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Abstract 
 
Petroleum consumption increases around the world and production of conventional 
reservoirs can’t cover the increased demand. So, producing unconventional resources is an 
imperative necessity.  Unconventional resources are characterized by very low 
permeability. Drilling horizontal wells in these resources and completed them with multiple 
hydraulic fractures make the reservoir. Hydraulic fractures work as paths for hydrocarbon 
to flow toward the wellbore to achieve an economic production rate. Production behaviour 
of these wells is characterized by long-term transient flow followed by boundary-
dominated flow. Many decline curve analysis models have been developed to simulate this 
behaviour, but none of them can capture all flow-regime types. This paper reviewed the 
most popular and used decline curve analysis models: Arps model,  power-law exponential 
model, stretched exponential production decline model, T-model, logistic growth model, 
Duong model, Yu-Miocevic model and extended exponential decline curve. This paper 
summarized the origins, derivations and assumptions of these eight models. This paper also 
presents a comparative study of these models using production data from unconventional 
gas and oil reservoirs. To facilitate conducting this study, the eight decline curve analysis 
models were programmed in a  software application written in python language. This 
software application calibrated models’ parameters to production data using trust region 
reflective algorithm. The value of estimated ultimate recovery predicted using this software 
application is consistent with that predicted using the linear flow analysis model. The 
comparative study can serve as a guideline for petroleum engineers  to determine when to 
use each model. 

 

Introduction 

Petroleum reservoirs are subsurface hydrocarbon-

bearing rocks. They are classified as conventional and 

unconventional reservoirs. Conventional reservoirs 

are characterized by high permeability while 

unconventional ones are characterized by very low 

permeability. Unlike conventional reservoirs, drilling 

multi-fractured horizontal wells (MFHWs) and 

multiple horizontal wells from a single pad are 

considered as parts of well completion operations [1-

4]. They enhance well productivity in unconventional 

reservoirs. As, the horizontal well maximizes the 

contact area between the wellbore and the reservoir 

and the fractures work as paths for hydrocarbon to 

flow toward the wellbore. 

Wells producing from unconventional reservoirs 

have production performance which exhibits long-

term transient flow regime followed by boundary-

dominated flow (BDF) regime. Transient flow may be 

linear, bilinear or both according to reservoir and well 

characteristics. A backflow period occurs ahead of 

transient flow due to cleaning the well from fracturing 

fluid when MFHWs are used.  Various production data 

analysis (PDA) methods have been developed to 

identify these flow regimes, evaluate the reservoir 

and the well, and predict the well future production 

performance. Clarkson [5] reviewed five PDA methods 

that have been commonly applied for unconventional 

reservoirs including analytical and numerical 

simulation methods, straight-line analysis methods, 

type-curve methods, empirical methods, and hybrid 

methods. Analytical and numerical methods are used 

to simulate fluid flow in porous medium. Analytical 

models use solutions to simple reservoir behaviour [6-

11] while numerical simulation ones use solutions to 

more complex reservoir behaviour [12-14]. Straight-

line analysis methods are analogous to those used in 

pressure transient analysis [15]. They are used for 

flow-regime identification. Araya and Ozkan [16] and 

Medeiros et al. [17,18] used the transient productivity 

index as another tool for flow-regime identification. 

Type-curve methods involve matching of production 

data to dimensionless solutions to flow equations 

 

mailto:a.wahba@suezuni.edu.eg


Journal of Petroleum and Mining Engineering 24 (1) 2022                                                                                                       DOI: 10.21608/jpme.2022.128147.1123 
 

Page|52 

[7,8,19,20]. These solutions correspond to different 

well, fracture and reservoir properties and boundary 

conditions. Empirical methods are also called decline 

curve analysis (DCA) methods. They use mathematical 

models for curve-fit of production data. These models 

are not necessarily derived from a physical model as 

with analytical models. Many DCA models have been 

developed to predict production behaviour in 

unconventional reservoirs and determine the 

estimated ultimate recovery (EUR). Kanfar and 

Wattenbarger [21], Tan et al. [22], Mahmoud et al. 

[23], Ibrahim et al. [24] and Liang et al. [25] reviewed 

and evaluated different DCA models. Several studies 

used machine learning for improving the prediction of 

production behaviour in unconventional reservoirs 

and automating the application of some DCA models 

[26-28]. Hybrid methods are those that involve 

analytical methods to represent transient flow and 

empirical methods to represent BDF [29,30]. In this 

study, we focused on DCA methods as they are 

considered the most suitable methods for forecasting 

production behaviour and estimating ultimate 

recovery in unconventional reservoirs. We reviewed 

eight DCA models and programmed them in a 

software application written in python language to 

facilitate their application. Then, four actual data sets 

were used to show the more accurate models in 

simulating and predicting production behaviour of 

wells in unconventional reservoirs. Finally, 

conclusions were given for when to use each model, 

and a recommendation was made. 

 

Modern Decline Curve Analysis Models 

 Among PDA methods, DCA method is considered 

the simplest, the least time consumption, and the 

least data requirement method. Many DCA models 

have been developed to fit and predict production 

performance of conventional and unconventional 

reservoirs. DCA models used for unconventional 

reservoirs are called modern DCA models to 

differentiate them from those used for conventional 

reservoirs [3]. 

Arps model is considered the most popular and 

used DCA method in petroleum industry. Arps [31] 

proposed three different mathematical expressions to 

simulate production decline-curve behaviour. The 

author derived these mathematical expressions based 

on two concepts: 

• The loss-ratio definition introduced by 

Johnson and Bollens [32]. 

• Production decline curves showed constant 

loss-ratio and constant derivative of loss-ratio 

as concluded by Pirson [33]. 

Where, loss-ratio (1/D) and derivative of loss-ratio (b) 

have the following mathematical expressions, 

respectively: 

1

𝐷
= −

𝑞
𝑑𝑞

𝑑𝑡

  (1) 

𝑏 =  
𝑑

𝑑𝑡
(

1

𝐷
)  (2) 

The mathematical expressions, main 

characteristics and diagnostic plots of Arps decline 

curves are shown in Tables 1,2 and Figure 1, 

respectively.

