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ABSTRACT 

Design of economic seismic resisting structural systems with an acceptable safety margin requires continuous 

improvements for the available numerical models and analysis tools. In this work, an improved reinforced concrete 

membrane element based on the modified compression filed theory (MCFT) is presented. The developed element is 

implemented into a developed finite element program in order to study seismic response of different types of seismic 

resisting systems which are commonly used in the construction of concrete buildings in Egypt. Two types of floor 

systems, (beamed/beamless floors) and two types of seismic resisting systems, (frames/coupled frames with shear 

walls), are investigated. Reinforced concrete flexibility-based beam column and plane stress elements were used to 

model frames and shear walls, respectively. The static response of these systems subjected to triangular load pattern was 

investigated through nonlinear static analysis. It was concluded that, the predicted force reduction factor based on 

nonlinear static analysis of the examined systems is 50% to 75% less than those provided by Egyptian code; such 

variation could lead to uneconomic or inadequate design. 
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 Introduction 

Determination of the structural properties (initial 

stiffness, ultimate capacity, and different global and 

local ductility demands) of a building is an essential 

step in the evaluation of its seismic response. Due to 

the complex interactions between various components 

of real structures, their nonlinear characteristics up to 

failure cannot be identified solely from the 

experimental tests of scale models. Historically these 

difficulties have been overcome by static tests on 

structural members or components on reduced-scale 

sub-assemblages of structures under cyclic load 

reversals.  

 

Seismic resisting systems are commonly formed 

from either rigid frames or shear walls or dual systems 

composed from rigid frames and shear walls. From the 

various types of finite elements which are used in 

modeling of seismic resisting elements, two types are 

commonly investigated by researchers; beam-column 

and plane stress reinforced concrete elements. 

Modeling of reinforced concrete structural walls using 

plane stress elements have been studied by many 

researchers [1]. The modified compression filed theory 

(MCFT) gained popularity due its simplicity and ease 

of finite element implementation. 
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In 1990, finite element formulations for membrane 

elements are discussed in details [2]. Cracked 

reinforced concrete is treated as an orthotropic material 

based on smeared rotating crack model. Secant-

stiffness moduli are defined for concrete and 

reinforcement, and these are used in the development 

of linear displacement rectangular and triangular 

membrane finite elements.  

Hut proposed plane stress constitutive models for the 

nonlinear finite element analysis of reinforced concrete 

structures under monotonic loading [3]. An elastic 

strain hardening plastic stress-strain relationship with a 

nonassociated flow rule is used to model concrete in 

the compression dominating region and an elastic 

brittle fracture behavior is assumed for concrete in the 

tension dominating area. After cracking, the smeared 

cracked approach together with the rotating crack 

concept is employed. The reinforcement is modeled by 

an idealized bilinear curve identical in tension and 

compressions. In 1996, a static non-linear finite 

element analysis (FEM) followed by a non-linear 

dynamic analysis of lumped mass single degree of 

freedom model of the structure was proposed [4]. Jagd 

included in his model the nonlinear material behavior 

of concrete, rotating crack directions, sliding in old 

cracks and compressive strength reduction effects [4]. 

Hysteresis features that include stiffness degradation 

and pinching effects are also used to describe the cyclic 

behavior of the shear wall. The model was excellent for 

determining the dynamic behavior of shear wall with 

large concentrated mass [4]. 

Hidalgo developed a computer model capable of 

predicting the seismic behavior of shear-wall buildings 

[5]. The model allowed better estimations of both the 
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ultimate lateral strength of these buildings as well as 

their inelastic deformation demand under severe 

ground motions. A shear failure mode model based on 

experimental results has been also added to the 

computer program. Mo presented the cyclic softened 

membrane model (CSMM) and implemented it into a 

finite element program, to predict the behavior of RC 

wall-type structures [6]. The entire hysteretic loops of 

framed shear walls, including the backbone curves, the 

initial stiffness, the yield point, the peak strength, the 

descending branch, the failure characteristics, the 

pinching effect, the residual displacement and the 

energy dissipation are considered in the developed 

program [6]. On the other hand, the shear modulus (G) 

of reinforced concrete membrane elements subjected to 

monotonic in-plane shearing stresses typically 

calculated using the elastic theory was replaced by a 

simple empirical equation [7]. Rahal presented a 

simple empirical equation for the calculation of the 

post-cracking shear modulus, given in the form of the 

tangent slope of the shear stress-strain curve [7]. 

In the present work, an improved solution technique 

is proposed for reinforced concrete membrane element 

for the case of shear walls subjected to cyclic loading. 

The proposed solution technique is implemented into a 

finite element computer program. The finite element 

computer program is used to study seismic response of 

a case study with different types of seismic resisting 

systems which are commonly used in the construction 

of concrete buildings in Egypt. 

 R/C Plane Stress Element 

The formulation of membrane element is based on 

the modified compression filed theory (MCFT) with 

the assumption of rotating crack approach. The element 

stiffness matrix is derived from the flowing integral 

which will be obtained numerically, 

       dABDBtk
T

A

..  (1) 

where t is the element thickness, and [D] is the material 

constitutive matrix based on the current state of 

element.  

In construction of plane stress element stiffness 

matrix [k], the material stiffness [D] is required to 

relate stresses {σ} to strains {ε}, that is: 

 {𝜎} = [𝐷]{𝜀} (2) 

where {𝜎}= {𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦}𝑇, and 

{ε}= {ε𝑥 ε𝑦 𝛾𝑥𝑦}𝑇.  

