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ABSTRACT 

Recently, with the urgent need for renewable and clean energy sources, the emphasis has been on extracting and 

generating energy from the surrounding environment. Harvesting mechanical kinetic energy is an attractive field for easy 

access to energy from multiple sources, and transforming it out of the mechanical domain to the electrical domain. 
Resonant systems introduced a magic solution in maximizing the output power when the ambient frequency is similar to 
the natural frequency of the mechanism. But the main drawback of these systems remains when moving away from the 

resonance zone even slightly, where that leads to a significant reduction in the output power. This paper discusses the 

design of an innovative autonomous mechanism for tuning the resonant frequency and thereby generate larger amounts of 

energy. Unlike previous researches which rely heavily on tuning the resonant frequency by changing the spring stiffness, 

the proposed concept is based on adjusting the resonant frequency by automatically modifying the mass moment of 

inertia. The proposed energy harvester used the electromagnetic technique to transform mechanical vibration into electric 

power. This design is analyzed using the methodology of a vibration continuous system. Different parameters of the 

tuning mechanism have been investigated to achieve the resonant. The tuned mechanism has been examined 

experimentally and then validated by comparing experimental results with the results obtained through the analytical 

model. 

Keywords:  Vibration energy harvester, Tuning, Resonant, Electromagnetic 

1. INTRODUCTION 

Latterly, a lot of researches concentrated on energy 

harvesting by tuning the resonant frequency. The tuning 
technique relies on modifying the system's natural 

frequency until it reaches the ambient frequency and as 

a result, the system remains in a resonant state. The 

most amount of energy can be harvested when the 

system reaches the resonance state.  Resonant frequency 

tuning can be performed either manually or 

autonomously. Manual tuning requires an external 

operator whilst autonomous tuning is a tuning 

mechanism performed by the harvester itself without 

human intervention. In Autonomous tuning, closed-loop 

control is requisite for tuning the resonant frequency at 
all times[1]. Dibin Zhu [2] provided a review of the 

most important research on different tuning 

methodologies. Sutrisno W. and Wahied G. [3] also 

presented a useful review of the most common 

frequency tuning methods used for piezoelectric energy 

harvesters. 

Resonant frequency tuning can be classified according 

to its methodology into two types, the first one is 

electrical tuning whilst the other is mechanical tuning. 

Electrical methods usually depend on modifying the 

electrical loads of the harvester for tuning the resonance 
frequency. The mechanical tuning methods include 

adding a tip mass, modifying the dimensions of the 

structure, adjusting the center of gravity of proof mass, 

and changing the spring stiffness. 

Whereas the mechanism mass is a fundamental 

parameter affecting the natural frequency, Cornwell et 

al. [4] tuned the resonant frequency by adding an 

auxiliary structure, and the prototype frequency was 

tuned from 40.7 HZ to 38.2 HZ. This improved the 

output power from the system, which was harvested 

using a piezoelectric harvester. Miller et al.[5] improved 

this approach for (MEMS) piezoelectric energy 
harvester this harvester connected to an integrated thick 

film electrochemical micro capacitor. the pneumatic 

dispenser is utilized for depositing a tip mass and a 

capacitor to realize the resonant state. The study was 

able to adjust the resonant frequency from 102 HZ to 82 

HZ with tunability 21.74% and sensitivity 25 Hz/mm. 

Actually, when an energy harvester is manufactured, it 

is difficult to add or remove an effective mass to it, and 
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therefore the resonant frequency of it can be tuned by 

repositioning its centroid. Wu et al. [6] have tuned the 

natural frequency of piezoelectric energy harvester by 

adding a movable mass (steel stud) which is manually 

moved to change the centroid mechanism position. The 

resonant frequency of the proposed mechanism was 

from 130 to 180 Hz with tunability 32.26 %. The 

drawback of this approach is that it ignored the 

influence of the shape and dimensions of the proof mass 
during analyzing the proposed model, and these 

parameters have been considered ineffective. Schaufuss 

et al. [7] developed this design by using a lever 

mechanism instead of the traditional mass and spring 

system. The position of the proof mass was modified 

manually by a screw. The mechanism natural frequency 

can be tuned in the range from 42 to 55 HZ with the 

tunability of about 26.8% and sensitivity 0.26 HZ/mm. 