Table 1 Mathematical expressions of the three types of Arps decline curves 
 

Exponential Decline 
 

Hyperbolic Decline 
 

Harmonic Decline 

𝑏 = 0  0 < 𝑏 < 1  𝑏 = 1  

𝐷(𝑡) = 𝐷𝑖   𝐷(𝑡) =
𝐷𝑖

1+𝑏 𝐷𝑖 𝑡
  𝐷(𝑡) =

𝐷𝑖

1+𝐷𝑖 𝑡
  

(Eq. (3)) (Eq. (4)) (Eq. (5)) 

𝑞(𝑡) = 𝑞𝑖exp (−𝐷𝑖𝑡)  𝑞(𝑡) =
𝑞𝑖

(1+𝑏𝐷𝑖𝑡)
1
𝑏

  𝑞(𝑡) =
𝑞𝑖

(1+𝐷𝑖𝑡)
  

(Eq. (6)) (Eq. (7)) (Eq. (8)) 

𝑄(𝑡) =
𝑞𝑖−𝑞(𝑡)

𝐷𝑖
  𝑄(𝑡) = [

𝑞𝑖

𝐷𝑖(1−𝑏)
] [1 − (

𝑞(𝑡)

𝑞𝑖
)

1−𝑏

]  𝑄(𝑡) = (
𝑞𝑖

𝐷𝑖
) ln (

𝑞𝑖

𝑞(𝑡)
)  

(Eq. (9)) (Eq. (10)) (Eq. (11)) 

 

Table 2 Main characteristics of the three types of Arps decline-curve diagnostic plots 

 
Plot 

 
Exponential Decline 

 
Hyperbolic Decline 

 
Harmonic Decline 

 

𝒒 𝒗𝒔. 𝒕 
(Straight Line) 

 
Semi-Log Plot 

Log-Log Plot 
(Using shifting 

technique)  

Log-Log Plot 
(Using shifting 

technique)  
 

𝒒 𝒗𝒔. 𝑸 
(Straight Line) 

 

Coordinate Plot 
 

None 
 

Semi-Log Plot 
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Figure 1 Diagnostic plots of the three types of Arps decline curves (After Arps [34]) 

 
Where: 

𝑏  = Arps decline-curve exponent. 
𝐷𝑖 = Initial decline rate, day-1. 
𝐷(𝑡)  = Decline rate at time t, day-1. 
𝑡 = Time, day. 
𝑞𝑖 = Initial flow rate at time t=0, MSTB/day or 

MMSCF/day. 
𝑞(𝑡)  = Flow rate at time t, MSTB/day or 

MMSCF/day. 
𝑄(𝑡)  = Cumulative production, MSTB or MMSCF. 

𝑞  = Production rate. 

𝑄  = Cumulative production. 

The limitations of Arps method application are: 

• The well produces from a certain area under 

BDF regime. 

• It produces at its capacity and constant 

bottom-hole flowing pressure. 

• There are no changes in well operating 

conditions. 

Wells in unconventional reservoirs violate these 

limitations as they produce under long-term transient 

flow regime. So, modern DCA models have been 

developed to overcome this problem. 

Power-Law Exponential (PLE) Model  

Ilk et al. [35] proposed an empirical model to fit 

and predict tight gas and shale production. Their 

model was derived by integrating an empirical 

correlation for decline rate (Eq. (12)) which obeys a 

decaying power-law relation during transient flow 

regime and a constant relation during BDF regime. 

𝐷(𝑡) = 𝐷∞ + 𝐷1 𝑡−(1−𝑛)  (12) 

𝑞(𝑡) = 𝑞̂𝑖𝑒𝑥𝑝[−𝐷∞ 𝑡 − 𝐷̂𝑖  𝑡𝑛]  (13) 

Where: 

𝑞(𝑡) = Flow rate at time t, MSTB/day or 

MMSCF/day. 

𝑞̂𝑖 = Rate intercept at t = 0 [This parameter has 
a different interpretation than 𝑞𝑖]. 

𝐷(𝑡) = Decline rate at time t, day-1. 

𝐷1 = Decline constant intercept at t = 1 day. 

𝐷∞ = Decline constant at infinite time. 

𝐷̂𝑖  = Decline constant [𝐷̂𝑖 = 𝐷1 𝑛]⁄  [This 
parameter has a different interpretation 
than 𝐷𝑖]. 

𝑡 = Time, day. 

𝑛 = Time exponent. 

Stretched Exponential Production Decline (SEPD) 
Model 

Valkό [36] developed an empirical DCA model 

which is fundamentally different from Arps model. 

The model is called stretched exponential production 

decline (SEPD) as production rate obeys a decaying 

exponential relation as follows: 

𝑞 = 𝑞𝑖  𝑒𝑥𝑝 [− (
𝑡

𝜏
)

𝑛
]  (14) 

Where: 
𝑞 = Produced rate in period, MSCF/month 

𝑞𝑖 = Maximum observed production rate, 
MSCF/month 

𝑡 = Number of periods, months 
𝑛 = Model exponent 

𝜏 = characteristic number of periods 

This model was developed specifically for the case 

of even data taken periodically. It is different from 

power-law exponential model. As it doesn’t consider 

the behaviour of the late-time stage flow regime 

besides providing a cumulative-time relation (Eq. (15)) 

which can be used to obtain model’s parameters (𝑛 

and 𝜏) from curve fitting of cumulative production 

data when production rate data is very scattered. 

