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Analyzing Barrettes as Large-Section Supports by CCT 

Hassan Ibrahim1/ Ibrahim El Arabi2/ Mahmoud El Gendy3 

 

ABSTRACT 

Most of soil structure interaction methods for analyzing large-section supports such as barrette foundation modeling the 

barrette and surrounding soil using 3D FE model. In which, the model leads to a large finite element mesh of a large 

system of linear equations to be solved. In this paper, a Composed Coefficient Technique (CCT) is adapted for 

analyzing barrette. The technique takes into account the 3D full interactions between barrette and the surrounding soil. 

Due to the high rigidity of the barrette relative to the surrounding soil, a uniform or variable settlement along the 

barrette height can be considered. This enables to compose the stiffness coefficients of the soil matrix into composed 

coefficients, which consequently leads to a significant reduction in the soil stiffness matrix. An application for 

analyzing barrette by CCT is carried on the soil of the new area of East Port Said, in where the typical soil stratification 

is very week and structures in this area need to be supported by deep foundations such as barrettes. The application 

presents guidelines and diagrams for barrettes that may be used in East Port Said. 
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1. INTRODUCTION 

Heavy loaded structures need to be supported on deep 

foundations such as barrette. Analyzing this system of 

foundation is a complex task because it is a three-

dimensional problem including the interaction between 

barrettes and soil. Considering this interaction requires a 

long computational time where a huge soil matrix is 

required to verify the compatibility among barrette and 

soil. The standard models for analyzing this complex 

problem depend on a full three-dimensional analysis, 

which leads to very large number of elements, and thus 

these models are time consuming even for the fast 

computers of today, especially when analyzing barrette 

group or barrette raft. 

A similar foundation element of pile maybe considered 

as a less complicated problem than that of the barrette 

cross section. Piles in most cases are circular in shape 

with small cross-section area, while that of the barrette is 

large with a rectangular shape. Therefore, pile can be 

treated as a beam member exposed to point loads on its 

nodes, while barrette must be treated as a block member 

having a cross-section of two dimensions and exposed to 

uniform loads on its sides.  

There are a lot of available methods that are being used 

to analyze piles most of them are used also to analyze 

barrette with equivalent cross section area to that of the 

pile. Some of them are those of Basu et al.[1], Lei et 

al.[17], and Seo et al.[27]. Other alternative methods to 

analyze the barrettes are those using the full three 

dimensional finite element method as that of Fellenius et 

al.[8].  
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Some other methods depend on load settlement tests of 

barrette either on the field or in the lab.  Some of them 

are those of Thasnanipan et al.[29], Thasnanipan et 

al.[30], Shulyatiev et al.[28], and Lin et al.[18]. For 

single pile, pile group and piled raft, El Gendy [4] 

presented a technique based on the flexibility 

coefficients an efficient analysis by using Composed 

Coefficient Technique (CCT) to reduce the size of the 

entire soil stiffness matrix. In this technique, the pile is 

treated as a rigid member having a uniform settlement 

for all nodes along its shaft and base. CCT enables to 

assemble pile coefficients in composed coefficients. This 

technique is applied efficiently for many studies, some 

of them are those of Hattab [10], Reda [25], Rabiei [22], 

[23], [24], Kamash, W. [12] [13] [14] [15], Kamash et al. 

[16],  Ibrahim et al. [11], Mobarak W. [19], El-Labban 

[7], Moubarak A. [20], Chieruzzi et al. [3], and El Gendy 

et al. [5], [6]. 

This technique is also further developed to be used in 

this study for analyzing the barrette based on both 

flexibility coefficients and full 3D FE. The Advantage of 

the CCT is that interaction of soil elements with the 

barrette elements are taken into consideration. The 

proposed analysis reduces considerably the number of 

equations that needs to be solved. Another point of view 

to choice of the CCT for the barrette analysis is that the 

designer is interested in the soil settlements and contact 

forces at different levels on the barrette height not at 

each barrette node. Another problem can be tread by 

CCT is the nonlinearity of the barrette load-settlement 

behavior.  

2. MATHEMATICAL MODELING  

2.1. Modeling Single Barrette Using 
Flexibility Coefficients 
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Following the CCT for modeling pile foundation by El 

Gendy [4], a composed coefficient ks [kN/m] 

representing the soil stiffness of the barrette is 

developed. The mathematical formulation of the 

composed coefficient ks for different cases of barrette 

analyses will be described in the forthcoming items.  

2.1.1. Soil Stiffness Matrix  
The rectangular cross sectional barrette shown in Figure 

1 is divided into a number of shaft elements and base 

elements with ns nodes, each acted upon by a distributed 

stress. To carry out the analysis, the stresses acting on 

shaft and base elements are replaced by a series of 

concentrated forces acting on nodes.  
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Figure 1 Barrette geometry, elements and stresses. 