The concept of the proposed design depends on tuning 

the resonance frequency by adjusting the moment of 

inertia of the tuning mechanism and this by changing the 
position of the proof mass automatically and thus, the 

natural frequency of the tuning mechanism matches with 

the ambient frequency whatever the change in 

frequency. 

The most common model that represents many of the 

vibratory energy harvesters is the second-order spring-

mass system with a single degree of freedom. Williams 

and Yates [8] illustrate the basic components of this 

system which include a frame that transmits the 

vibration to an inertial mass via a spring and a damper 

for achieving a relative displacement or strain. This 
basic model is only suitable for linear harvesters, where 

mechanical damping and stiffness are proportional to 

speed and displacement respectively.  
Therefore, this study focused on analyzing the proposed 

prototype using the methodology of a vibration 

continuous system. The theoretical model of the 

cantilever beam energy harvester is used to anticipate its 

natural frequency value while changing the tuning mass 

position and its mass moment of inertia as a result. The 

dynamic response of the ambient harmonic vibration 

and the power harvested can be also simulated 

theoretically. The proposed design is investigated 
experimentally to validate the results of the analytical 

model. 

2. DYNAMIC MODEL 

2.1.Free Vibration Model 

The proposed energy harvester in Figure (2) is analyzed 

using the methodology of a vibration continuous system, 

and it is solved with the MATLAB program. The 

administering equation of the transverse motion can be 

given by applying the Euler-Bernoulli beam theory and 

Newton’s low in the transverse direction [9, 10]. 

𝜌𝐴
𝜕 2𝑤(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕 4𝑤(𝑥, 𝑡)

𝜕𝑥4
= 𝐹(𝑥, 𝑡)                      (1) 

Where 𝑤(𝑥, 𝑡) represents the cantilever transverse 

deflection at position (𝑥) and time  (𝑡), (E) is the 

cantilever modulus of elasticity, (ρ) is the density, (A) is 

the cantilever cross-section area, (I) is the cantilever 

second moment of area, and 𝐹(𝑥, 𝑡) is the externally 

applied force whereas 𝐹(𝑥, 𝑡) = 0 concerning free 
vibration. 

 
Figure 1   Schematic diagram of the proposed design 

parameters 

 

The general solution of the previous equation can be 

found using the separation of a variable method as: 

𝑇(𝑡) = 𝐴 sin 𝜔𝑛𝑡 + 𝐵 cos 𝜔𝑛𝑡                                         (2) 

𝑊(𝑥) = 𝑐1 sin 𝛽𝑛𝑥 + 𝑐2 cos 𝛽𝑛𝑥 + 𝑐3 sinh 𝛽𝑛𝑥 + 

                𝑐4 cosh 𝛽𝑛𝑥                                                          (3)  

Where   𝛽𝑛
4 =

𝜌𝐴𝜔𝑛
2

𝐸𝐼
  

W(x) is known as the cantilever beam transverse 

deflection at position (x), (𝜔𝑛) is the natural frequency 

of the proposed mechanism. Since each continuous 

system contains an infinite number of natural 
frequencies and normal modes, this study was conducted 

by focusing on the first natural frequency. The constants 

(A) and (B) can be determined from the initial 

conditions and constants (𝑐1, 𝑐2, 𝑐3,  and 𝑐4) can be 

obtained from the following boundary conditions. 

a) At the fixed end of the cantilever beam at (𝑥 = 0) 

the transverse deflection and its slope are zero. 

𝑊(0) = 𝐶2 + 𝐶4 = 0                                                     (4) 

𝑑𝑊(0)

𝑑𝑥
= 𝐶1 + 𝐶3 = 0                                                   (5) 

b) At the other free end of the cantilever beam at (𝑥 =

𝐿) 

 A shear force is equal to the inertia force due to the 

total mass (𝑀𝑡) attached to the tip of the cantilever 

beam and the damping force. 

𝐼𝐸
𝜕3𝑤(𝐿, 𝑡)

𝜕𝑥3
= 𝑀𝑡

𝜕2𝑤(𝐿, 𝑡)

𝜕𝑡2
+ 𝐶𝑡

𝜕𝑤(𝐿, 𝑡)

𝜕𝑡
             (6) 

 𝑀𝑡 = 𝑚 + 2𝑚𝑔 + 𝑚𝑠 + 𝑚𝑚 + 𝑚𝑎                                 (7) 
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Where (𝑚) is the movable tuning mass, (𝑚𝑔) is the 

mass of the guide shafts,  (𝑚𝑠) is the screw mass, (𝑚𝑚) 

is DC motor mass, and (𝑚𝑎) is a mass of the acrylic 

frame. 