𝑄 =
𝑞𝑖 𝜏

𝑛
{Γ [

1

𝑛
] − Γ [

1

𝑛
 , (

𝑡

𝜏
)

𝑛
]}  (15) 

Where: 
𝑄  = Cumulative production, MSCF 

Γ [
1

𝑛
]  = Complete gamma function 
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Γ [
1

𝑛
 , (

𝑡

𝜏
)

𝑛
]  = Incomplete gamma function 

T-Model 

Huang et al. [37] and Hu and Chen [38] had studied 

huge field production data and deduced that oil 

cumulative production (𝑁𝑝) was related to time (𝑡) 

by the following differential equation which was 

called T-Model: 

𝑑𝑁𝑝

𝑁𝑝  𝑑𝑡
= 𝑎 𝑡  𝑏  (16) 

Dou et al. [39] integrated the above equation to 

obtain cumulative-time relation, which is: 

𝑁𝑝 = 𝑁𝑅 𝑒
 (

𝑎

𝑏+1
 𝑡  𝑏+1)

   
(17) 

The rate-time relation is: 

𝑞(𝑡) = 𝑎 𝑁𝑅 𝑡 𝑏 𝑒
 (

𝑎

𝑏+1
 𝑡  𝑏+1)

  (18) 

Where: 
𝑞(𝑡) = Oil production rate, STB/day 

𝑁𝑝 = Cumulative oil production, STB 

𝑁𝑅  = Ultimate oil recovery at 𝑡 → ∞, STB 

𝑡 = Producing time, days 

a  = Model’s constant 
b  = Model’s constant 

Logistic Growth Model (LGM) 

Clark et al. [40] developed the following two 

relations. They were derived by alternating the logistic 

growth model that was used by Spencer and 

Coulombe [41] to predict the production performance 

of tight and unconventional reservoirs. 
LGM cumulative-time relation: 

𝑄(𝑡) =
𝐾 𝑡  𝑛

𝑎+𝑡  𝑛
   (19) 

LGM rate-time relation: 

𝑞(𝑡) =
𝐾 𝑛 𝑎 𝑡  𝑛−1

(𝑎+𝑡  𝑛) 2    (20) 

Where: 
𝑄(𝑡) = Cumulative production. 

𝑞(𝑡) = Production rate. 

𝐾 = Carrying capacity or Estimated ultimate 
recovery 

𝑎 = Model constant. 
𝑛 = Hyperbolic exponent. 
𝑡 = Time. 

Duong Model 

Duong [42] developed an approach to model 

production performance of fractured wells producing 

from super tight and shale reservoirs. This approach 

accounted for the presence of fracture-dominated 

flow regimes. It can accurately predict production 

performance and reserve estimation of those 

reservoirs. 
Duong time/material balance-time relation: 

𝑞

𝐺𝑃
= 𝑎 𝑡  − 1  (21) 

Duong modified time/material-balance-time relation: 
𝑞

𝐺𝑃
= 𝑎 𝑡  − 𝑚  (22) 

Duong rate-time relation: 
𝑞

𝑞1
= 𝑡  − 𝑚𝑒  

𝑎

1−𝑚
 (𝑡  1−𝑚−1)

   (23) 

Duong cumulative-time relation: 

𝐺𝑃 =
𝑞1

𝑎
 𝑒  

𝑎

1−𝑚
 (𝑡  1−𝑚−1)

   (24) 

Where: 
𝑞 = Production rate, MMSCF/day. 
𝑞1 = Production rate at t = 1 day , MMSCF/day. 

𝐺𝑃 = Cumulative gas production, MMSCF. 

𝑡 = Time, day. 
𝑎 = Intercept constant defined by Eq. (22) 
𝑚 = Slope defined by Eq. (22) 

YM-SEPD Model 

To overcome the non-uniqueness problem 

appearing when using non-linear regression to find 

parameters of SEPD model, Yu and Miocevic [43] 

introduced a new specialized plot which enabled the 

calculation of 𝑛 𝑎𝑛𝑑 𝜏 parameters of SEPD model. 

They proposed the following relation which indicated 

that plotting 𝑙𝑛(𝑞𝑖 𝑞(𝑡)⁄ ) versus 𝑡 on a log-log scale 

produces a straight-line relationship with 𝑛 as the 

slope and 𝜏 is calculated from the intercept. 

𝑙𝑛 (
𝑞𝑖

𝑞(𝑡)
) = 𝜏− 𝑛 𝑡𝑛   (25) 

Extended Exponential Decline Curve (EED) 

Zhang et al. [44] developed an empirical equation 

to determine 𝑎-parameter in the equation proposed 

by Fetkovich [45]. This empirical equation was 

developed based on the concept of growing drainage 

volume in shale reservoirs. It could simulate the 

production behaviour of transient, BDF and transition 

period between them. 
Fetkovich equation: 

𝑞 = 𝑞𝑖  𝑒− 𝑎 𝑡   (26) 

Where: 
𝑞 = Flow rate at time 𝑡. 
𝑞𝑖 = Initial flow rate. 
𝑎 = Nominal decline rate. 

Zhang et al. empirical equation: 

𝑎 = 𝛽𝑙 + 𝛽𝑒  𝑒− 𝑡  𝑛
 (27) 

Where: 
𝛽𝑒  = Constant to account for the early (fully 

transient) period, which should be larger than 
𝛽𝑙  as recommended. 

𝛽𝑙  = Constant to account for the late-life (BDF) 
period. 

𝑛 = Empirical exponent, with a recommended 
range of 0 to 0.7 

𝑡 = Time in months. 

Combined Models 

Some authors used different type of DCA models 

which is called combined models. Combined models 

containing two models, also called dual models, are 

such as PLE + Arps (modified PLE) [46] and Duong + 

Arps (modified Duong) [47,48]. The switch point of 

these models has no physical basis and just assumed 

based on experience. Chen et al. [49] proposed a 

combined model by using SEPD, Duong, and Arps. This 
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model is more complex and has more undetermined 

coefficients which make it harder to use.  

Methodology 

DCA models can’t be used to predict future 

production behaviour until they achieve good curve-

fit to production data. To automate curve fitting and 

prediction processes, we programmed DCA models in 

a software application written in python language 

which we called production data analysis software 

(PDAS) application. The PDAS application consists of 

seven tabs. In this study, we only used three tabs, 

which are: 

• Curve fitting tab: to calibrate parameters of 

DCA models to production data. It uses the 

trust region reflective algorithm to calculate 

parameters’ values which achieve the best 

curve fit. Statistical parameters are also 

calculated to determine the degree of curve-

fit accuracy. Statistical parameters used are 

coefficient of determination (R2) and root 

mean square error (RMSE). 

• Future prediction tab: to graphically predict 

the future production behaviour. 

• Results tab: to calculate values of time and 

cumulative production corresponding to 

production rate at economic limit.  