The stress strain matrix [D] for reinforced concrete 

membrane element in the x-y coordinate will take the 

form: 

 [𝐷] = [𝑇]𝑇[𝐷]𝑐𝑙[𝑇] + [𝑇]𝑇[𝐷]𝑠𝑖[𝑇]    [2] (3) 

where [𝐷]𝑐𝑙  is the stress strain matrix for concrete in 

the local principal stress coordinates, [𝐷]𝑠𝑖 is the stress 

strain matrix for reinforcement in the steel local 

coordinates relative to the x-y coordinates, and [𝑇] is 

the transformation matrix from the material local 

coordinates into the x-y global coordinates. Not 

that [𝑇] will be has different values for both concrete 

and reinforcement. 

2.1 States of Stress-Strain Matrix [D] 

For linear elastic isotopic material in a plane stress 

state, the stress strain matrix for concrete [D]c will take 

the form: 

 [𝐷]𝑐 =
𝐸𝑐

1−𝜐2 [
1 𝜐 0
𝜐 1 0
0 0 (1 − 𝜐) 2⁄

]      [2] (4) 

where Ec is the initial tangent modulus for concrete, 

and 𝜐 is the Poisson’s ratio for concrete material in the 

elastic state. 

In the elastic state the stress-strain matrix [𝐷]𝑐 in the 

local coordinates of principal stresses will be the same 

in the global coordinates. For nonlinear stress-strain 

matrix, three Cartesian coordinates, x–y, 1–2, and xsi–

ysi, are defined in reinforced concrete elements, as 

demonstrated in Figure 1 Coordinate x–y represents the 

local coordinate of the elements. Coordinate 1–2 

defines the principal stress directions of the applied 

stresses, which have an angle θ1 with respect to the x-

axis. Steel bars can be oriented in different directions 

in the elements. Coordinate xsi–ysi shows the direction 

of the ‘ith’ group of rebars, where the ‘ith’ group of 

rebars are located in the direction of axis xsi with an 

angle θsi to the x-axis.  

 
Figure 1:  Coordinate System for Reinforced Concrete 

Element. 

If the strains in the x-y direction are  {ε𝑥 ε𝑦 𝛾𝑥𝑦}𝑇 

,then the strains in the coordinate system 1-2 will be 

 {ε1 ε2 𝛾12}𝑇 will be related to the x-y direction 

strains by the following equation: 

 {

ε1

ε2

𝛾12

} = [𝑇(𝜃1)] {

ε𝑥

ε𝑦

𝛾𝑥𝑦

} (5) 

Considering c = cos(θ1) and s = sin(θ1), then the 

transformation matrix [𝑇(𝜃1)] will be calculated from 

the following equation 

 [𝑇(𝜃1)] = [
𝑐2 𝑠2 𝑐𝑠
𝑠2 𝑐2 −𝑐𝑠

−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2

] (6) 
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𝜃1 = tan−1 (
0.5𝛾𝑥𝑦

(𝜀𝑥 − 𝜀𝑐2)
)         𝜀𝑥 ≠  𝜀𝑐2 

  𝜃1 = 0                                         𝜀𝑥 =  𝜀𝑐2         

(7) 

For cracked concrete, having strains in the principal 

directions, the corresponding tangent stiffness modulus 

for each direction is calculated according to the chosen 

material model described in the previous subtitles. In 

the current study the Poisson’s ratios are neglected 

after cracking. The local 1-2 concrete stress-strain 

matrix [𝐷]𝑐𝑙 will be: 

 [𝐷]𝑐𝑙 = [

𝐸𝑐1 0 0
0 𝐸𝑐2 0
0 0 𝐺12

] (8) 

where 𝐺12 is the tangent shear modulus calculated 

from, 

 𝐺12 =
𝜎1𝑐 − 𝜎2𝑐

2(𝜀1 − 𝜀2)
                       [10] (9) 

where 𝜎1𝑐  and 𝜎2𝑐 are the concrete stresses in 1- and 

2-direction respectively and their corresponding strains 

𝜀1 and 𝜀2, respectively. 

If two perpendicular reinforcements are used in l-t 

direction reinforcement are aligned with an angle of θsi 

from the x-y direction, the strains  {ε𝑥 ε𝑦 𝛾𝑥𝑦}𝑇 

from x-y coordinate will be transformed to the l-t 

coordinate system using: 

 {

ε𝑙

ε𝑡

𝛾𝑙𝑡

} = [𝑇(𝜃𝑠𝑖)] {

ε𝑥

ε𝑦

𝛾𝑥𝑦

} (10) 

Considering that the steel mesh will not resist any 

shear stresses; then the stress-strain matrix [𝐷]𝑠𝑙 in 

coordinate l-t will be calculated from: 

 [𝐷]𝑠𝑖 = [
𝜌𝑙𝐸𝑠𝑙 0 0

0 𝜌𝑡𝐸𝑠𝑡 0
0 0 0

] (11) 

where 𝐸𝑠𝑙  and 𝐸𝑠𝑡  are the tangent stiffness for 

reinforcement in l- and t-directions, respectively.  