When studying the effect of damping on the analyzed 

system, three types of damping have appeared: 

 Electromagnetic damping (𝐶𝑚) caused by the 

electromagnetic force. 

 Structural damping (𝐶𝑠) caused by the internal 

friction of the cantilever. 

 air-viscous damping (𝐶𝑎)due to air particles' 

resistance to vibratory cantilever movement. 

Thus total damping coefficient (𝐶𝑡) is the sum of these 
three damping coefficients. 

And by substituting equation (3) into equation (6), the 

equation becomes: 

𝐶1[−𝐼𝐸𝛽1
3 cos 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) sin 𝛽1𝐿] +
𝐶2[𝐼𝐸𝛽1

3 sin 𝛽1𝐿 + ( 𝑀𝑡𝜔1
2 − 𝐶𝑡𝜔1) cos 𝛽1𝐿] +

𝐶3[𝐼𝐸𝛽1
3 cosh 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) sinh 𝛽1𝐿] +
𝐶4[𝐼𝐸𝛽1

3 sinh 𝛽1𝐿 + ( 𝑀𝑡𝜔1
2 − 𝐶𝑡𝜔1) cosh 𝛽1𝐿] = 0    (8)  

 The bending moment also is equal to the multiplying 

the effective mass moment of inertia at the cantilever 

beam tip (J) with its rotational acceleration (𝛼) 

𝐼𝐸
𝜕2𝑤(𝐿, 𝑡)

𝜕𝑥2
= −𝐽𝛼                                                  (9) 

Where  𝛼 =
𝜕3𝑤(𝐿,𝑡)

𝜕𝑡2𝜕𝑥
 

By substituting equations (3) into equation (9) 

𝐶1[−𝐼𝐸𝛽1
2 sin 𝛽1𝐿 − 𝛽1𝜔1

2𝐽 cos 𝛽1𝐿] +
𝐶2[−𝐼𝐸𝛽1

2 cos 𝛽1𝐿 + 𝛽1𝜔1
2𝐽 sin 𝛽1𝐿] +

𝐶3[𝐼𝐸𝛽1
2 sinh 𝛽1𝐿 − 𝛽1𝜔1

2𝐽 cosh 𝛽1𝐿] +
𝐶4[𝐼𝐸𝛽1

2 cosh 𝛽1𝐿 − 𝛽1𝜔1
2𝐽 sinh 𝛽1𝐿] = 0                 (10)  

 
And by rewriting equations (4), (5), (8), and (10) in a 

matrix form to solve them and find the unknown 

constants 

     [

0 1 0 1
1 0 1 0

𝑆31 𝑆32 𝑆33 𝑆34

𝑆41 𝑆42 𝑆43 𝑆44

] [

𝐶1

𝐶2

𝐶3

𝐶4

] = [

0
0
0
0

]                     (11) 

Where: 

𝑆31 = [−𝐼𝐸𝛽1
3 cos 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) sin 𝛽1𝐿] 

𝑆32 = [𝐼𝐸𝛽1
3 sin 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) cos 𝛽1𝐿] 

𝑆33 = [𝐼𝐸𝛽1
3 cosh 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) sinh 𝛽1𝐿] 

𝑆34 = [𝐼𝐸𝛽1
3 sinh 𝛽1𝐿 + ( 𝑀𝑡𝜔1

2 − 𝐶𝑡𝜔1) cosh 𝛽1𝐿] 

𝑆41 = [−𝐼𝐸𝛽1
2 sin 𝛽1𝐿 − 𝛽1𝜔1

2𝐽 cos 𝛽1𝐿] 

𝑆42 = [−𝐼𝐸𝛽1
2 cos 𝛽1𝐿 + 𝛽1𝜔1

2𝐽 sin 𝛽1𝐿] 

𝑆43 = [𝐼𝐸𝛽1
2 sinh 𝛽1𝐿 − 𝛽1𝜔1

2𝐽 cosh 𝛽1𝐿] 

𝑆44 = [𝐼𝐸𝛽1
2 cosh 𝛽1𝐿 − 𝛽1𝜔1

2𝐽 sinh 𝛽1𝐿] 

The characteristic equation of the system can be 

obtained as: 

    |

0 1 0 1
1 0 1 0

𝑆31 𝑆32 𝑆33 𝑆34

𝑆41 𝑆42 𝑆43 𝑆44

|

= 0                                                      (12) 

The previous equation is used to obtain the natural 

frequency (𝜔1) and from this equation, it is clear that 

the main parameters affecting the natural frequency are  

(𝑙, 𝐼, 𝐽, 𝑀𝑡 , 𝜌 , and E). 