In this study, we ignored combined DCA models 

and only used the other DCA models (Arps and seven 

modern DCA models). As combined models aren’t 

basic models in the strict sense, as no new models are 

created. This paper presents a comparative study to 

show: Which one of DCA models can fit the 

production data with the highest accuracy? Is this 

model can also predict the future production 

performance or not? Is it necessary to develop a new 

model to increase the accuracy of curve fitting and 

future prediction? These questions will be answered 

in the following sections. The following steps explain 

how to apply a DCA model using production data of 

unconventional reservoirs: 

1) Using excel sheet, production data is checked 

to remove very scattered data points. The 

remaining data is uploaded to the PDAS 

application to be used in the next steps. 

2) In curve fitting tab, parameters of a DCA 

model are calibrated to the production data. 

Calibrated parameters are used to check the 

curve-fit accuracy through determining 

values of R2 and RMSE. Better accuracy is 

achieved when R2 value is close to 1 and 

RMSE value is low. 

3) Future prediction tab is used to plot the 

production behaviour as predicted using the 

calibrated DCA model. 

4) In results tab, the value of production rate at 

economic limit is entered then the PDAS 

application uses the calibrated DCA model to 

predict producing time and cumulative 

production corresponding to this value. This 

cumulative production refers to EUR. 

Results and Discussion 

A comparison of decline curve analysis models was 

conducted on how they could fit and predict 

production performance of wells producing from 

unconventional reservoirs. Four actual 

unconventional reservoir data sets were used (2 gas 

cases and 2 oil cases). Symbols used in this 

comparison are given in Table 3. 

Table 3 Symbols used in the comparison of DCA Models 

EUR Estimated ultimate recovery 

GP Cumulative gas production 

NP Cumulative oil production 

Q𝑔   Gas production rate 

Q𝑔𝑖𝑛𝑗
  Gas injection rate (Gas Lift) 

Qlimit Production rate at economic limit 

Q𝑜   Oil production rate 

RMSE (GP) RMSE for cumulative gas production 

RMSE (NP) RMSE for cumulative oil production 

RMSE (Q𝑔) RMSE for gas production rate 

RMSE (Qo) RMSE for oil production rate 

R2 (GP) R2 for cumulative gas production 

R2 (NP) R2 for cumulative oil production 

R2 (Q𝑔) R2 for gas production rate 

R2 (Qo) R2 for oil production rate 

t Producing time 

tlimit Time at economic limit 

Gas Case 1 

The first case is a dataset of a well producing from 

unconventional dry gas reservoir, summarized by 

Ahmed [3]. Firstly, we checked the quality of the 

production data and removed very scattered data. 

Then, we used the remaining data in the PDAS 

application for analysis by eight DCA models. Table 4 

shows results of model’s parameters, coefficient of 

determination and root mean square error of curve 

fitting of these eight models. 

The results shows that Duong, T and EED models 

recorded the highest accuracy in fitting production 

rate data, respectively. R2 for production curves of 

Duong and T models are nearly equal. So, these curves 

can’t be distinguished as seen in Figure 2. EED model 

has the least accuracy among the three models in 

predicting the future production performance of the 

well. As rate curve bent away from production data at 

late-time stage.  

All models were extended to reach the economic 

limit of gas production rate Qg = 0.1 MMSCF/day. 

Each model recorded different value of estimated 

ultimate recovery, see Table 5. According to 

Mahmoud et al. [23], Duong model overestimated the 

EUR value which may be three times greater than that 

predicted using Arps or SEPD models. The authors 

attributed the reason to the linear flow assumption of 

Duong model which failed to match the BDF period. 

They also advised that this assumption will generally 

need modifications to deal with changes in the flow 
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regimes. From Figure 2 and Table 5, we found that 

Duong model matched the BDF period and predicted 

EUR value of 0.79 MMMSCF, respectively. This EUR 

value is near those predicted using Arps and SEPD 

models.  The reason is due to the way of calibrating 

the parameters of Duong model. We calibrated these 

parameters only to the production data of transient 

and BDF periods as we removed data of backflow 

period. However, production data of backflow period 

was used when statistical parameters were 

determined to show the accuracy of the model in 

matching all flow-regime types. The same 

modification was applied when using T-model to 

increase its curve-fit accuracy as T and Duong models 

have similar mathematical expressions.

Table 4 Comparison of curve fitting parameters and statistical values of DCA models for gas case 1  

Arps Model PLE Model SEPD Model T-Model 

𝑞𝑖  = 5.2806 𝑞𝑖  = 5.2316 𝑞𝑖 = 6.0000 𝑎 =  4.6717 

𝐷𝑖  = 0.0106 𝐷1 = 0.0140 𝜏 = 97.591 𝑏 = -1.4648 

𝑏 = 0.3612 𝐷∞ = 0.0000 𝑛 = 0.7356 𝐺𝑅 =  1150.2 

 𝑛 = 0.8612   

𝑅2 (𝑄𝑔) = 0.9197 𝑅2 (𝑄𝑔) = 0.9119 𝑅2 (𝑄𝑔) = 0.9052 𝑅2 (𝑄𝑔) =  0.9514 

𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.3382 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.3544 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.3675 𝑅𝑀𝑆𝐸 (𝑄𝑔) =  0.2632 

𝑅2 (𝐺𝑃) = 0.9970 𝑅2 (𝐺𝑃) = 0.9945 𝑅2 (𝐺𝑃) = 0.9924 𝑅2 (𝐺𝑃) =  0.9949 

𝑅𝑀𝑆𝐸 (𝐺𝑃) = 8.7177 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 11.700 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 13.757 𝑅𝑀𝑆𝐸 (𝐺𝑃) =  11.267 

LGM Model Duong Model YM-SEPD Model EED Model 

𝑎 = 100.00 𝑞1 = 0.2277 𝑞𝑖 = 6.0000 𝑞𝑖 =  5.2258 

𝑛 = 0.8294 𝑎 = 4.6717 𝜏 = 90.806 𝛽𝑒  =  1.3459 

𝐾 = 1078.2 𝑚 = 1.4648 𝑛 = 0.6505 𝛽𝑙  =  0.0082 

   𝑛 =  0.7000 

𝑅2 (𝑄𝑔) = 0.7789 𝑅2 (𝑄𝑔) = 0.9529 𝑅2 (𝑄𝑔) = 0.8967 𝑅2 (𝑄𝑔) =  0.9308 

𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.5614 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.2590 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.3837 𝑅𝑀𝑆𝐸 (𝑄𝑔) =  0.3139 