Finally the composite reinforced concrete stress-strain 

matrix is transformed into x-y direction using: 

 
[𝐷] = [𝑇(𝜃1)]𝑇[𝐷]𝑐𝑙[𝑇(𝜃1)]

+ [𝑇(𝜃𝑠𝑖)]𝑇[𝐷]𝑠𝑖[𝑇(𝜃𝑠𝑖)] 
(12) 

2.2 Crack Angle Algorism 

According to the assumption of smeared rotating 

crack, the crack direction is changed continuously 

during nonlinear analysis according to the principal 

strains directions. Each direction has its nonlinear 

history parameters specially when dealing with cyclic 

loading. These nonlinear parameters (i.e. current strain, 

maximum/minimum strains and stresses, plastic 

strains, etc…) must be recorded for each principal 

direction. For the case of reversed loading, the 

principal tensile direction was the principal 

compression one earlier, but the nonlinear parameters 

recorded in the previous step must be switched 

between these directions if the angle between the 

current and the previous directions is about 90 degrees. 

In order to capture this process automatically during 

nonlinear analysis, an algorism is proposed as follows:  

 Check is |(θ1prev - θ1) | greater than or equal to 45o 

and |(θ1prev - θ1)| less than or equal to 135o. 

 If the previously stated condition is satisfied, then 

keep both recorded nonlinear data in the same 

directions and set θ1prev = θ1. 

 Otherwise, switch the nonlinear data between 

principle directions and set θ1prev equal to θ1- 90o 

if θ1 is greater than θ1prev and set θ1prev equal θ1+ 

90o otherwise.  

The above procedure allows switching the nonlinear 

parameters automatically between principle strain 

directions. Implementation of crack angle algorism in 

the element resistance nodal forces process of the 

reinforced concrete plane stress element is illustrated in 

Figures 2 and 3. 
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Figure 2:  Crack angle algorism implementation and 

principle strains calculation procedure. 

 
Figure 3:  Calculation of plane stress element 

equivalent resistance nodal forces. 

 Material Modeling 

Different types of uniaxial stress strain curves are 

adopted in the finite element program for both concrete 

and reinforcing steel.  

3.1 Concrete Envelope Curves 

3.1.1 Compression envelopes 

The stress strain curve for concrete in compression 

by Kent [8] for unconfined and confined concrete is 
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used in the present study. The model generalized 

Hognestad equation to more completely describe the 

post-peak stress-strain behavior [9]. For unconfined 

concrete the envelope is defined by: 

 𝑓𝑐𝑖 = 𝑓𝑐′ {2 (
𝜀𝑐𝑖

𝜀𝑐𝑜

) − (
𝜀𝑐𝑖

𝜀𝑐𝑜

)
2

},   𝜀𝑐𝑖 ≤ 0.002   
 

(13) 

 𝑓𝑐𝑖 = 𝑓𝑐
′ [1 − 𝑧(𝜀𝑐𝑖 − 𝜀𝑐𝑜)]    𝜀𝑐𝑖 > 0.002      (14) 

 𝑧 =
0.5

𝜀50𝑢 − 𝜀𝑐𝑜

 (15) 

 𝜀50𝑢 =
3 + 0.29𝑓𝑐

′

145𝑓𝑐
′ − 1000

    , 𝑓𝑐
′ 𝑖𝑛 [𝑀𝑃𝑎]  (16) 

For confined concrete, Confinement only affected the 

slope of the post-peak branch and is given by 

 𝑓𝑐𝑖 = 𝑓𝑐
′ [1 − 𝑧(𝜀𝑐𝑖 − 𝜀𝑐𝑜)]     (17) 

 𝑧 =
0.5

𝜀50ℎ + 𝜀50𝑢 − 𝜀𝑐𝑜

 (18) 

 
𝜀50ℎ = 𝜀50𝑐 − 𝜀50𝑢 =

3

4
𝑝′′√

𝑏′′

𝑠
 

𝜀50𝑢 =
3 + 0.29𝑓𝑐

′

145𝑓𝑐
′ − 1000

        , 𝑓𝑐
′ 𝑖𝑛 [𝑀𝑃𝑎] 

(19) 

where 𝜀50𝑐 and 𝜀50𝑢 are the strains corresponding to 

the stress equal to 50% of the maximum concrete 

strength for confined and unconfined concrete, 

respectively. 
𝑏′′

𝑠
 is the ratio between the width of the 

concrete core and the center to center spacing of hoops, 

𝑝′′ is the volumetric ratio of confining hoops to volume 

of concrete core measured to the outside of the 

perimeter hoops and is expressed as: 

 
𝑝′′ =

2(𝑏′′ + 𝑑′′)𝐴𝑠′′

𝑏′′𝑑′′𝑠
 

(20) 

where 𝑏′′ and 𝑑′′ are the width and depth of the 

confined core respectively, 𝐴𝑠′′ is the cross-sectional 

area of the hoop bar and  𝑠 is the center to center 

spacing of the hoops. 

 

Figure 4: Stress-strain model for confined and 

unconfined concrete [8]. 

3.1.2 Tension envelopes 

In the present paper linear and the exponential 

softening patterns presented by He [10] are used, 

Figure 5. The exponential function for concrete 

response in tension after cracking involving limiting 

value of ultimate tensile strain based on crack facture 

energy. 