The settlement of the soil at any node i of the barrette 

may be rewritten in general form as: 

Q I  = s
jj i,

n

j
i

s


1=

   (1) 

where: si Soil settlement on any node i either on the shaft 

or on the base, [m]; Qj Contact force on node j, [kN]; Qj 

represents either the forces on shaft nodes or base nodes; 

ns Total number of contact nodes; Ii, j Flexibility 

coefficient of node i due to a unit force on node j 

[m/kN]. Closed form equations for these coefficients are 

described in the Appendix A. 

Eq. (1) for settlements of the soil adjacent to all nodes of 

the barrette may be written in a matrix form as: 

    Q Is = s
   

(2) 

Where {s} is ns settlement vector; {Q} is ns contact force 

vector; [Is] is ns×ns soil flexibility matrix. 

Inverting the soil flexibility matrix in Eq. (2), leads to: 

    s ks = Q
   

(3) 

Where [ks] is ns × ns soil stiffness matrix, [ks] = [Is]-1. 

2.1.2. Rigid Analysis  

The barrette is a huge concrete volume which may be 

considered as a rigid body subjected to vertical loads and 

moves vertically with a uniform displacement wo = s1 

=s2=...= sns on all its nodes. Therefore, the unknowns of 

the problem are reduced to ns contact forces and the rigid 

body displacement wo. Carrying out the summation of 

all contact forces in the Eq. (3), leads to: 

k   wo= Q j i,

n

=j

n

=i
i

n

=i

sss


111

 
 

(4) 

Where ki, j are the coefficients of the soil stiffness matrix 

[ks]. 

Equation (4) may be rewritten as: 

 woks = Ph
   

(5) 

Where the applied force Ph [kN] on the barrette head is 

the sum of all contact forces Qi, Q = Ph
i

n

i

s


1=

, while the 

composed coefficient ks [kN/m] is the sum of all 

coefficients of the soil stiffness matrix, k  = ks j i,

n

=j

n

=i

ss


11

.  

Equation (5) gives the linear relation between the applied 

load on the barrette head and the uniform settlement wo 

of all barrette nodes. For a single barrette, the applied 

load on the barrette head Ph is given and hence the 

uniform settlement wo can be determined from Eq. (5). 

Substituting the value of wo in Eq. (3), gives ns unknown 

contact forces Qi in case of considering the barrette as 

full rigid body. 

2.1.3. Elastic Analysis  
In this analysis, the elasticity of the barrette is 

considered. The finite element method is used for 

analyzing the barrette body, which is exposed to external 

forces on soil-barrette interface as soil reactions in 

addition to the applied load on its head as an action. A 

compatibility between the vertical displacements of the 

barrette and the soil settlements at the soil-barrette 

interface is taken in the vertical direction only. This 

assumption is related to that the external load on the 

barrette head, which is expected to be heavy load, is 

applied in the vertical direction. For comparative 

examinations and to avoid a huge barrette stiffness 

matrix, the barrette elasticity is determined from the 

finite element method using either 1D or 3D finite 

elements. 

2.1.3.1. Elastic Analysis Using 1D Finite 
Elements 
To simplify the solution of the analysis and to reduce the 

size of the problem, the barrette is represented by a 

vertical line member having a variable settlement (or 

vertical displacement) along its height. Another point of 

view in choosing this idea is that the designer is 

interested in the soil settlements and contact forces at 

different levels on the barrette height not at each barrette 

node. In the proposed analysis, the composed coefficient 

technique is used to perform a soil stiffness matrix for 

barrette as a line member from the original soil stiffness 

matrix of Eq. (3). This soil stiffness matrix takes also 

into account the interaction effect among all soil-barrette 

interface nodes. 
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2.1.3.1.1. Soil Stiffness Matrix 
To describe the formulation of composed coefficients for 

generating the soil stiffness matrix of the barrette in this 

case, consider, as an example, the simple barrette shown 

in Figure 2a, which has a total of n = 33 surface nodes. 

The barrette of 3D is converted to 1D as indicated in 

Figure 2b, which has nb = 4 nodes in 4 levels only. Each 

node has a force and a settlement in the vertical 

direction. The unknowns of the problem will be reduced 

to nb contact forces Qbi on soil-barrette interface and nb 

settlements (or displacements) sbi on all nodes of the 

barrette in the vertical direction.  

 
Figure 2 Surface mesh of the barrette with node 

numbering, loads and settlements. 

The soil stiffness matrix of Eq. (3) for the barrette shown 

in Figure 2a can be expanded in the following matrix 

equation: 
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In Eq. (6), carrying out the summation of rows and 

columns corresponding to the barrette node i in 1D, leads 

to: 
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Accordingly, Eq. (7) of soil stiffness matrix can be 

rewritten for the barrette of 1D in composed coefficients 

as: 
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where Ki, j is composed coefficient, [kN/m]; sbi is 

settlement in node i of 1D barrette, [m],  sb1= s1= s2= ...= 

s8, sb2= s9= s10= ...= s16, ......, sb4= s25= s26= ...= s33; Qbi is 

contact force on node i of 1D barrette [kN], Qb1= Q1+ Q2+ 

... + Q8, Qb2= Q9+ Q10+ ... + Q16, ......, Qb4= Q25+ Q26+ ... + Q33 

Eq. (8) shows that the soil stiffness matrix in Eq. (6) of 

size 33×33 is reduced considerably to an equivalent soil 

stiffness matrix of size 4×4. It could be written in a 

compacted form as: 

    bb s kb = Q
   

(9) 

