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Abstract 
 
Achieving important and effective reservoir parameters requires a lot of time and cost, and 
also achieving these devices is sometimes not possible. In this research, a dataset including 
565 datapoints collected from published articles have been used. The input data for 
forecasting oil formation volume factor (OFVF) were solution gas oil ratio (Rs), gas specific 
gravity (γg), API gravity (API0) (or oil density γo), and temperature (T). Two hybrid methods 
multilayer perceptron (MLP) with artificial bee colony (ABC) and firefly (FF) algorithms to 
predict this parameter have been introduced in that study and  their results have been 
compered after extraction. After essential investigations in this study, the results show that 
MLP-ABC gives the best accuracy for predicting OFVF. For MLP-ABC model OFVF prediction 
accuracy in terms of RMSE < 0.002573 bbl/STB and R2 = 0.998 for this test dataset. After 
comparing the results of the experimental equations, it was concluded that the Dokla and 
Osman model gives the best results and Based on Spearman’s correlation coefficient 
relationships all input parameters have a positive effect on OFVF prediction, which are as 
follows: Rs> T> API> γg and these results show that the effect of Rs is more than other input 
variables and the effect of γg is the lowest. 

Introduction 

Accurate and valuable evaluation of PVT properties 
(pressure, volume and temperature) is one of the 
main and most obvious concerns of reservoir 
engineers for reservoir management and evaluation 
purposes. These properties include determining and 
obtaining properties of reservoir fluids' physical 
characteristics such as bubble point pressure (BPP), 
solution gas oil ratio an (GORs) and oil formation 
volume factor (OFVF), which are key development [1-
5]. 

Since estimating the number of hydrocarbons in the 
reservoir and design is important, one of the most 
important tasks is to estimate the key parameters of 
the reservoir that can be used to achieve this 
importance [42, 44]. For example, liquids undergo 
fundamental changes in temperature and pressure 
not only through their production path, but also 
during normal pressure discharge process. One of the 

different methods of pressure maintenance and 
enhance oil recovery (EOR) is injecting gas to increase 
the pressure of certain chemicals inside reservoir [61]. 
The optimal design and success of such processes 
require an accurate understanding of the liquid phase 
behaviour of the reservoir. 

One of the important parameters is determining the 
concentration of CO2. This parameter is very 
important in terms of human life. In order to control 
this parameter, the method of CO2 storage in the 
subsurface as hydrate is implemented. In 2019 
Hassanpouryouzband et al. predicted the solubility of 
CO2 and N2 in water and brine via three different 
state equations including, CPA-SRK72, VPT and PC-
SAFT. They coupled these equations with binary 
Interaction Parameters (BIP). Then, they compared 
results with available experimental data. Acceptable 
proximity of predictions to experimental results 
confirms the reliability of the thermodynamic model 
[62]. A year later in 2020, Hassanpouryouzband et al. 
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conducted a research on H2 as a substitute for fossil 
fuels to reduce CO2 emissions, as well as the proper 
and accurate design of thermodynamic. In order to 
predict the thermo-physical properties of H2 mixed 
with CH4, N2, CO2 and a typical natural gas from the 
North Sea of the GERG-2008, Equation of State (EoS) 
and SupertRaPP models are used. In addition, a user-
friendly software (H2Themobank) was made available 
to the public. 

Due to the high importance of developing and 
completing oil and gas fields, one of the tasks that has 
been done in recent years is to use field data to 
calculate and predict, as well as to determine the 
parameters used in the oil and gas industry, for 
example in the following areas have been addressed: 
reservoirs [6]; formation damage [7], petroleum well 
blowouts [48], wellbore stability [8], rheology and 
filtration [9-10], production [11-13]; drilling fluid [14].  

Determination of tank properties is conducted 
through laboratory outputs, which are very costly and 
time consuming. Also, these tests are not always 
available and there are not enough samples to 
determine these properties. Therefore, in order to 
facilitate the process of determining the 
characteristics of the reservoir and obtain these 
characteristics, researchers turned to experimental 
models. Using previous studies, we conclude that 
OFVF is a function of: solution gas oil ratio (Rs), gas 
specific gravity (γg), API gravity (API0) (or oil density 
γo), and temperature (T) based on the following Eq. 
(1). 

𝑂𝐹𝑉𝐹 = 𝑓 (𝑅ௌ, 𝛾, 𝑇, 𝐴𝑃𝐼 𝑜𝑟 𝛾)                                      (1) 

Previous researchers based on studies and the 
relationship between the parameters, presented 
equations in Table 1 that are shown as follows: 

In 1947, Standing (1947) proposed an equation for 
predicting OFVF using 105 data from California oil 
fields [15]. In 1977, Vazquez and Beggs (1977) 
proposed an equation for predicting OFVF using 5008 
data collected from Worldwide, but in this equation, 
have a boundary (API=30) and this equation divided 
two section [16]. In 1980, Glaso (1980) proposed an 
equation for predicting OFVF using 41 data collected 
from the North Sea [17]. In 1988, Al-Marhoun (1988) 
proposed an equation for predicting OFVF using 160 
data collected from the Middle East [18]. In 1992, 
Dokla and Osman (1992) presented an equation for 
predicting OFVF using 51 data collected from the UAE 
[19]. In 1993, Petrosky and Farshad (1993) proposed 
an equation for predicting OFVF using 90 data 
collected from the Gulf of Mexico [20]. The empirical 
relationships of BPP and OFVF, along with data and 
equations for prior researchers are respectively listed 
in Table 1. 