𝑓𝑡 = {

𝐸𝑐𝜀

𝑓𝑐𝑟 𝑒𝑥𝑝 (−
𝜀 − 𝜀𝑐𝑟

𝜀𝑡𝑢 − 𝜀𝑐𝑟

)

0

}

 𝜀 ≤  𝜀𝑐𝑟

   𝜀𝑐𝑟 < 𝜀 <  𝜀𝑡𝑢

 𝜀 >  𝜀𝑡𝑢

 (21) 

where, 𝜀𝑡𝑢 is the ultimate tensile strain which is 

determined from the tensile fracture energy Gf  and 

determined from 

 𝜀𝑡𝑢 =
𝐺𝑓

ℎ𝑓𝑐𝑟

+ 0.5𝜀𝑐𝑟 (22) 

where h is the crack band width and related to the area 

of the finite element, A, by the following relation 

 ℎ = 𝛼√𝐴 (23) 

where 𝛼 = √2 is factor with a suggested value [10]. 

 
Figure 5: Common types of tension stiffening models. 

3.2 Reinforcing Steel Envelope Curves 

The first idealization neglects the strength increase due 

to strain hardening and the reinforcing steel is modeled 

as a linear, perfectly plastic material, as shown in 

(Figure 6-a). More accurate idealizations which 

account for the strain hardening effect are required, as 

shown in Figure 6-b. The parameters of these models 

are the stress and strain at the onset of yielding (fy ,εy), 

the strain at the onset of strain hardening and the stress 

and strain at ultimate (fmax, εu). These parameters can 

be derived from experimentally obtained stress-strain 

relations. 
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 𝑓𝑠 = {

𝐸𝑆  𝜀 

𝑓𝑦 + 𝑏𝐸𝑆( 𝜀 − 𝜀𝑦)

0

}   

 𝜀 ≤ 𝜀𝑦

𝜀𝑦 < 𝜀 ≤ 𝜀𝑢

𝜀 > 𝜀𝑢

 (24) 

where 𝐸𝑆 is the initial tangent modulus for steel 

material,  𝑓𝑦 is the yield strength for reinforcement 

steel, b is the hardening tangent modulus ratio, and 𝜀𝑢 

is the ultimate strain of reinforcement steel. 

 
(a) elastic-perfect plastic model 

 
(b) elastoplastic with strain hardening ratio 

Figure 6: Idealized steel stress-strain relation 

3.3 Concrete Hysteric Model 

Different models for concrete hysteretic behavior were 

presented and discussed in the literature. In the present 

research some simplifications for the model presented 

by He were made [10]. A linear loading/reloading 

paths from tension or compression domains were 

assumed, Figure 7-a. The plastic compressive and 

tensile strains are calculated from: 

𝜀𝑐
𝑝𝑙

= 𝜀𝑐
𝑚𝑖𝑛 −

20

7
[1 − 𝑒𝑥𝑝 (−0.35

𝜀𝑐
𝑚𝑖𝑛

𝜀𝑐
𝑜

)] 𝜀𝑐
𝑜 (25) 












cr

tt

cr

tt

cr

ttpl

t





      8.09.0

                               0

max
 

(26) 

where 𝜀𝑐
𝑚𝑖𝑛 and 𝜀𝑐

𝑜 are the maximum experienced 

compressive strain and strain corresponding to peak 

stress on the compression envelope curve. m ax

t and 

cr

t are the maximum experienced tensile strain and 

cracking strain of concrete. Under reversed cyclic 

loading, concrete may repeatedly experience crack 

closing and reopening. Hence, we need to define a path 

for the process. The stress required to cause crack close 

can be expressed as follows: 

 𝜎𝑐𝑟𝑎𝑐𝑘
𝑐𝑙𝑜𝑠𝑒 = −𝑓𝑡 (0.05 +

0.03𝜀𝑡
𝑚𝑎𝑥

𝜀𝑡
𝑐𝑟

) (27) 

The path of the crack closing is illustrated by a straight 

line that connects points TE and TU, as shown in 

Figure 7-b.  

 
(a) Linear unloading/reloading paths 

 
(b) transition from compression to tension 

Figure 7: Concrete hysteretic behavior modified from 

He et al. [10] 

3.4 Reinforcing Steel Hysteric Model 

Previous research shows that the Menegotto-Pinto 

equation represents well the unloading and reloading 

response of reinforcing steel subjected to cyclic 

loading. The model as presented in Menegotto [11] is 

used in the present work as follows: 

 𝑓∗ = 𝑏. 𝜀∗ +
(1 − 𝑏). 𝜀∗

(1 + 𝜀∗𝑅)1/𝑅
 (28) 

 𝜀∗ =
𝜀 − 𝜀𝑟

𝜀𝑜 − 𝜀𝑟

 (29) 
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 𝑓∗ =
𝑓 − 𝑓𝑟

𝑓𝑜 − 𝑓𝑟

 (30) 

Eq. (28) represents a curved transition from a straight 

line asymptote with slope E0 to another asymptote with 

slope E1 (lines (a) and (b), respectively, in Figure 8-a), 

and εo are the stress and strain at the point where the 

two asymptotes of the branch under consideration meet 

(point B in Figure 8-a); similarly, σr and εr are the 

stress and strain at the point where the last strain 

reversal with stress of equal sign took place (point A in 

Figure 8-a); b is the strain hardening ratio, that is the 

ratio between slope E1 and E0 and R is a parameter that 

influences the shape of the transition curve and allows 

a good representation of the Bauschinger effect.  

 
(a) transition from linear-elastic to plastic after yield 

 
(b) definition of parameter ”R” 

Figure 8: Menegotto-Pinto steel model [11]. 