2.1.3.1.2. Barrette Stiffness Matrix 
Using finite element method in the analysis of barrette, 

only the axial compression of the barrette is considered 

in determining displacements of barrette elements. The 

beam stiffness matrix of the barrette element i can be 

expressed as (Figure 3): 

    
l

ApEp
= kp

i

i
i 










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11

11

 
(10) 

Where Ep is Modulus of Elasticity of the barrette 

material, [kN/m2]; Api is cross-section area of the 

barrette element i, [m2]; li is length of the barrette 

element i, [m]. 

 
Figure 3 Finite element mesh of barrette and element 

geometry. 

According to the principal of the finite element method, 

the assembled axial stiffness matrix equation for the 

barrette can be written as: 

      bQ P = kp δ
  

(11) 

Where {δ} is (ns+1) Displacement vector; {P} is (ns+1) 

vector of applied load on the barrette, {P} = {Ph, 0, 0, 

0,…, 0}T; [kp] is (ns +1)×(ns +1) beam stiffness matrix. 

Substituting Eq. (9) into Eq (11), leads to: 

       bs kb  P = kp δ
       

(12) 

Assuming full compatibility between barrette 

displacement δi and soil settlement sbi, the following 

equation can be obtained: 

       P = kbkp δ
  

(13) 

Solving the above system of linear equations, gives the 

displacement at each node, which is equal to the soil 

settlement at that node. Substituting soil settlements 

from Eq. (13) into Eq. (9), gives contact forces Qbi on the 

barrette. 

2.1.3.2. Elastic Analysis Using 3D Finite 
Elements 
In this case, there is no approximation has to be carried 

out when determining the elasticity of the barrette itself 

due to its material, where the barrette is divided into 

Hexahedra solid elements. Figure 4 shows the mesh of 

the 3D finite elements of the barrette with loads. Each 
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element consist of eight nodes, each node has three 

forces and three displacements in the three directions. 

More details concerning this type of the solid element 

may be found in Chandrupatla and Belegundu [2]. The 

unknowns of the problem are ns contact forces on soil-

barrette interface and nt displacements (or settlements) 

on all nodes of the barrette in the three directions. 

 
Figure 4 Mesh of the barrette with node numbering, loads 

and settlements. 

According to the finite element method principals, the 

stiffness matrix equation for the barrette can be defined 

as: 

      Q P = kp δ
  

(14) 

Where {δ} is nt displacement vector of displacements wi, 

ui and vi in z-, x- and y-directions respectively; {P} is nh 

vector of applied forces on the barrette head; {Q} is ns 

vector of contact forces on the soil-barrette interface; 

[kp] is (nt×nt) barrette stiffness matrix; nh is number of 

nodes on the barrette head; ns is number of nodes on the 

soil-barrette interface; nt is total number of barrette 

nodes, nt= nh+ns. 

Substituting Eq. (9) into Eq (14), leads to: 

       s ks P = kp δ
  

(15) 

The soil stiffness matrix [ks] is a full matrix, while the 

original size of the barrette stiffness matrix [kp] is a 

banded matrix. Therefore, the matrix [kp] is extended to 

be a full matrix of size nt * nt to enable the summation 

process of the barrette stiffness matrix with soil stiffness 

matrix to be carried out. 

Assuming full compatibility between barrette 

displacements wi and the surrounding soil settlement si, 

the following equation can be obtained: 

       P = kskp δ
  

(16) 

Solving the above system of linear equations, gives the 

vertical displacements at each node wi, which equal to 

the soil settlement si at that node. Substituting soil 

settlements from Eq. (16) into Eq. (9), gives contact 

forces Qi on the barrette in case of considering the 

barrette as an elastic body. 

2.2. Modeling Barrette and Subsoil 
Using 3D Finite Elements 

The barrette and the surrounding subsoil are represented 

by 3D finite elements as shown in Figure 5, which 

presented a quarter of the mesh and barrettes. Then, the 

finite element method is used for analyzing the barrette 

and subsoil medium together using solid block elements. 

Each element consists of eight nodes, each node has 

forces and displacements in the three directions. The 

composed coefficient technique is used to perform the 

analysis of the single barrette and barrette group. 

 
Figure 5 Quarter mesh of 3D finite elements of a barrette 

and the surrounding subsoil. 

The next paragraphs illustrate the generation of a 

stiffness matrix of composed coefficients for a single 

barrette. The same procedure can be applied for barrette 

groups or barrette raft. Consider the simple finite 

element mesh in the cross section of a barrette and 

subsoil shown in Figure 6 as an example. The subsoil 

has the nodes from 1 to 69, while the barrette has the 

nodes 70 to 90. 