𝑅2 (𝐺𝑃) = 0.9977 𝑅2 (𝐺𝑃) = 0.9921 𝑅2 (𝐺𝑃) = 0.9964 𝑅2 (𝐺𝑃) =  0.9876 

𝑅𝑀𝑆𝐸 (𝐺𝑃) = 7.5333 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 14.054 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 9.4379 𝑅𝑀𝑆𝐸 (𝐺𝑃) =  17.606 

 

 

Figure 2 Comparison of future prediction of Duong, T and EED models for gas case 1  
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Table 5 Comparison of estimated ulimate recovery of DCA models for gas case 1  

Arps Model PLE Model SEPD Model T-Model 

Qlimit, 
MMSCF

day
 

= 0.10 Qlimit, 
MMSCF

day
 = 0.10 Qlimit, 

MMSCF

day
 = 0.10 Qlimit, 

MMSCF

day
 = 0.10 

tlimit, day = 834 tlimit, day = 590 tlimit, day = 663 tlimit, day = 1331 

EUR, MMMSCF = 0.72 EUR, MMMSCF = 0.66 EUR, MMMSCF = 0.68 EUR, MMMSCF = 0.81 

LGM Model Duong Model YM-SEPD Model EED Model 

Qlimit, 
MMSCF

day
 

= 0.10 Qlimit, 
MMSCF

day
 = 0.10 Qlimit, 

MMSCF

day
 = 0.10 Qlimit, 

MMSCF

day
 = 0.10 

tlimit, day = 1411 tlimit, day = 1312 tlimit, day = 793 tlimit, day = 482 

EUR, MMMSCF = 0.87 EUR, MMMSCF = 0.79 EUR, MMMSCF = 0.71 EUR, MMMSCF = 0.61 

Gas Case 2 

The second case is a dataset of well # 314 

producing from Barnett shale as shown in Figure 3. 

The decline curve shows that a backflow period 

occurred ahead of transient flow due to cleaning the 

well from fracturing fluid. The properties of the 

reservoir and the well are given in Table 6. Al-Ahmadi 

et al. [50] studied this data and used it as an example 

to display the application procedures of linear flow 

analysis to shale gas wells. We used this data in the 

PDAS application to show which DCA model could fit 

it with high accuracy. PLE, Duong and T models, 

respectively, showed the highest fitting accuracy, as 

concluded from results in Table 7. The prediction of 

future production behaviour using these models is 

shown in Figure 4. The results proved that PLE model 

predicted the future production behaviour better 

than other models as PLE production curves passed 

through production data of late-time stage. EUR value 

predicted using PLE is equal to 2.67 MMMSCF, as 

given in Table 8, which is consistent with that 

calculated by Al-Ahmadi et al. [50] (2.74 MMMSCF) 

when using the linear flow analysis [51]. Also, EUR 

values predicted using the other DCA models are near 

that value, and this proved that the PDAS application 

is a powerful and reliable tool that can be used for 

production data analysis of unconventional 

reservoirs.  

 

Figure 3 Production decline curve for gas case 2  
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Table 6 Reservoir, fluid and well data for gas case 2  

 Porosity, ∅ (fraction)  0.06 Initial gas formation volume factor, βgi 

(ft3/SCF)  

0.00509 

Gas viscosity at initial reservoir 
pressure, μgi (cp)  

0.0201 Real gas pseudo − pressure at initial 
reservoir pressure, m(Pi) (psi2/cp)  

5.97 ∗ 108 

Total copressibility coefficient at initial 
reservoir pressure, Cti (psi−1)  

220 ∗ 10−6 Real gas pseudo − pressure at bottom −
hole flowing pressure, (Pwf) (psi2/cp)  

2.03 ∗ 107 

Initial gas saturation, Sgi  0.70 Number of perforation clusters, nf  28 

Reservoir temperature, T (°R)  610 Reservoir thickness, h (ft)  300 
Assumed matrix permeability, Km (md)  1.50 ∗ 10−4 Drainage area (well) length, xe (ft)  2968 

Table 7 Comparison of curve fitting parameters and statistical values of DCA models for gas case 2  

Arps Model PLE Model SEPD Model T-Model 

𝑞𝑖  = 6.7696 𝑞𝑖  = 24.186 𝑞𝑖 = 7.5057 𝑎 =  1.2821 

𝐷𝑖  = 0.0106 𝐷1 = 0.1654 𝜏 = 139.38 𝑏 = -1.1413 

𝑏 = 1.0000 𝐷∞ = 0.0000 𝑛 = 0.4831 𝐺𝑅 =   50873 

 𝑛 = 0.2303   

𝑅2 (𝑄𝑔) = 0.9706 𝑅2 (𝑄𝑔) = 0.9945 𝑅2 (𝑄𝑔) = 0.9614 𝑅2 (𝑄𝑔) =  0.9923 

𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.2008 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.0865 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.2300 𝑅𝑀𝑆𝐸 (𝑄𝑔) =  0.1028 

𝑅2 (𝐺𝑃) = 0.9949 𝑅2 (𝐺𝑃) = 0.9984 𝑅2 (𝐺𝑃) = 0.9981 𝑅2 (𝐺𝑃) =  0.9993 

𝑅𝑀𝑆𝐸 (𝐺𝑃) = 29.242 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 16.522 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 17.761 𝑅𝑀𝑆𝐸 (𝐺𝑃) =  10.885 

LGM Model Duong Model YM-SEPD Model EED Model 

𝑎 = 100.00 𝑞1 = 7.5428 𝑞𝑖 = 7.5057 𝑞𝑖 =  4.4984 

𝑛 = 0.6245 𝑎 = 1.2821 𝜏 = 120.43 𝛽𝑒  =  1.0000 

𝐾 = 3636.4 𝑚 = 1.1413 𝑛 = 0.4134 𝛽𝑙  =  0.0028 

   𝑛 =  0.7000 

𝑅2 (𝑄𝑔) = 0.9358 𝑅2 (𝑄𝑔) = 0.9926 𝑅2 (𝑄𝑔) = 0.9446 𝑅2 (𝑄𝑔) =  0.8127 

𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.2964 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.1009 𝑅𝑀𝑆𝐸 (𝑄𝑔) = 0.2754 𝑅𝑀𝑆𝐸 (𝑄𝑔) =  0.5065 