As indicated in Figure 8-a, (εo , σo ) and (εr , σr ) are 

updated after each strain reversal. R is considered 

dependent on the strain difference between the current 

asymptote intersection point (point A in Figure 8-b) 

and the previous load reversal point with maximum or 

minimum strain depending on whether the 

corresponding steel stress is positive or negative (point 

B in Figure 8-b). The expression for R takes the form  

 
𝑅(𝜉) = 𝑅𝑜 −  

𝑎1𝜉

𝑎2 + 𝜉
 [13] 

(31) 

where ξ is updated following a strain reversal. Ro is the 

value of the parameter R during first loading and a1, a2 

are experimentally determined parameters to be 

defined together with Ro. The definition of ξ remains 

valid in case that reloading occurs after partial 

unloading and calculated from  

         

0d        

0d        

0

min

st

0

max

st

































sy

sy

 
(32) 

In the present research the parameter values are taken 

as follows: R0 20, a1 18.5, a2 0.15. 

 Model Verification 

The reinforced concrete plane stress element used in 

the present work is based on modified compression 

field theory MCFT with smeared rotating crack 

approach. Cracking of element is allowed at four 

integration points. In order to verify the stability and 

accuracy of the nonlinear implementation, a group of 

comparisons with experimental results and other 

published studies is performed. 

4.1 Monotonically Loaded Panels 

In the experimental work conducted at university of 

Toronto “Toronto test program” the approach adopted 

was to subject simple reinforced concrete panel 

elements to uniformly applied, well –controlled edge 

loads representing general conditions of in-plane stress 

using the panel element tester which is capable of 

loading (890*890*70) mm test specimens under any 

combination of in-plane stress. Typical panel test and 

finite element idealization are shown in Figure 7. The 

original test program involved the 30 panel elements 

(PV-series specimens) reported by Vecchio and Collins 

[1]. These panels were orthotropically reinforced and 

subjected to increasing loads. The following discussion 

compares the results of the available data for panels 

PV10 (pure shear) and PV23 (combined shear and 

axial stresses). Material properties and loading 

conditions for PV10 and PV23 are summarized in 

Table 1 while stress-strain relationships are 

summarized in Table 2. 

A single reinforced concrete plane stress element is 

used to model the panels with four integration points. 

The loading conditions are idealized to produce the 
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same applied stresses. The loading configuration for 

the case of pure shear is shown in Figure 9(b), whereas 

for the case of biaxial compression with shear stress 

within the given ratio in Table 1 is shown in Figure 10. 

 

 
(a) Typical panel under test 

 
(b) Idealized finite element model for direct shear 

using single element 

Figure 9: Tested panels by Vecchio [1] and finite 

element idealization 

 

Figure 10:  Finite element model and loading 

conditions for panel PV23. 

Since, the element material properties and stress 

conditions are uniform throughout the element, 

modeling of panels with single element is sufficient. In 

the current analysis, linear softening model for 

concrete in cracking was assumed with tensile strength 

of 1.6 and 2.2 MPa for specimens PV10 and PV23 

respectively. The compressive strength of concrete 

subjected to transverse tensile stress is reduced [1]. 

Good correlation between the predicted and 

experimental results was observed as illustrated in 

Figures 9 and 10. On the other hand, the predicated 

failure modes and shear stress versus shear strain 

response are evaluated accurately. 

 

 

Figure 11:  Correlation between predicted and 

experimental results for specimen PV10. 

 

 
Figure 12:  Correlation between predicted and 

experimental results for specimen PV23. 

Table 1: Concrete material properties and loading 

conditions for specimens PV10 and PV23 [1] 
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Table 2: Material properties and stress strain curves 

for specimens PV10 and PV23. 

Material Material Modeling 

Concrete Compression: Kent and Park model [8], 

Ec = 18 GPa for fc’=14.5 and Ec = 22 

GPa for fc’=20.5 

Tension:  Linear softening εtu = 0.001,                   

ft = 1.6 MPa for PV10 and  ft=2.2MPa  

PV23 

Reinf.  Bilinear with 2% strain hardening ratio. 

4.2 Cyclically Loaded Walls 

To verify the cyclic behavior of implemented 

reinforced concrete plane stress element for cyclic 

loading for structural scale, the shear wall B2 tested by 

Oesterle at the Portland Cement Association, was 

examined [12]. The barbell-shaped wall B2 shown in 

Figure 13 was a one-third scale representation of a 

five-story wall, and was framed with the base block, 

the stiff top slab, the wall web, and boundary elements. 

The wall web was 4570 mm high x 1910 mm long x 

102 mm thick, and was reinforced with 0.63% and 

0.29% reinforcing ratios in the horizontal and vertical 

directions, respectively. The elements boundary had 

the dimensions 4570 mm high x 305 mm long x 305 

mm thick, and had a vertical reinforcing ratio of 

3.67%. The details of the geometry and the layout of 

the reinforcement are given in Figure 14. 

The material properties for the specimen are shown 

in Table 3. Stress strain relationships and hysteric 

models are summarized in Table 4. A lateral load was 

applied at the top of the specimen through the stiff top 

slab. The specimen was subjected to a cyclic 

displacement loading history in the experimental 

program; while in the present analysis is subjected to 

cyclic force history of constant maximum force of 743 

kN. The shear wall B2 was modeled by a 254-element 

mesh with four-node plane stress quadrilateral 

elements, as shown in Figure 14 the mesh was divided 

into three zones to represent the top slab, the wall web, 

and the boundary elements. The thickness of these 

three zones was varied to reflect changes in their cross-

sectional geometry. The base block was omitted from 

the analysis, and the nodes at the base of the wall were 

therefore fully fixed against horizontal and vertical 

translations. The top slab was assumed to be rigid to 

distribute the load to the entire structural cross-section. 