 

Figure 6 Simple finite element mesh in a cross section of 

the barrette and subsoil. 

The global stiffness matrix equation of the system of the 

single barrette and the surrounding subsoil can be 

expressed as: 

     kpP δ
  

(17) 

Where {δ} is 3n displacement vector {u, v, w}; {P} is 3n 

vector of applied load {px, py, pz}; [kp] is (3n×3n) 

Stiffness matrix; n is number of the total nodes. 
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The barrette nodes in the matrix equation, Eq. (17) are 

rearranged to be at the end of the matrix. Considering 

uniform displacements in the three directions due to the 

high barrette rigidity and carrying out the summation of 

the corresponding stiffness coefficients, Eq. (17) can be 

rewritten and expanded as: 
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Where ki, j is the stiffness coefficient of the global 

stiffness matrix. 

Equating displacements in each direction of all nodes on 

the barrette by uniform displacements ux, vy and wz and 

carrying out the summation of rows and columns related 

to that displacements in Eq. (18), gives the composed 

coefficients with the force on the barrette Qx, Qy and Qz 

as follows: 
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Where Qx is sum of horizontal forces in x-direction on 

all barrette nodes, Qx=∑Px=0; Qy is sum of horizontal 

forces in y-direction on all barrette nodes, Qy=∑Py =0; 

Qz is sum of vertical forces on all barrette nodes, 

Qz=∑Pz= Ph; ux is uniform displacement in x-direction 

on all barrette nodes, ux= u70= ..= u90. vy is uniform 

displacement in y-direction on all barrette nodes, vx= v70= 

..= v90; wz is uniform displacement in z-direction on all 

barrette nodes, wx= w70= ..= w90; i1=3 i -2, i2=3i-1, i3=3i, 

j1=3j-2, j2=3j-1, j3=3j 

Solving the above system of linear equations, gives the 

displacement at each node, in which the vertical 

displacement is equal to the soil settlement at that node. 

Substituting barrette displacements from Eq. (19) in Eq. 

(18), gives contact forces on the barrette. 

3. NUMERICAL RESULTS 

A computer program has been developed for analyzing 

barrette using CCT using the method outlined in this 

paper. With the help of this program, an analysis of two 

verification examples is carried out first to judge the 

proposed method for both linear and nonlinear analyses. 

Then, a comparative examination of modeling for 

analyzing single barrette is carried out. Finally case 

studies for barrettes on the soil of the new area of East 

Port Said are presented. 

3.1. Validity of Linear Analysis of Single 
Barrette 

An analytical analysis of a single barrette having a 

rectangular cross section embedded in a multi-layered 

soil medium is available in the reference Basu et al.[1]. 

In the analytical analysis, the differential equations 

governing the displacements of the barrette-soil system 

were obtained using variation principles. Closed-form 

solutions for barrette deflection and axial force along the 

barrette shaft were then produced by using the method of 

initial parameters. 

The barrette is considered and analyzed for four different 

cases under different loads, geometries and subsoil 

conditions. The load on the barrette head and barrette 

geometry for the chosen cases are listed in Table 1. The 

subsoil of each case consist of four layers, each layer has 

a different Modulus of Elasticity Es and Poisson's ratio νs 
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as listed in Table 2. The barrette material properties are 

listed in Table 3.  

Table 1 Loads and barrette geometries, Basu et al.[1]. 

Case  Load [kN] Height [m] Cross section  

1 3000 15 0.5 [m] × 0.5 [m] 

2 2500 10 0.7 [m] × 0.7 [m] 

3 10000 40 2.8 [m] × 0.8 [m] 

4 8000 30 2.7 [m] × 1.2 [m] 

Table 2 Subsoil properties, Basu et al.[1]. 

Case Layer No. z [m] Es [kN/m2] νs [-] 

1 

1 2 10000 0.40 

2 5 15000 0.35 

3 10 30000 0.30 

4 ∞ 100000 0.15 

2 

1 1 10000 0.40 

2 5 15000 0.35 

3 8 30000 0.30 

4 ∞ 80000 0.20 

3 

1 5 20000 0.35 

2 15 25000 0.30 

3 35 30000 0.30 

4 ∞ 80000 0.20 

4 

1 2 15000 0.40 

2 12 25000 0.30 

3 22 30000 0.30 

4 ∞ 100000 0.15 

Where z Layer depth from the ground surface, [m]; Es 

Modulus of Elasticity, [kN/m2]; νs Poisson’s ratio, [-].  

Table 3 Barrette material properties, Basu et al.[1]. 

Modulus of Elasticity of the barrette material Ec = 

2.5×107  [kN/m2] 

Poisson's ratio of the barrette material       νc = 0.20 [-] 

A comparison of results of the single barrette in a multi-

layered soil medium of the present analysis using 

flexibility coefficient with those of Basu et al.[1] is 

presented herein. The height of the barrette is divided 

into equal elements, and the height of each element is h 

= 1 [m] in all cases. Both the barrette length and width 

are divided into four equal elements in each case. In the 

analysis, barrette material is considered to be elastic and 

the barrette is analyzed as 1D finite elements. 