𝑅2 (𝐺𝑃) = 0.9820 𝑅2 (𝐺𝑃) = 0.9986 𝑅2 (𝐺𝑃) = 0.9875 𝑅2 (𝐺𝑃) =  0.9874 

𝑅𝑀𝑆𝐸 (𝐺𝑃) = 55.134 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 15.322 𝑅𝑀𝑆𝐸 (𝐺𝑃) = 45.889 𝑅𝑀𝑆𝐸 (𝐺𝑃) =  46.203 

 

Figure 4 Comparison of future prediction of PLE, Duong and T models for gas case 2  
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Table 8 Comparison of estimated ulimate recovery of DCA for gas case 2  

Arps Model PLE Model SEPD Model T-Model 

Qlimit, 
MMSCF

day
 

= 0.200 Qlimit, 
MMSCF

day
 = 0.200 Qlimit, 

MMSCF

day
 = 0.200 Qlimit, 

MMSCF

day
 = 0.200 

tlimit, day = 3088 tlimit, day = 3807 tlimit, day = 2005 tlimit, day = 6936 

EUR, MMMSCF = 2.241 EUR, MMMSCF = 2.670 EUR, MMMSCF = 1.937 EUR, MMMSCF = 3.775 

LGM Model Duong Model YM-SEPD Model EED Model 

Qlimit, 
MMSCF

day
 

= 0.200 Qlimit, 
MMSCF

day
 = 0.200 Qlimit, 

MMSCF

day
 = 0.200 Qlimit, 

MMSCF

day
 = 0.200 

tlimit, day = 2757 tlimit, day = 7023 tlimit, day = 2714 tlimit, day = 1122 

EUR, MMMSCF = 2.126 EUR, MMMSCF = 3.829 EUR, MMMSCF = 2.231 EUR, MMMSCF = 1.539 

Oil Case 1 

An example of oil production data is that of well # 

1 producing from Eagle Ford formation [52]. As well # 

1 was completed by 28 stages of hydraulic fracturing, 

its production history, shown in Figure 5, included a 

backflow period which lasted for few days. The curve 

fitting and future prediction processes for production 

behaviour of this well proved that: 

i. PLE, Duong, T and Arps models fitted the 

production data very well, as demonstrated in 

Table 9. 

ii. These four models predicted the future 

production performance nearly with the 

same behaviour as shown in Figure 6 and 

concluded from EUR values summarized in 

Table 10. 

iii. Although, Arps model was developed to fit 

production performance of conventional 

reservoirs [24,31], it fitted production data of 

well # 1 with high accuracy. The reason is 

because transient flow regime period didn’t 

last for long time and most of the production 

data was in BDF regime period. 

Oil Case 2 

Another example of oil production data is that of 

Well # 7 producing from Eagle ford formation in 

Sparrow field [52]. Well # 7 was completed with 49 

stages of hydraulic fracturing. The well experienced a 

decline in production curve before applying the gas lift 

technique, as shown in Figure 7. 

Statistical values summarized in Table 11 proved 

that EED, Arps, PLE and SEPD models were the most 

accurate models in fitting production data of Well # 7.  

These models predicted future production very well 

and Arps model showed the best prediction as 

demonstrated in Figure 8. Again, EED model showed 

the least prediction as with gas case 1. Estimated 

ultimate recovery values calculated using the eight 

DCA models are summarized in Table 12. They were 

calculated when oil rate was 10 STB/day which we 

assumed as the economic limit for this well. 

Due to the long backflow and BDF periods, T and 

Duong models showed very low accuracy in fitting the 

production data of well # 7. This is because they were 

originally developed to model long-term transient 

flow regime [39,42].  

 

Figure 5 Production decline curve for oil case 1 
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Table 9 Comparison of curve fitting parameters and statistical values of DCA models for oil case 1  

Arps Model PLE Model SEPD Model T-Model 

𝑞𝑖  = 935.63 𝑞𝑖 = 9776.3 𝑞𝑖 = 915.05 𝑎 =  1.6799 

𝐷𝑖  = 0.0319 𝐷1 = 0.2978 𝜏 = 55.489 𝑏 = -1.2545 

𝑏 = 1.0000 𝐷∞ = 0.0000 𝑛 = 0.4690 𝑁𝑅 = 3.2*105 

 𝑛 = 0.1713   

𝑅2 (𝑄𝑜) = 0.9716 𝑅2 (𝑄𝑜) = 0.9805 𝑅2 (𝑄𝑜) = 0.9294 𝑅2 (𝑄𝑜) =  0.9769 

𝑅𝑀𝑆𝐸 (𝑄𝑜) = 17.343 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 14.394 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 27.355 𝑅𝑀𝑆𝐸 (𝑄𝑜) =  15.651 

𝑅2 (𝑁𝑃) = 0.9926 𝑅2 (𝑁𝑃) = 0.9696 𝑅2 (𝑁𝑃) = 0.9862 𝑅2 (𝑁𝑃) =  0.9956 

𝑅𝑀𝑆𝐸 (𝑁𝑃) = 1956.2 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 3973.2 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 2672.3 𝑅𝑀𝑆𝐸 (𝑁𝑃) =  1509.0 

LGM Model Duong Model YM-SEPD Model EED Model 

𝑎 = 81.922 𝑞1 = 722.56 𝑞𝑖 = 915.05 𝑞𝑖 =  554.77 

𝑛 = 0.6398 𝑎 = 1.6799 𝜏 = 27.754 𝛽𝑒  =  1.0000 

𝐾 = 2.1*105 𝑚 = 1.2545 𝑛 = 0.3337 𝛽𝑙  =  0.0067 

   𝑛 =  0.7000 

𝑅2 (𝑄𝑜) = 0.9631 𝑅2 (𝑄𝑜) = 0.9774 𝑅2 (𝑄𝑜) = 0.8528 𝑅2 (𝑄𝑜) =  0.7540 

𝑅𝑀𝑆𝐸 (𝑄𝑜) = 19.767 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 15.466 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 39.498 𝑅𝑀𝑆𝐸 (𝑄𝑜) =  51.063 