The loading history was imposed at the upper nodes of 

the top slab (Figure 14). The steel reinforcing bars 

were modeled as smeared within concrete elements, 

and a perfect bond between the concrete and the steel 

was assumed. The material properties and the 

reinforcing ratios as used in the analysis are listed in 

Tables 2 and 3. In the numerical analyses, the loading 

step was set to 10kN with total number of steps of 600 

steps. The tolerance for divergence was 5%. 

 
(a) Nominal dimensions of test specimen (all 

dimensions in mm) 

 
(b) Reinforcement of section A-A (dim. in mm) 

Figure 13: Details of shear wall B2 [12]. 

Table 3: Material properties for shear wall B2 
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Figure 14: Finite element model for shear wall with 

elements at boundaries. 

Table 4: Stress strain relationships Oesterle wall [12]. 

Material Material Modeling 

Concrete Compression: Kent and Park model [8] 

Tension: Linear softening εtu = 0.0015  

Hysteretic Model:  Simplified He et al. 

[10] (subsection 3.3) 

Reinf. Bilinear with 2.0% strain hardening ratio. 

Hysteretic Model: Menegotto-Pinto [11] 

(subsection 3.4) 

The calculated and measured applied load-top 

deflection curves are shown in Figure 15. Generally, 

the calculated response agrees with the experimental 

results and the predicted response by He et al. [10]. 

The calculated lateral resistance of the wall is 743 KN, 

which gives a satisfactory prediction of the measured 

resistance of 692 KN. The calculated lateral stiffness of 

the wall degrades progressively as the number of load 

cycles increases, in accordance with the observed 

experimental response. 
 

Figure 16 illustrates the predicted crack patterns, 

which are denoted by the crack strains in the direction 

normal to cracking, at the first +743 kN and -743 kN 

loading cycles. The calculated crack patterns are 

characterized by the diagonal cracks crisscrossing the 

wall web and the diagonal cracks near the base of the 

wall realigning to be more horizontal, which agree well 

with the experimental observations reported by 

Oesterle [12].  Figure 17 shows the calculated principal 

compressive strain distribution in the wall at the first 

±743 kN loading cycles. The analysis predicts large 

tensile strain at the low portion of the wall on the side 

and large compressive strain near the base of the wall. 

This results in a relatively localized zone of high 

compressive stresses near the interface of the wall web 

and the boundary elements. Thus, the calculated failure 

mode occurs due to the crushing of concrete at the 

compressive side near the base of the wall. Figure 18 

shows the calculated principal tensile strain distribution 

in the wall at the first ±743 kN loading cycles. The 

results show high tensile strains localized 

perpendicular to the major shear cracks inclined nearly 

to 45 degrees and starting from wall base section. Note 

that the hysteretic loops from the experiment are more 

pinched than the calculated loops (see Figure 15). This 

attributes to the shear slip along the crack surfaces, 

which results in a reduction of the wall’s capacity for 

energy dissipation. To accurately predict the structural 

behavior under such a situation, the bond-slip model of 

the reinforcement needs to be taken into account. 

 
Figure 15:  Correlation between the predicted and 

experimental top displacement. 

                                     

at first +743 kN           at first -743 kN   

Figure 16:  Predicted crack pattern in shear wall B2. 
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at first +743 kN load cycle    at first -743 kN load cycle 

Figure 17:  Principal compressive strains for shear 

wall B2. 

              

at first +743 kN load cycle    at first -743 kN load cycle 

Figure 18:  Principal tensile strains for shear wall B2. 

 Behavior of Seismic Resisting 
Systems  

The delegate 2 by 3 bays reinforced concrete 

building is used for the purpose of parametric study. 

The plan dimensions were 12x15 m with ground floor 

height of 4 m and 3 m for repeated typical floors. The 

floor slabs are divided into two categories, flat slab 

system and slab-beam system, (see Figures 17, 18, and 

Table  5). Two common types of lateral load resisting 

systems which are commonly used in Port-Said area 

were examined. In these systems the lateral load is 

resisted by columns or by dual system, consists of 

frame and shear walls. The tested buildings were 6, 9, 

and 12 stories for low, medium, and high rise, 

respectively. The building location is classified in zone 

(3) according to ECP-201 [13]. The building vertical 

elements were designed under the effect of vertical 

loads and earthquake loading according to Egyptian 

Code of Practice [14] and Egyptian Code for         

Loads [13]. 

 
(a) Systems designation rule 

 
(b) Typical floor structural plan for different 

systems 
Figure 19: Configuration of study systems. 