The barrette settlement s along the barrette height 

obtained from the present analysis using flexibility 

coefficient for the four cases of analysis are compared 

with those of Basu et al.[1] in Figure 7 to Figure 10. 

From these results, it can be concluded that the absolute 

difference between the maximum settlements is ranging 

between 0.8 [%] for the first case and 2.0 [%] for the 

second case, while the other cases it is only 1.0 [%]. 

Also, the absolute differences between the minimum 

settlements are 7.0 [%], 4.0 [%], 15.0 [%] and 5.0 [%] 

respectively. 
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Figure 7 Settlement along the barrette height (case 1). 
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Figure 8 Settlement along the barrette height (case 2). 
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Figure 9 Settlement along the barrette height (case 3). 
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Figure 10 Settlement along the barrette height (case 4). 

These results show also that verification results of the 

present analysis using flexibility coefficient are in good 

agreement with those of Basu et al.[1]. Results of the 
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barrette head settlements are similar to those of Basu et 

al.[1]. However, regarding results of the base 

settlements, the difference reached 15.0 [%] in case of a 

barrette having a great aspect ratio in the cross section, 

case (3). The difference in this case is very small when 

compared to the barrette dimensions, which equals to 

0.06 [cm]. 

3.2. Validity of Nonlinear Analysis of 
Single Barrette 

A load tests of a single barrettes having a rectangular 

cross section embedded in a multi-layered soil medium 

are available in the reference Thasnsnipan et al. (1998) 

[29] and Lin et al. (2014) [18]. In the load tests, results 

of barrette load tests are obtained from Bangkok, 

Thailand subsoil area and Taipei, Thailand subsoil area 

respectively. 

The load on the barrette head and barrette geometry for 

the chosen cases are listed in Table 4 and Table 5. The 

subsoil of each case consists of different layers, each 

layer having a different Modulus of Elasticity Es and 

Poisson's ratio νs as listed in Table 6 and Table 7. This 

soil properties of Thasnsnipan et al. [29]can be found in 

Plaxis Bulletin [21].  

Table 4 Loads and barrette geometries, Thasnsnipan et 

al. [29]. 

Load [kN] Height [m] Cross section 

14000 

61.8 0.82 [m] × 2.7 [m] 28000 

35000 

Table 5 Barrette geometries, Lin et al. [18].  

Height [m] Cross section 

44 0.80 [m] × 2.5 [m] 

Table 6 Subsoil properties, Plaxis Bulletin [21] and 

Thasnsnipan et al. [29]. 

Layer No. z [m] Es [kN/m2] νs [-] 

1 12.5 5000 0.33 

2 23 60000 0.33 

3 37 80000 0.3 

4 40 20000 0.33 

5 53 80000 0.30 

6 58 20000 0.33 

7 ∞ 80000 0.30 

Table 7 Subsoil properties, Lin et al. [18].  

Layer No. z [m] Es [kN/m2] νs [-] 

1 26.46 93793 0.25 

2 28.40 253293 0.25 

3 30.44 221593 0.25 

4 33.60 88391 0.25 

5 36.80 131381 0.25 

6 40.80 192106 0.25 

7 42.44 166948 0.25 

8 ∞ 229738 0.25 

A comparison of the results of a single barrettes in a 

multi-layered soil medium of the present analysis using 

flexibility coefficient with those of Thasnsnipan et 

al.[29] and Lin et al. [18] are presented herein, The 

height of the barrette is divided into equal elements, each 

element has a height of h = 1.0 [m]. Both the barrette 

length and width are divided into four equal elements. 

The barrettes are analyzed nonlinearly using a 

hyperbolic function to represent the real load settlement 

curve relation. In the analysis, the barrette is assumed to 

be fully rigid having a uniform settlement. 

A limit barrette load Ql has been used as a parameter 

geometry for the hyperbolic curve of nonlinear response 

of load settlement relation. Russo [26] suggested a 

limiting shaft friction not less than 180 [kN/m2] meeting 

undrained shear strength of 200 [kN/m2]. To carry out 

the present nonlinear analysis a limit shaft friction of ql 

= 220 [kN/m2] is considered, which gives a limit barrette 

load of Ql = 96 [MN] to compare with the result with 

those of Thasnsnipan et al. [29], where it is calculated 

from:   

HLWql Ql  2)(     (20) 

Where W barrette width, [m]; L barrette length, [m]; H 

barrette height, [m].  

A limit barrette load of Ql = 50 [MN] is taken, to 

compare with the result with those of Lin et al.[18], 

where it is assumed from the load settlement curve of 

Lin et al.[18].  