2.2.Harmonic Excitation Modelling  
2.2.1. The transverse response of harmonic base 

excitation 

This section focuses on analyzing a forced vibration 

system with damping for determining the transverse 

displacement response with the time, and the power 
harvested from this investigation. The absolute 

transverse motion  ( 𝑤𝑡(𝑥, 𝑡) ) of any point in the 

cantilever beam can be represented as the sum of the 

vibrator excitation motion ( 𝑤𝑏(𝑡) ) and the absolute 

cantilever beam displacement for the vibrator 

( 𝑤(𝑥, 𝑡) ). It should be noted here that when 

substitution in equation (1) which governs the free 

vibration equation of motion with the value of the 

absolute displacement, it turns into a forced vibration 

equation [11-13]. 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕 2𝑤(𝑥, 𝑡)

𝜕𝑡2
= −𝜌𝐴

𝜕 2𝑤𝑏(𝑥, 𝑡)

𝜕𝑡2
  (13) 

It is noticeable from the previous equation that the  

effective force resulting from the vibrator harmonic 

excitation which is represented in term 

(−𝜌𝐴 (𝜕 2𝑤𝑏(𝑥, 𝑡) 𝜕𝑡2⁄  )) is not a concentrated load, 

but equivalent to a distributed load of a mass (𝜌𝐴) along 

the cantilever when moving with an acceleration 

(𝜕 2𝑤𝑏(𝑥, 𝑡) 𝜕𝑡2⁄  ). When the total tip mass (𝑀𝑡) is 

taken into consideration, the distributed mass (𝜌𝐴) is 

replaced by (𝜌𝐴 + 𝑀𝑡𝛿(𝑥 − 𝐿)), where 𝛿(𝑥 − 𝐿) is a 

Dirac delta function [14]. Therefore, the equation of 

motion of the system becomes: 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕 2𝑤(𝑥, 𝑡)

𝜕𝑡2

= −(𝜌𝐴 + 𝑀𝑡𝛿(𝑥 − 𝐿))
𝜕 2𝑤𝑏(𝑥, 𝑡)

𝜕𝑡2
                                 (14) 

Perceiving that the excitation force is sinusoidal leads to 

conclude that the general solution of the previous system 

equation, which represents system response is also 

sinusoidal with time as: 
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𝑤(𝑥, 𝑡) = a1Ψ1(𝑥) sin Ω𝑡 − a2Ψ2(𝑥) cos Ω𝑡            (15) 

whereas a1Ψ1(𝑥) and a2Ψ2(𝑥) represent trial functions 

that satisfy the problem boundary conditions, and (Ω) is 

the excitation frequency. Here the motion can be 

represented as two function combinations, the first one 

Ψ1(𝑥) is in the same phase with the force function, and 

the second one Ψ2(𝑥) is delayed by a 90-degree 

angle[15].  

By considering that (Ψ1(𝑥) = Ψ2(𝑥) = 𝑊(𝑥)) and the 

vibrator excitation motion (𝑤𝑏(𝑡) = 𝑤𝑏 sin Ω𝑡), the 

system equation of motion can be expressed as : 

𝐸𝐼
𝑑4𝑊(𝑥)

𝑑𝑥4
[𝑎1 sin Ω𝑡 − 𝑎2 cos Ω𝑡]

+ 𝜌𝐴[−𝑎1Ω2 sin Ω𝑡 + 𝑎2Ω2 cos Ω𝑡]𝑊(𝑥)

= 𝑤𝑏Ω2(𝜌𝐴 + 𝑀𝑡𝛿(𝑥 − 𝐿)) sin Ω𝑡                             (16) 

Where the term [𝑤𝑏Ω2(𝜌𝐴 + 𝑀𝑡𝛿(𝑥 − 𝐿))] is 

represented the amplitude of the excitation force (𝐹0). 

The previous equation can be reformulated by 

separating the coefficients of (sin Ω𝑡) and (cos Ω𝑡), 

both in a separate equation. And by applying the 

Galerkin procedure to each of them by integrating them 

over the length (𝐿) of the continuous cantilever beam. 