𝑅2 (𝑁𝑃) = 0.9997 𝑅2 (𝑁𝑃) = 0.9917 𝑅2 (𝑁𝑃) = 0.8735 𝑅2 (𝑁𝑃) =  0.7095 

𝑅𝑀𝑆𝐸 (𝑁𝑃) = 423.32 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 2073.9 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 8105.0 𝑅𝑀𝑆𝐸 (𝑁𝑃) =  12280 

 

Figure 6 Comparison of future prediction of PLE, Duong, T and Arps models for oil case 1  

Table 10 Comparison of estimated ulimate recovery of DCA models for oil case 1 

Arps Model PLE Model SEPD Model T-Model 

Qlimit, 
MSTB

day
 

= 0.010 Qlimit, 
MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 

tlimit, day = 2902 tlimit, day = 3086 tlimit, day = 1381 tlimit, day = 2985 

EUR, MMSTB = 0.133 EUR, MMSTB = 0.146 EUR, MMSTB = 0.107 EUR, MMSTB = 0.136 

LGM Model Duong Model YM-SEPD Model EED Model 

Qlimit, 
MSTB

day
 

= 0.010 Qlimit, 
MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 

tlimit, day = 2953 tlimit, day = 2936 tlimit, day = 2544 tlimit, day = 603 

EUR, MMSTB = 0.140 EUR, MMSTB = 0.133 EUR, MMSTB = 0.126 EUR, MMSTB = 0.081 
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Figure 7 Production decline curve and gas injection rate for oil case 2 

Table 11 Comparison of curve fitting parameters and statistical values of DCA models for oil case 2  

Arps Model PLE Model SEPD Model T-Model 

𝑞𝑖  = 570.07 𝑞𝑖 = 572.35 𝑞𝑖 = 659.00 𝑎 =  6.5785 

𝐷𝑖  = 0.0042 𝐷1 = 0.0077 𝜏 = 249.04 𝑏 = -1.5086 

𝑏 = 0.4349 𝐷∞ = 0.0000 𝑛 = 0.6891 𝑁𝑅 = 2.4*105 

 𝑛 = 0.8095   

𝑅2 (𝑄𝑜) = 0.9008 𝑅2 (𝑄𝑜) = 0.8901 𝑅2 (𝑄𝑜) = 0.8830 𝑅2 (𝑄𝑜) =  0.5887 

𝑅𝑀𝑆𝐸 (𝑄𝑜) = 42.130 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 44.345 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 45.766 𝑅𝑀𝑆𝐸 (𝑄𝑜) =  85.798 

𝑅2 (𝑁𝑃) = 0.9983 𝑅2 (𝑁𝑃) = 0.9965 𝑅2 (𝑁𝑃) = 0.9949 𝑅2 (𝑁𝑃) =  0.9355 

𝑅𝑀𝑆𝐸 (𝑁𝑃) = 2006.3 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 2838.4 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 3434.5 𝑅𝑀𝑆𝐸 (𝑁𝑃) =  12252 

LGM Model Duong Model YM-SEPD Model EED Model 

𝑎 = 99.986 𝑞1 = 3.0505 𝑞𝑖 = 659.00 𝑞𝑖 =  561.03 

𝑛 = 0.6785 𝑎 = 6.5785 𝜏 = 205.86 𝛽𝑒  =  3.4599 

𝐾 = 3.3*105 𝑚 = 1.5086 𝑛 = 0.5552 𝛽𝑙  =  0.0030 

   𝑛 =  0.7000 

𝑅2 (𝑄𝑜) = 0.1904 𝑅2 (𝑄𝑜) = 0.7427 𝑅2 (𝑄𝑜) = 0.8575 𝑅2 (𝑄𝑜) =  0.9240 

𝑅𝑀𝑆𝐸 (𝑄𝑜) = 120.38 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 67.867 𝑅𝑀𝑆𝐸 (𝑄𝑜) = 50.497 𝑅𝑀𝑆𝐸 (𝑄𝑜) =  36.878 

𝑅2 (𝑁𝑃) = 0.9857 𝑅2 (𝑁𝑃) = 0.5429 𝑅2 (𝑁𝑃) = 0.9696 𝑅2 (𝑁𝑃) =  0.9901 

𝑅𝑀𝑆𝐸 (𝑁𝑃) = 5774.2 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 32625 𝑅𝑀𝑆𝐸 (𝑁𝑃) = 8407.8 𝑅𝑀𝑆𝐸 (𝑁𝑃) =  4796.1 

Table 12 Comparison of estimated ultimate recovery of DCA models for oil case 2 

Arps Model PLE Model SEPD Model T-Model 

Qlimit, 
MSTB

day
 

= 0.010 Qlimit, 
MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 

tlimit, day = 2633 tlimit, day = 1754 tlimit, day = 1990 tlimit, day = 2400 

EUR, MMSTB = 0.216 EUR, MMSTB = 0.195 EUR, MMSTB = 0.203 EUR, MMSTB = 0.191 

LGM Model Duong Model YM-SEPD Model EED Model 

Qlimit, 
MSTB

day
 

= 0.010 Qlimit, 
MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 Qlimit, 

MSTB

day
 = 0.010 

tlimit, day = 4306 tlimit, day = 2015 tlimit, day = 2715 tlimit, day = 1332 

EUR, MMSTB = 0.249 EUR, MMSTB = 0.147 EUR, MMSTB = 0.214 EUR, MMSTB = 0.179 



Journal of Petroleum and Mining Engineering 24 (1) 2022                                                                                                       DOI: 10.21608/jpme.2022.128147.1123 
 

Page|62 

 

Figure 8 Comparison of future prediction of EED, Arps, PLE and SEPD models for oil case 2  

 

Conclusions  

Production behaviour of unconventional 

reservoirs shows long-term transient flow followed by 

BDF which required decline curve analysis models 

other than Arps model. Modern DCA models have 

been developed to simulate this behaviour, such as 

PLE, SEPD, T, LGM, Duong, YM-SEPD and EED models. 