The barrette load-settlement relations obtained from the 

present nonlinear analysis using flexibility coefficient 

are compared with those of the load tests carried out by 

Thasnsnipan et al.[29] and Lin et al. [18] in Figure 11 

and Figure 12 respectively. From these figures, it can be 

concluded that the difference of the measured and 

computed settlement is less than 10.0 [%], which have a 

very small value of 0.04 [cm] and 0.16 [cm] compared 

with those of Thasnsnipan et al.[29] and Lin et al. [18] 

respectively. It is also very small when compared to the 

barrette dimensions. It also shows that the verification of 

the load-settlement behavior of the present nonlinear 

analysis are in good agreement with those of measured 

load settlement tests carried out by Thasnsnipan et 

al.[29] and Lin et al. [18].  
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Figure 11 Load settlement curve, Thasnsnipan et al. [29]. 
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Figure 12 Load settlement curve, Lin et al. [18]. 

3.3. Comparative Examinations of 
Modeling for Analyzing Single Barrette 

A single barrette having a rectangular cross section 

embedded in different subsoil conditions is analyzed 

using the two different models based on CCT technique: 

1. 3D finite element model. 

2. Flexibility coefficient model. 

Results of 3D finite element model are compared with 

those using flexibility coefficient model. In 3D finite 

element model, the barrette-soil system are represented 

by block elements, each consists of eight nodes. The 

composed coefficient technique CCT is implemented in 

both 3D finite element and flexibility coefficient models. 

In this case, the barrette is treated as a rigid body having 

uniform settlement. This technique reduces the 

commotional time and the size of the problem as these 

two terms considered as main difficulties in the three 

dimensional problems.   

The purpose of the comparative study is showing the 

limitations and differences in both results and also to be 

a guideline to determine which model may be preferably 

used in the analysis. The barrette shown in Figure 13 is 

considered and analyzed linearly for twelve different 

cases of loads, subsoil and geometries. Analysis covered 

a wide range of variables of barrette length L and 

barrette height H. The effect of these variables on the 

settlement is also investigated. The barrette geometry for 

the chosen cases is listed in Table 8, while the loads on 

the barrette head of each case are listed in Table 9. 

 
Figure 13 Single barrette with subsoil (A). 

Table 8 Barrette geometries. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0 

H = 10  Case 1 Case 2 Case 3 Case 4 

H = 15  Case 5 Case 6 Case 7 Case 8 

H = 20  Case 9 Case 10 Case 11 Case 12 

Table 9 Barrette loads. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0  

H = 10  750 1000 1250 1500 

H = 15  900 1200 1500 1800 

H = 20  1050 1400 1750 2100 

Table 10 Subsoil properties. 

Soil z [m] Es [kN/m2] νs [-] 

(A) 2 H 5000 0.30 

(B) 

0.4 H 5000 0.40 

1.2 H 8000 0.35 

2 H 10000 0.30 

(C) 
0.6 H 5000 0.40 

2 H 25000 0.30 

(D) 
0.6 H 25000 0.30 

2 H 5000 0.40 

The twelve cases of loads and geometries are analyzed 

with different subsoil’s as listed in Table 10 as follows: 

 Soil (A) Single layer. 

 Soil (B) Three different layers extended from a weak 

layer to a hard one. 

 Soil (C) Two different layers, the first is a weak 

layer and the second is a hard one. 

 Soil (D) Two different layers, the first is a hard layer 

and the second is a weak one. 

 
Figure 14 Soil medium. 

A single barrette is analyzed in a single soil layer, and 

the height of the barrette is divided into equal elements, 

of 1.0 [m] height each. The barrette length and width are 
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divided into two equal elements. To ensure full 

interaction between the isotropic elastic half-space soil 

medium and the barrette, the dimension of the soil 

around the barrette is extended enough, as shown in 

Figure 14. The barrette is analyzed linearly and the 

barrette is assumed to be fully rigid having a uniform 

settlement. 

In the 3D finite element model, the barrette and the soil 

elements are solved as double symmetric system to 

reduce the number of equations to quarter. 

Consequently, the computational time is also reduced. 

The barrette settlements obtained from both analysis are 

compared. Figure 15 to Figure 18 show the settlement 

results and the difference in the calculated settlements 

for the two models.  

From these figures, it can be concluded that: 

 For a single soil layer, Soil (A), settlements are 

identical for both models. The maximum difference in 

the settlement of both models lies between 0.1 [cm] 

and 0.2 [cm], which is equal to a very small value 

when compared with the barrette dimensions.  

 For soil consists of three different layers extended 

from a weak layer to a hard layer, Soil (B), settlements 

are identical for both models. The maximum 

difference in the settlement between both models is 0.1 

[cm], which is very small when compared with the 

barrette dimension. 

 For two different layers where the first is a weak 

layer and the second is a hard layer, Soil (C), 

settlements are identical for both models. The 

maximum difference in the settlement between both 

models lies between 0.1 [cm] and 0.2 [cm], which is 

very small when compared with the barrette 

dimensions. 