 

Table  5: Cross-section assignments for different 

buildings systems. 
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FC9 9 Flat-Slab D D --- G 

FC12 12 Flat-Slab E E --- G 

FW6 6 Flat-Slab A C W1 G 

FW9 9 Flat-Slab B D W1 G 

FW12 12 Flat-Slab C E W1 G 

SC6 6 Slab-Beam A C --- B 

SC9 9 Slab-Beam B D --- B 

SC12 12 Slab-Beam C E --- B 

SW6 6 Slab-Beam A C W1 B 

SW9 9 Slab-Beam B D W1 B 

SW12 12 Slab-Beam C E W1 B 
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Figure 20: Cross section details for columns, walls and 

beams 

The concrete floor dimensions were chosen to ensure 

that the average floor weight is almost the same for 

both flat and solid slab systems. The super imposed 

dead load was 4 kN/m2, which include the average 

weight of brick walls and flooring covering. The live 

load was chosen 2 kN/m2 for residential use. The 

material of construction was: Concrete characteristic 

strength  fcu=30 MPa, main steel yield strength fy = 360 

MPa with ultimate strength of fu =520 MPa, and 

stirrups material for both beams and columns has yield 

strength of 240 MPa. The material modeling is 

summarized in Table 6. 

Table 6: Material properties and stress strain curves 

for the case study. 

Material Material Modeling 

Concrete Compression: Kent and Park model [8], Ec 

= 24 GPa, fc’ =fco= 24 MPa, Tension:         

Linear softening εtu = 0.001, ft = 2.5 MPa 

Hysteretic Model: Simplified He et al [10] 

(subsection 3.3) 

Reinf. Bilinear with 3.0% strain hardening ratio.  

fy = 360 MPa, Es = 200 GPa 

Hysteretic Model: Menegotto-Pinto [11] 

(subsection 3.4) 

5.1 Structural Modeling and Loading 
Configurations 

For buildings of symmetric plans, where the stiffness 

of each horizontal resisting system is the same, 

selecting of a 2D system to represent the whole 

behavior of the structure is acceptable. For floors with 

projected beams, the stiffness of slabs could be ignored 

and used only to ensure equal horizontal displacements 

of all plane frames due to their high in-plane rigidity. 

For flat slab systems, six times slab thickness plus 

column width in addition to in-plane rigidity could be 

used according to ECP-203 [14].  The columns and 

beams were modeled using flexibility based beam-

column element while shear walls were modeled using 

the improved plane stress reinforced concrete element. 

For both floor types (i.e. with/without projected 

beams), a schematic load configuration is shown in 

Figure 21 and Table 7.For flat system, the distributed 

load is calculated on the basis of effective slab width 

which resists lateral loads according ECP-201 [13], 

while the remaining part of floor loads was lumped at 

the column locations. The concentrated loads also 

include the effect of masonry walls and beams reaction 

if any in the out of plane direction.  

 

 
Figure 21: Elevation of 2D plane systems showing 

loading configuration under vertical loads. 
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Table 7: Calculated loading values for 2D plane 

systems. 
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 Nonlinear Static Analysis Results  

The nonlinear static analysis for triangular load 

pattern representing seismic equivalent static effect is 

performed. The monotonic lateral load is increased in 

conjunction with sustainable vertical loads until the 

system is collapsed. The following normalized 

parameters are predicted, Figure 22. 

 Story lateral drift [δ] divided by story height 

[z] measured from foundation level. 

 Interstory lateral drift [Δ] divided by floor 

height [h]. 

 

Figure 22: Definition of study output parameters. 

6.1 Top Story Lateral Drift Ratio 

Top story lateral drift ratio (δ/z) versus base shear ratio 

(V/We) for different systems is shown in Figures 23 to 

26. Due to its low floor stiffness compared to slab-

beam systems, flat slab systems showed lower 

stiffness. Moreover, the response of flat slab systems 

tends to have flat plateau near collapse load due to 

forming of plastic hinges at sections near column faces. 

On the other hand, the failure mechanism for slab beam 

systems is started by yielding of beams/columns 

reinforcement localized at lower floors and then 

continued to the upper floors followed by crushing of 

concrete at column sections at foundation level. 

6.2 Failure Base Shear Ratio 

The collapse base shear and the base shear ratio 

(V/We) corresponding to top story lateral drift ratios 

(δ/z) = 0.2% are listed in . The (V/We) ratio versus top 

story lateral drift ratio (δ/z) for different building 

heights are shown in Figures 27 to 29. As expected, the 

flat slab systems without shear walls showed lower 

collapse base shear ratio than other systems. In 

addition, for systems without shear walls, the ratio 

between base shear ratio corresponding to 0.2% code 

limitation for top story lateral drift ratio for flat slab 

systems (FC) was about twice its value for solid slab 

systems (SC) indicating more ductility for (FC) 

systems. Moreover, the base shear ratio (V/We) 

decreases with the increase of building height and it is 

increased with system stiffness. 

6.3 Interstory Drift Ratio 

The interstory lateral drift ratio (Δ/h) is the value that 

indicates the amount of story lateral distortion which 

affects the non-structural components and may cause 

its damage. Therefor design codes limit this value to a 

specified ratio ensuring minimum damage of story 

nonstructural components. The Egyptian code limits 

this ratio to 1/200 of floor height [13]. The vertical 

distributions of interstory lateral drift ratio (Δ/h) for the 

examined structural systems prior to collapse are 

shown in Figures 30 to 33. In general, the (Δ/h) ratio 

increases gradually from foundation level reaching its 

maximum value at a certain floor. After that the 

interstory lateral drift ratio continues vertically in a 

constant pattern in for flat slab systems (FC, FW) or 

decreases gradually in slab-beam systems (SC, SW). 