These models along with Arps model were 

programmed in the PDAS application to facilitate their 

usage in matching and predicting production 

behaviour of unconventional reservoirs. Conclusions 

emanating from the comparative study of these 

models are as follows: 

1) PLE, T and Duong models can simulate 

production behaviour of wells in 

unconventional reservoirs with high accuracy. 

2) T and Duong models can be used 

interchangeably as they have similar 

mathematical expressions and behave with 

the same manner. 

3) The modification used when calibrating the 

parameters of T and Duong models works 

well if backflow period is short. 

4) Arps model can only fit production data with 

high accuracy when most of the data is in BDF 

regime period. It is also considered the most 

accurate model to represent this flow-regime 

type. 

5) Unlike other models, PLE and EED models 

consist of two segments: one can simulate 

early-time stage flow period and the other 

simulates late-time stage flow period. PLE 

model can be used to fit and predict 

production behaviour in unconventional 

reservoirs while EED model can only be used 

to fit that behaviour.   

6) SEPD model shows moderate accuracy in 

fitting different flow-regime types 

simultaneously, as it was originally developed 

to represent the long-term transient flow. 

Also, YM-SEPD model shows similar accuracy. 

7) Although LGM rate-time relation shows low 

curve-fit accuracy, the cumulative-time one 

shows high accuracy. As these relations were 

adopted from a logistic growth model which 

basically represented size not rate. 

8) The PDAS application is a powerful tool as it 

minimizes computation time of decline curve 

analysis. It also provides reliable EUR values 

compared to those calculated using the linear 

flow analysis model. 

We recommend developing a combined model 

which consists of two different models (dual model), 

one can simulate transient flow period plus its 

preceding backflow period and the other can simulate 

BDF period. The determination of the switch point 

should be on a physical basis which enables smooth 

transformation between the two models.  Then, the 

developed model will be able to simulate the whole 

production history of wells in unconventional 

reservoirs and predict their future production 

behaviour with very high accuracy. 
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Nomenclature 

Abbreviations: 

BDF = Boundary-dominated flow 
DCA = Decline curve analysis 
EED = Extended exponential decline 
EUR = Estimated ultimate recovery 
LGM = Logistic growth model 
MFHWs = Multi-fractured horizontal wells 
PDA = Production data analysis 
PLE = Power-law exponential 
SEPD = Stretched exponential production 

decline 
YM-SEPD = Yu and Miocevic - Stretched exponential 

production decline 

Field Variables: 

a  = Model’s constant, Intercept constant 

defined by Eq. (22) or Nominal decline 

rate 

b  = Derivative of loss ratio, Arps decline-

curve exponent or Model’s constant 

Cti = Total compressibility coefficient at initial 

reservoir pressure, psi−1 

Di = Initial decline rate, day-1. 

D̂i = Decline constant [D̂i = D1 n]⁄  [This 

parameter has a different interpretation 

than Di]. 

D(t)  = Decline rate at time t, day-1. 

D1 = Decline constant intercept at t = 1 day. 

D∞ = Decline constant at infinite time. 

1/D = The loss ratio, time unit. 

GP = Cumulative gas production, MMSCF. 
h = Reservoir thickness, (ft) 

K = Carrying capacity or estimated ultimate 

recovery 

Km = Assumed matrix permeability, md 

m = Slope defined by Eq. (22)  

m(Pi) = Real gas pseudo-pressure at initial 

reservoir pressure, psi2/cp 

m(Pwf) = Real gas pseudo-pressure at bottom-hole 

flowing pressure, psi2/cp 

n = Time exponent, Model exponent, 

Hyperbolic exponent or Empirical 

exponent, with a recommended range of 

0 to 0.7 

nf = Number of perforation clusters 

Np = Cumulative oil production, STB 

NR  = Ultimate oil recovery at t → ∞, STB 

q = Produced rate in period, MSCF/month or 

Production rate, MMSCF/day 

qi = Initial flow rate at time t=0, MSTB/day or 

MMSCF/day or Maximum observed 

production rate, MSCF/month 

q̂i = Rate intercept at t = 0 [This parameter has 

a different interpretation than qi]. 

q(t) = Flow rate at time t, STB/day, MSTB/day 

or MMSCF/day. 

q1 = Production rate at t = 1 day , MMSCF/
day. 

Q = Cumulative production, MSCF 

Qg = Gas production rate, MMSCF/day 

Q𝑔inj
 = Gas injection rate, MMSCF/day 

Qo = Oil production rate, STB/day 

Qlimit = Production rate at economic limit, 

MMSCF/day or MSTB/day 

Q(t) = Cumulative production, MSTB or 

MMSCF. 

RMSE (Gp) = Root mean square error for 

cumulative gas production. 

RMSE (Np) = Root mean square error for 

cumulative oil production. 

RMSE (Qg) = Root mean square error for gas 

production rate. 

RMSE (Qo) = Root mean square error for oil 

production rate. 

R2 (Gp) = Coefficient of determination for 

cumulative gas production. 

R2 (Np) = Coefficient of determination for 

cumulative oil production. 

R2 (Qg) = Coefficient of determination for gas 

production rate. 

R2 (Qo) = Coefficient of determination for oil 

production rate. 

Sgi = Initial water saturation, fraction 

t = Time, day or Number of periods, 

months 

tlimit = Producing time at economic limit, 

day 

T = Reservoir temperature, °R 

xe = Drainage area (well) length, (ft) 

Greek variables: 
βe = Constant to account for the early 

(fully transient) period, which 

should be larger than 𝛽𝑙  as 

recommended. 

βgi = Gas formation volume factor at 

initial reservoir pressure, ft3/SCF 

βl = Constant to account for the late-life 

(BDF) period. 

τ = Characteristic number of periods 

∅ = Porosity, fraction 

μgi = Gas viscosity at initial reservoir 

pressure, cp 

Γ [
1

n
]  = Complete gamma function 

Γ [
1

n
 , (

t

τ
)

n
]  = Incomplete gamma function 
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