 For two different layers where the first is a hard 

layer and the second is a weak one, Soil (D), the 

maximum difference in settlements between both 

models is high and maybe twice. It is found that 

settlements from 3D finite element model are less than 

those of flexibility coefficient model. This is related to, 

in 3D finite element mode, the first harder layer is to 

be a support for the next weaker soil layer, where the 

soil is treated as continuum structure connected 

together and maybe resist soil tension. In this case 

interface elements between the two layers could be 

inserted to enhance the flexibility coefficient 

technique.   
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Figure 15 Comparison between settlements, Soil (A). 
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Figure 16 Comparison between settlements, Soil (B). 
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Figure 17 Comparison between settlements, Soil (C). 
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Figure 18  Comparison between settlements, Soil (D) 

3.4. Case Studies of a Single Barrette 

This section presents the main features of the numerical 

models used in analyzing the behavior of single barrette 

in a real subsoil. The subsoil of East Port Said area is 

considered as the proposed real subsoil in these case 

studies. The reason is that the existing heavy loaded 

structures in East Port Said suffered from settlement 

problems due to the presence of extended soft clay 

layers. The typical subsoil layers of East Port Said area, 

as presented by Hamza, M.[9] in Table 13, is considered 

in the analysis. The different case studies under 

investigation are also described. Every case is examined 

in a parametric study. The study covered different 

barrette lengths L with different barrette heights H for a 

constant barrette width W of 1.0 [m]. The effect of these 

variables on the barrette loads at certain settlement is 
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also investigated. Furthermore, the analysis is carried out 

considering various calculation methods. The main 

features of the most effective numerical methods suitable 

for the single barrette analysis in East Port Said clay are 

also discussed. The main variables of the parametric 

study are described in the next paragraphs. 

3.4.1.  Barrette Properties 
Twelve case studies of single barrettes are considered as 

given in Table 11.  

Table 11 Studied cases of a single barrette. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0  

H = 24  Case 1 Case 2 Case 3 Case 4 

H = 30  Case 5 Case 6 Case 7 Case 8 

H = 36  Case 9 Case 10 Case 11 Case 12 

The subsoil of each case assumed to be the typical soil 

properties of East Port-Said area as given in Table 13, 

each layer has a different Modulus of Elasticity Es and 

Poisson's ratio νs. The barrette material properties are 

listed in Table 12.  

Table 12 Barrette material properties. 

Modulus of Elasticity of the barrette material   Ec = 

2.5×107  [kN/m2] 

Poisson's ratio of the barrette material        νc = 0.20 [-] 

Table 13 Subsoil properties, Hamza et al. [9]. 

Layer No. z [m] Es [kN/m2] νs [-] 

1 5 2400 0.2 

2 13.5 30000 0.25 

3 28.5 8120 0.2 

4 38.5 9940 0.2 

5 48.5 11340 0.2 

6 58.5 12810 0.2 

7 92.5 60000 0.2 

8 120 144000 0.2 

3.4.2. Numerical Analysis 
In this paper, comparative tests of numerical models for 

analyzing single barrette in East Port Said deep clay 

layers are performed. For the purpose of comparative 

investigations, two different models of single barrette are 

considered in a total of 48-case studies. The analysis is 

carried out by the following methods: 

1. Elastic barrette in a continuum soil medium. 

2. Rigid barrette in a continuum soil medium. 

The load-settlement relation is determined according to: 

a) Nonlinear analysis of a single barrette using 

hyperbolic function. 

b) Linear analysis of a single barrette. 

The availability of the above mentioned analysis 

methods and load-settlement models provides the 

researcher with a wide variety of numerical models that 

can handle the problem of single barrette as indicated in 

Table 11. In this analysis, many case studies of single 

barrette are analyzed using different numerical models in 

order to explore the effect of the type of calculation 

method on the results.  

 
Figure 19 Surface element of the single barrette. 

 
Figure 20 Barrette representing by 3D finite elements. 

 

 
Figure 21 Barrette representing by 1D finite elements. 

 
Figure 22 Barrette representing as rigid elements. 
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which are divided into equal elements, and the height of 

each element is h = 1.0 [m], in all cases. Both the 

barrette length and width were divided into equal 

elements, the length and the width of each element is l = 

w = 0.5 [m], in all cases as shown in Figure 19 to Figure 

22. 

3.4.3. Limit Barrette Load 
A limit barrette load Ql [kN] has been used as parameter 

geometry for the hyperbolic curve of nonlinear response 

of load settlement relation. Russo suggested limit shaft 

friction not less than ql = 180 kN/m2 meeting undrained 

shear strength of 200 [kN/m2]. To carry out the present 

analysis a limit shaft friction of ql = 180 kN/m2 has been 

assumed, the limit barrette load for barrettes of different 

dimensions has been calculated from Eq (20). Using this 

equation, limit barrette load considered in the analysis 

for barrette dimensions which are presented in Table 14. 

