

measures are compared. The combined inventory and 

higher capacity strategy is the best. Its score is “5” for all 

cases, and it scored “5” for the average. However, the 

regular production design is the worst. Its score is “0” for 

all cases and scored “0” for the average. For the overall 

performance in all performance measures, the averages of 

all measures are compared. This is the same rank of the 

strategies according to the sum. The combined inventory 

and overtime strategy is the best. Its average scored “5”. 

The regular production design is the worst. Its average 

scored “0”. Other findings from Table 3, it is noticed that 

for all strategies (except the combined strategy of inventory 

and higher capacity) their performance in case of capacity 

disruption only differs from that in case of demand 

disruption only. It is also noticed that the combined 

strategy of inventory and higher capacity is either the best 

or the worst for different performance measures. It never 

ranked in-between.  

 

 

Table 3. Comparison performance measures for mitigation strategies. 

 

Regular 
Higher 

Capacity 
Overtime Inventory 

Inventory & 

overtime 

Higher 

capacity& 

inventory 

Total 

Cost 

D 4 2 5 3 1 0 

C 2 1 4 3 5 0 

C+D 2 1 5 3 4 0 

Profit 

D 2 3 5 4 1 0 

C 1 3 4 2 5 0 

C+D 1 3 4 0 5 2 

Average for cost 

& profit 
2 2 5 3 4 0 

Robust

ness 

D 0 1 3 3 5 5 

C 0 4 4 1 2 5 

C+D 0 3 3 1 5 5 

Percent

age in 

full 

D 0 2 2 3 5 5 

C 0 4 4 1 4 5 

C+D 0 3 3 1 4 5 

Averag

e fill 

rate 

D 0 2 2 3 5 5 

C 0 3 3 1 4 5 

C+D 0 3 3 1 4 5 

Average for R, 

PIF, AFR 
0 3 3 2 4 5 

Sum 12 38 54 30 59 47 

Overall Average 0 2 4 1 5 3 

C:      Capacity Disruption 

D:      Demand disruption 

C+D: Capacity and demand disruptions 

R:      Robustness 

PIF:    Percentage in Full 

AFR: Average fill rate 

 Good performance  Bad performance 

4.7 Managerial implications  

This research provides some useful insights for decision 

makers in case of supply chain disruptions to choose 

among the mitigation strategies according to their 

priorities. From the collective results of Table 3, and the 

discussion of the previous section, the following are the 

recommendations to the decision makers. 

For “money” priorities, the overtime strategy is the best. 

For the network robustness and customer satisfaction 

priorities, the combined inventory and higher capacity 

strategy is the best. For the overall performance priority 

(both money and robustness priorities), the best strategy is 

the combined inventory and overtime strategy. 

 CONCLUSIONS  

A multi-period supply chain under capacity and demand 

disruptions was modelled using Monte Carlo simulations 

and using integer linear programming with the objective of 

minimizing the total cost. Five mitigation strategies were 

investigated: higher production capacity, building 

inventory of finished product at the plants, working 

overtime shifts, combined inventory and higher production 

capacity, and combined inventory and overtime shifts. Five 

performance measures were used to evaluate each strategy. 

The results emphasized the fact that every mitigation 

strategy has its cons and pros. The performance of any 
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mitigation strategy highly depends on the type of 

disruption, and on the performance measure examined. 

High performance resulted from the following cases: The 

strategy of building inventory performs the best for the 

performance measures related to the cost and profit. The 

combined inventory and higher capacity strategy is the best 

for the performance measures related to the network 

robustness and customer satisfaction.  

Unsatisfactory performance resulted from the following 

cases: The combined inventory and higher capacity 

strategy is the worst regarding the cost and profit. The 

regular production design is the worst regarding the cost 

and the profit.  

When evaluating the overall performance, the best 

strategy is the combined inventory and overtime strategy, 

while the worst is the regular production design. 

Future work can include further investigation of other 

types of disruptions such as disruptions in transportation as 

well as studying the nature of capacity disruptions and 

demand disruptions.  More analysis for the operational 

performance of the supply chain for different design 

structures and different types of products can be conducted. 

Moreover, considering stochastic cost parameters can be 

applied to better describe the problem. 
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