For SC and SW systems, the critical story which has 

the maximum value of (Δ/h) is located at about one 

third building height, while in (FC) and (FW) systems; 

it is located at about one half of the building height. It 

was found that the rate of decrease of interstory drift 

for systems without shear walls is higher than systems 

with shear walls especially for slab-beam systems.  

 
Figure 23: Base shear versus top story lateral drift 

ratios for SC systems. 
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Figure 24: Base shear versus top story lateral drift 

ratios for FC systems. 
 

 
Figure 25: Base shear versus top story lateral drift 

ratios for SW systems. 

 
Figure 26:  Base shear versus top story lateral drift 

ratios for FC systems. 

6.4 Force Modification Factors 

Structures subjected to earthquake actions deform in 

nonlinear pattern that leads to plastic hinges formation 

and consequently earthquake energy dissipation. As a 

result, the base shear could be reduced if the structure 

is nonlinearly analyzed. This reduction is introduced in 

a factor called “Force reduction factor (R)”. According 

to ECP-201 [13], the strength reduction factor for 

ductile framed structures is 7 while for limited ductile 

frames or for structures provided with shear walls is 5. 

Estimating of force reduction factor “R” depends on 

the structure fundamental period [15], Figure 34.The 

force reduction factors using the principal of equal 

energy is calculated by equating the hatched areas of 

the force displacement relationship for the top story, 

Figure 35. The estimated strength reduction factors 

based on nonlinear static analysis of the structural 

systems demonstrated in the present parametric study 

are less than those provided by ECP-201 [13] as listed 

in Table 9. This could be related to the nonlinear static 

analysis was stopped when limit load is reached 

Table 8: Predicted collapse base shear ratios for 

different systems. 
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FC6 6 Flat-Slab 14.1 4.82 2.92 

FC9 9 Flat-Slab 11.5 3.34 3.44 

FC12 12 Flat-Slab 9.1 2.40 3.80 

FW6 6 Flat-Slab 25 10.82 2.31 

FW9 9 Flat-Slab 16.2 5.95 2.73 

FW12 12 Flat-Slab 11.9 3.81 3.12 

SC6 6 Slab-Beam 21.1 15.4 1.37 

SC9 9 Slab-Beam 17.2 11.13 1.54 

SC12 12 Slab-Beam 13.9 8.4 1.65 

SW6 6 Slab-Beam 50.5 32.4 1.56 

SW9 9 Slab-Beam 32.2 19.5 1.65 

SW12 12 Slab-Beam 22.6 13.40 1.68 

 
Figure 27: Base shear versus top story lateral drift 

ratios for 6 stories buildings. 
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Figure 28: Base shear versus top story lateral drift 

ratios for 9 stories buildings. 

 

Figure 29: Base shear versus top story lateral drift 

ratios for 12 stories buildings. 

 
Figure 30: Interstory drift ratio prior to failure for 

system layout (SC). 

 

 
Figure 31: Interstory drift ratio prior to failure for 

system layout (FC). 

 
Figure 32: Interstory drift ratio prior to failure for 

system layout (SW). 

 

Figure 33: Interstory drift ratio prior to failure for 

system layout (FW). 



79 

 

 
Figure 34: Force reduction factors [15] 

 

Figure 35: Force reduction factors from load 

displacement relationship 

Table 9: Estimated force reduction factors (R). 
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SC6 0.074 800 2086 2.60 2.24 

SC9 0.143 980 3077 3.14 2.51 

SC12 0.216 1060 3470 3.27 2.60 

FC6 0.244 504 1592 3.16 2.65 

FC9 0.444 620 2037 3.29 2.62 

FC12 0.680 658 2284 3.47 2.71 

SW6 0.140 1920 7810 4.07 3.06 

SW9 0.215 1840 7407 4.03 2.98 

SW12 0.260 1720 5996 3.49 2.80 

FW6 0.212 900 3620 4.02 2.9 

FW9 0.420 880 3803 4.32 2.95 

FW12 0.711 860 4178 4.86 3.20 
 

 Conclusions 

An improved reinforced concrete plane stress 

element analysis technique is presented in the current 

study. The improved element is used in the nonlinear 

analysis of shear walls subjected to cyclic loading. 

Moreover, it is implemented into a finite element 

program in order to study the static response of case 

study with different seismic resisting system. The 

building vertical and floor elements were designed 

according to Egyptian codes for design and load 

calculations. For the sake of comparison, two types of 

floor systems in addition to two types of seismic 

resisting systems were nonlinearly analyzed using 

triangular lateral load pattern. Based on the current 

study, the following concluding remarks could be 

drawn. 

1. Analysis of shear walls using membrane elements 

with the assumption of rotating crack must involve 

crack angle capturing algorism as presented in the 

current study. 

2. The behavior of seismic resisting systems 

subjected to lateral forces can be satisfactory 

captured, if nonlinear static analysis with the 

presence of vertical loads is performed. 

3. With respect to top story drift limitation, if two 

systems were designed according to vertical and 

lateral loads one as flat slab and other as slab-

beam, the collapse base shear for the slab-beam 

systems is about twice its value for the flat slab 

system. 

4. In addition to interstory profile difference, the 

critical story (i.e. story at which maximum 

interstory drift is found) is located at about one 

third and one half building height for beamed slab 

and flat slab systems, respectively.  

5. The estimated force reduction factors, based on 

nonlinear static analysis of the structural systems 

demonstrated in the examined systems in the 

current work, are 50% to 75% of those provided 

by Egyptian code [13]  
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