Table 14     Limit barrette load Ql [kN] for different 

barrette geometries. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0  

H = 24 21600 25920 30240 34560 

H = 30 27000 32400 37800 43200 

H = 36 32400 38880 45360 51840 

3.4.4. Guideline of Barrette Stiffness 
One of the difficulties that arise when analyzing a three 

dimensional problem, such as barrette in a continuum 

soil medium, is the huge number of 3D finite elements 

required for the analysis. Consequently, a long 

computational time is needed. Before performing the 

analysis routine, an examination for the used element 

type and barrette rigidity is carried out. This examination 

depends on that barrette itself as a great block of 

concrete which may be considered as rigid enough in the 

long direction. This property advantage maybe used to 

simplify the problem and to accelerate the analysis.     

3.4.4.1. Barrette Elasticity 
To analyze the barrette as an elastic material, two 

different methods are used in this paper. The first 

depends on 3D finite elements representing the barrette 

by its natural geometry, Figure 20. The second method 

using 1D finite elements in the z-direction representing 

the barrette as line elements in the direction of its height, 

Figure 21. The twelve cases listed before are analyzed 

using the two different types of elements, and the results 

of reactions, settlements and elapsed time are compared, 

as shown in Figure 23 to Figure 26. 

3.4.4.2. Conclusion of Barrette Elasticity 

From Figure 23 to Figure 26 it can be concluded that: 

 The absolute difference in the base reactions using 

1D and 3D finite elements is less than 1.18 [%], while 

that for shaft reactions is less than 0.08 [%]. 

 The elapsed time to analyze the single barrette will 

be decreased by about 85 [%] when using 1D finite 

elements. 

 The difference in the settlement when using 1D and 

3D finite elements are less than 0.25 [%]. 
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Figure 23 Base reaction using 1D and 3D finite elements. 
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Figure 24 Shaft reaction using 1D and 3D finite elements. 
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Figure 25 Max. and Min. settlement when using 1D and 

3D finite elements. 
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Figure 26   Elapsed time [sec] when using 1D and 3D 

finite elements. 
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3.4.4.3. Barrette Rigidity 
Settlement along the barrette height is considered the 

main important value in all barrette results. Therefore, in 

this section an examination is carried out for considering 

the barrette as one unit having a uniform settlement 

along its height or as an elastic body having a non-

uniform settlement along its height. In the first 

assumption the barrette is treated as a full rigid body 

which obeys the rigid body movement, while in the 

second the barrette is treated as an elastic body taking 

into account the elastic property of its material. 

The twelve cases listed before for single barrette are 

analyzed as a full rigid barrette in a continuum soil 

medium, Figure 22, and as an elastic barrette in a 

continuum soil medium, Figure 21. Results of the 

settlements are compared using both linear and nonlinear 

analyses, as shown in Figure 27, Figure 28.  
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Figure 27   Maximum, minimum and rigid settlement 

using linear analysis. 
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Figure 28   Maximum, minimum and rigid settlement 

using nonlinear analysis. 

3.4.4.4. Conclusion of Barrette Rigidity 

From Figure 27, Figure 28, it can be concluded that: 

 The absolute difference between the maximum 

settlement considering a rigid barrette and an elastic 

barrette for both linear and nonlinear analyses is about 

9.74 [%]. It occurred in case (9), and is less than 8 [%] 

in all the remaining other cases. 

 The absolute difference between the minimum 

settlement considering a rigid barrette and an elastic 

barrette for both linear and nonlinear analyses is about 

4.78 [%]. It is occurred in case (9), and is less than 4 

[%] in the other cases. 

 The maximum difference occurs in barrettes having 

a long height in the soil. 

 Barrettes of small cross sections gave higher 

settlement difference.  

 In spite of the relatively large differences between 

the maximum settlements which ranged between 9.74 

[%] and 4.78 [%], their actual value are very small, 

0.204 [cm] and 0.1 [cm], respectively. 

4. CONCLUSIONS  

An application of CCT on barrettes as large-section 

supports is presented. The proposed technique considers 

the 3D full interactions between barrette and soil. From 

application of CCT technique on real soil, it can be 

concluded that: 

 Both flexibility coefficient and 3D finite element 

models can be used safely in the linear analysis of 

single barrette in cases of half space soil and soil 

consists of different layers extended from weak to hard 

layers and the results are identical.  

 For soils that consist of different layers extended 

from hard layer to weak one, the maximum difference 

in the settlement between both models is high and 

reach twice. It is found that settlements from 3D finite 

element model are less than those of flexibility 

coefficient model. This is related to, in 3D finite 

element mode, the first harder layer is to act as a 

support for the next weaker soil layer, where the soil is 

treated as continuum structure connected together and 

maybe resist soil tension. In this case interface 

elements between the two layers maybe inserted to 

enhance the results.   

 Flexibility coefficient model can be used safely to 

model all cases of soil conditions. 

 Due to the less number of nodes in flexibility 

coefficient model rather than 3D finite element model, 

the first model consumes less computation time in the 

analysis. 

 Treating the barrette as an elastic body and 

representing the barrette by either 1D or 3D finite 

elements, gives nearly the same results. This 

conclusion is used in this paper, when analyzing the 

barrette as an elastic body. 

 Treating the barrette as a rigid body due to its high 

rigidity in the direction of its height, gives nearly the 

same results as treating it as an elastic body.  
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