∫ [𝑎1𝐸𝐼
𝑑4𝑊(𝑥)

𝑑𝑥4
− 𝑎1𝜌𝐴Ω2 𝑊(𝑥)]

𝐿

0

𝑊(𝑥)𝑑𝑥

= ∫[𝑤𝑏Ω2(𝜌𝐴 + 𝑀𝑡𝛿(𝑥 − 𝐿))]

𝐿

0

𝑊(𝑥)𝑑𝑥                            (17) 

∫ [𝑎2𝐸𝐼
𝑑4𝑊(𝑥)

𝑑𝑥4
− 𝑎2𝜌𝐴Ω2 𝑊(𝑥)]

𝐿

0

𝑊(𝑥)𝑑𝑥

= 0                                                                                           (18) 

After solving these equations and find the values of the 

constants (𝑎1) and  (𝑎2), the absolute transverse 

amplitude 𝑤𝑡 (𝑥, 𝑡) of the cantilever beam can be 

determined as: 

𝑤𝑡(𝑥, 𝑡) = [𝑎1𝑊(𝑥) + 𝑤𝑏] sin Ω𝑡 −
[𝑎2𝑊(𝑥)] cos 𝛺𝑡     (19)  

|𝑊𝑡| = √(𝑎1𝑊(𝑥) + 𝑤𝑏)2 + (𝑎2𝑊(𝑥))2           (20) 

2.2.2. Electrodynamic harvester modeling 

The relative oscillations of the electromagnetic energy 

harvester cause a variation in the magnetic flux and this 

creates an electromotive force ( 𝑉𝐸𝑀𝐹) in the coil and 

this voltage is proportional to the time-varying magnetic 

flux according to Faraday’s law of induction [16-20]. 

𝑉𝐸𝑀𝐹 = −𝐵𝐿𝑤𝑣𝑡                                                               (21) 

Where (B) is the magnetic field strength, (𝐿𝑤) is the 

total length of the coil wire, and (𝑣𝑡) is the velocity of 

the magnet and can be expressed as 

𝑣𝑡 =
𝜕𝑤𝑡 (𝑥, 𝑡)

𝜕𝑡
                                                                  (22) 

Upon substitution into equation (20), the velocity of the 

magnet can be determined as  

𝑣𝑡 = 𝛺[𝑎1𝑊(𝑥) + 𝑤𝑏] cos Ω𝑡 + 𝛺[𝑎2𝑊(𝑥)] sin 𝛺𝑡 (23) 

When the magnet is placed at the free end of the 

cantilever beam at (𝑥 = 𝑙), the speed of the magnet 
becomes: 

|𝑣𝑡| = 𝛺√(𝑎1𝑊(𝑙) + 𝑤𝑏)2 + (𝑎2𝑊(𝑙))2                  (24) 

The induced current passing through the coil circuit can 

be written as:  

𝑖(𝑡) =
𝑉𝐸𝑀𝐹

𝑅𝑙 + 𝑅𝑐 + 𝑗Ω𝐿𝑐

                                                   (25) 

Where (𝑅𝑙) is a load resistance, (𝑅𝑐) is the coil 

resistance, (Ω) is the excitation frequency, and (𝐿𝑐) is 

the inductance of the coil. At the low frequencies (less 

than 1 kHz) [17], the coil inductance term can be 

neglected and the coil resistance dominates its 

impedance. This the magnetic field will generate a 

magnetic force (𝐹𝑚) which has a reverse direction to the 

magnet movement direction. 

𝐹𝑚 = 𝐵𝐿𝑤𝑖(𝑡)                                                                   (26) 

This electromagnetic force is proportional to the magnet 

velocity and it can be expressed also as the product of 

velocity with the electromagnetic damping (𝐶𝑚)  

𝐹𝑚 = 𝐶𝑚

𝜕𝑤𝑡(𝑥, 𝑡)

𝜕𝑡
                                                           (27) 

From equations (25), (26), and (27) the electromagnetic 

damping can be given from the following equation: 

𝐶𝑚 =
(𝐵𝐿𝑤)2

𝑅𝑙 + 𝑅𝑐

                                                                   (28) 

And the harvested power can be calculated as 

𝑃 = 𝑅𝑙𝑖
2(𝑡) =

[𝐵𝐿𝑤 (𝜕𝑤𝑡 (𝑥, 𝑡) 𝜕𝑡)⁄ ]2𝑅𝑙

(𝑅𝑙 + 𝑅𝑐)2
                  (29) 

3. EXPERIMENTAL WORK 

Figure 3 shows a close-up view and the components 

used in the design of the experimental set-up of the 
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electromagnetic energy harvester with the proposed 

tuning mechanism. A cantilever beam with length 60 

mm, width 28 mm, and thickness 1 mm beam is 

mounted on a shaker (Brüel & Kjær type 3386-062) to 

obtain and control the ambient excitation frequency 

whilst the tuning mechanism is attached with the other 

free end of it. The tuning mechanism consists of a 

movable tuning mass on a lead screw which derives its 

motion from a DC motor. two guide shafts fixed on two 
acrylic plates are used to convert a rotational motion of 

the motor into a linear motion for the proof mass. The 

main parameters and material properties of the proposed 

design are listed in Table 1. 

 

Figure 2    Close up view of the electromagnetic 

energy harvester with the proposed tuning 

mechanism 

In the beginning, it is necessary to find the natural 

frequency value of the energy harvester at the different 

positions of the tuning mass. The proof mass position 

(Lm) is measured from the free end of the cantilever 
beam every 0.01 m from Lm= 0.04 m up to 0.28 m. To 

keep the system continuously in the resonance zone, the 

automatic tuning technique is used in which the external 

frequency is measured periodically and the position of 

the mass is adjusted accordingly so that the natural 

frequency of the system matches with the ambient 

frequency whatever change. 

Table 1: The characteristic properties of the 

proposed design 

Parameter Value 

Cantilever beam density (ρ) 7850 Kg/m3 

Modulus of elasticity of cantilever (E) 213 GPa 

Movable tuning mass (m) 0.118 Kg 

Mass of guide shafts (mg) 0.049 Kg 

Mass of screw (ms) 0.056 Kg 

DC motor mass (mm) 0.06 Kg 

Width of movable mass (b) 0.0095 m 

Screw length (Ls) 0.32 m 

Guide shafts length (Lg) 0.3 m 

Magnetic field strength (B) 1.3 Tesla 

At resonance state, the highest response is obtained and 

therefore this mechanical energy can be converted into 

electrical energy. In the proposed design, 

electromagnetic energy harvester is used by attaching a 

permanent magnet (NdFeB N42) at the free end of the 

mechanism and placing a coil with inner diameter 0.04 

m, outer diameter 0.05 m, and height 0.015 m on a 

separate holder in front of this magnet. The coil is 

connected to a decade resistance box and oscilloscope 
(Tektronix TDS2024C) which used to measure the 

output voltage from this energy harvester. 

4. RESULTS AND DISCUSSION 

The study of the analytical model shows that the most 

important parameters affecting on the natural frequency 

as explained in the characteristic equation of the system 

are the cantilever beam length (𝐿), its second moment of 

area (𝐼), the total mass of the tuning mechanism (𝑀𝑡), 

and the system mass moment of inertia ( 𝐽). A 

parametric study has been conducted to these factors 

which by modifying them can adjust the natural 

frequency, and this study was carried out on 3 positions 

of the movable tuning mass, which are: 0.04, 0.15, and 

0.28 m from the free end of the cantilever beam.  
The study has shown that the cantilever beam length is a 
very effective factor on the natural frequency, as any 

slight increase in its length leads to a clear decrease in 

the natural frequency of the system. Table 2 and Figure 

3 shows the observed decrease in the natural frequency 

when changing the length of the cantilever beam from 

0.04 to 0.17 m. 

Table 2: Influence of cantilever beam length on the 

natural frequency at different tuning mass positions 

Lm  (m) 
ωn  (HZ)     

L = 0.04 m L = 0.17 m 

0.04 5.133 1.42 

0.15 4.323  1.267 

0.28 3.377 1.091 

 
Figure 3:  Effect of cantilever beam length on the 

natural frequency 
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This study also dealt with the effect of the mass moment 

of inertia in more detail and attention where it was found 

that it is one of the most influencing factors on the 

natural frequency, so any increase in the mass moment 

of inertia, even a slight one, is accompanied by a 

noticeable decrease in the natural frequency, as 

illustrated in Figure 4. The mass moment of inertia can 

be changed by varying one of the parameters influencing 

it, such as weight, position, shape, or thickness of the 
effective mass. 

 
Figure 4: Effect of mass moment of inertia on the 

natural frequency 

Figure 5 shows the effect of the movable tuning mass 

weight on the natural frequency, as when the weight of 
mass increases from 0.1 to 0.25 kg, this leads to a 

noticeable decrease in the natural frequency. The 

percentages of decrease in the natural frequency vary 

according to the mass position, as these percentages 

decrease with increasing mass distance from the 

cantilever beam free end to become 7.8%, 20.2%, and 

30.2% at mass positions 0.04, 015, and 0.28 m 

respectively. 

It was found that when studying the effect of mass 

geometry represented by its width, the natural frequency 

was not strongly influenced by increasing the mass 

width from 5 to 25 mm, as the percentage of natural 
frequency decrease with the increase in the width was 

between 1.2:1.7 % at the different tuning mass positions 

as illustrated in Figure 6. While it was found that 

changing the tuning mass distance from the cantilever 

beam free end has a great effect on the natural 

frequency, where it is inversely proportional to the 

tuning mass position as shown in Figure 7.  

 

Figure 5:   Effect of movable tuning mass weight on 

the natural frequency 

Since the design idea is based on automatic resonance 

adjustment, the most suitable solution is to change the 

effective mass position to adjust the natural frequency 

and then reach the resonance state continuously. Upon 

verification of the theoretical results with the 

experimental results, great compatibility has appeared 

Where the natural frequency can be tuned practically 

from 2.65 to 3.75 Hz with tunability 38.4%, whilst the 

tunability was 34.1% theoretically. 

 
Figure 6: Effect of movable tuning mass width on 

the natural frequency 

 

 
Figure 7: Effect of movable tuning mass position on 

the natural frequency 
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The system response was calculated within the 

frequency range from 2 to 4.2 Hz theoretically and 

compared it with the experimental measurements at the 

mass position 0.04, 0.15, and 0.28 m respectively as 

described in Figure 8. The experimental results showed 

that the maximum system response in the resonance 

state depends on the tuning mass position, where the 

maximum response reduced by 18.4% at the mass 

position (Lm=0.28 m) than it at (Lm= 0.04 m), whereas 

the analytical model results showed a great approaching 

with the practical results. 

 
Figure 8: Effect of ambient frequency on response 

 
Figure 9: Effect of load resistance on output power 

The power harvested was also calculated in the 

resonance state within the range of load resistance (RL) 

from 0 to 100 Ω, to obtain the optimum load resistance 

for each case, and accordingly harvest a large amount of 

energy as illustrated in Figures 9. It was noticed that the 
power harvested was increased with increasing the load 

resistance until it reached its maximum value at the 

optimum load resistance, after that the harvested power 

reduced again with increasing the load resistance. The 

position of the tuning mass also showed a significant 

influence on the output power in the resonance state, 

when the tuning mass distance 0.04, 0.15, and 0.28 m 

from the free end of the cantilever beam the harvested 

powers were 35.9, 22.2, 13.8 mW with optimum 

resistance load 6, 5, and 5 Ω respectively. 

 

5. CONCLUSIONS 

The present investigation declares an innovative design 

of an automatic energy harvester system whose idea 

depends on adjusting the natural frequency of the system 

to match the ambient frequency. The presence of the 

system in resonance state continuously ensures 

harvesting the largest amount of energy. The power has 

been harvested using an electromagnetic energy 

harvester. The design is analyzed using the methodology 

of a vibration continuous system for investigating the 

different parameters of the tuning mechanism and 

verified experimentally. 
The study proved that both cantilever beam length and 

mass moment of inertia is the most effective parameters 

on the system's natural frequency, as any slight increase 

in them leads to a clear decrease in the natural frequency 

of the system. It is also clarified that the best way to 

adjust the mass moment of inertia is to change the 

effective mass position. Otherwise, changing the proof 

mass's weight or its geometry was not sufficiently 

effective on the natural frequency, besides the difficulty 

of their automatic adjustment. The present study also 

indicates a great success of the proposed design in 

tuning the natural frequency experimentally within the 
range of 2.65 to 3.75 Hz with a tunability of 38.4%. The 

proof mass position is modified automatically with any 

variation in the ambient frequency. The current 

investigation is suitable for harvesting energy from low 

frequencies where the harvested power reached 35.9 

MW. 
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