 

 

Table 1. Published correlations that predict OFVF for 
crude oil.  

In the experimental correlations, the performance 
accuracy was very low and unacceptable. Therefore, 
researchers have started using artificial intelligence in 
recent years [20-23] for example; Analysis of crude-oil 
desalting system [51], velocity prediction in sewer 
pipes [64]; bed load sediment transport estimation in 
a clean pipe [65]; monthly inflow prediction [66]; 
predicting sediment transport in clean pipes [67] and 
estimate velocity at limit of deposition in storm 
sewers [68]. 

Authors Year  Origin Data 
No. 

Correlation 

Standing 1947 Califor

nia 

105 𝑂𝐹𝑉𝐹

= a1

+ a2 Rୱ ቀ
γ

γ
ൗ ቁ

ୟଷ

+ a4T൨
ୟହ

 

a1=0.972, a2=1.472e-4, 

a3=0.5, a4=1.25, a5=1.175 

Vazquez 

and 

Beggs 

1977 World

wide 

500 𝑂𝐹𝑉𝐹

= 1 + a1Rୱ

+ (T − 520) ቆ
𝐴𝑃𝐼

γ

ቇ (a2 + a3Rୱ)

API<=30: a1=4.677e-4, 

a2=1.75e-5, a3=-1.811e-8 

             API>30: a1=4.67e-4, 

a2=1.1e-5, a3=1.337e-9 

Glaso 1980 North 

Sea 

41 𝑂𝐹𝑉𝐹

= 1

+ 10ൣୟଵାୟଶ ୪୭(ୋ)ିୟ (୪୭ (ୋ))మ൧ 

G = Rୱ ൬
γ

γ

൰
ୟସ

+ a5T 

a1= -6.58511, a2= 2.91329, 

a3=0.27683, a4=0.526, 

a5=0.968 

Al-

Marhoun 

1988 Middle 

East 

160 𝑂𝐹𝑉𝐹

= a1 + a2(𝑇 + 460) + a3M

+ a4𝑀ଶ 

M = Rୱ
ୟହγ

ୟγ
ୟ 

a1=0.497069, a2=0.862963e-

3, a3=0.182594e-2, a4= 

0.318099e-5, a5= 0.74239, a6= 

0.323294, a7=-1.20204 

Dokla & 

Osman 

1992 U.A.E 51 𝑂𝐹𝑉𝐹

= a1 + a2(𝑇 + 460) + a3M

+ a4𝑀ଶ 

M = Rୱ
ୟହγ

ୟγ
ୟ 

a1=0.431935e-1, 

a2=0.156667e-2, 

a3=0.139775e-2, 

a4=0.380525e-5, a5= 

0.773572, a6= 0.404020, a7=-

0.882605 

Petrosky 

and 

Farshad 

1993 Gulf of 

Mexico 

90 𝐵

= a1

+ a2 Rୱ
ୟଷ ൬

γ
ୟସ

γ
ୟହ൘ ൰

+ a6𝑇ୟ൨
ୟ଼

 

a1=1.0113, a2=7.2046e-5, 

a3=0.3738, a4=0.2914, 

a5=0.6265, a6=0.24626, 

a7=0.5371, a8=3.0936 
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 In this regard, many researchers using artificial 
intelligence were able to predict the value of OFVF, 
some of which we report:  

A large number of researchers including Gharbi and 
Elsharkawy (1997) [24], Gharbi and Elsharkawy (1999) 
[25], Boukadi et al. (1999) [26], Osman et al. (2001) 
[27], Al-Marhoun and Osman (2002) [28], Goda et al. 
(2003) [29], Moghadam et al. (2011a) [30] and 
Asadisaghandi and Tahmasebi (2011) [31] in order to 
predict OFVF based on artificial neural network (ANN) 
were able to make a good prediction in the field.  

Other researchers have used combinations of 
algorithms or several algorithms to predicted OFVF, 
including the following: Elsharkawy (1998) [32] were 
used radial basis function (RBF)-ANN algorithm, 
Malallah et al. (2006) [33] were used of alternating 
conditional expectations (ACE) algorithm, El-Sebakhy 
et al. (2009) [34] were used support vector regression 
(SVR) algorithm, Dutta and Gupta were used genetic 
(GA)-ANN algorithm, Khoukhi (2012) [35] used GA-
ANN and GA-ANFIS algorithms, Farasat et al. (2013) 
[36]  were used SVM algorithm, Rafiee-Taghanaki et 
al. (2013) [37] were used gravitational search 
algorithm (GSA) – least squares support vector 
machine (LSSVM) algorithm and Karimnezhad et al. 
(2014) [38] were used GA algorithm. 

Many researchers using ANN, ANFIS, RBF, SVM, SVR, 
GA, GSA and LSSVM algorithms to predict OFVF have 
been able to provide models that work better than the 
experimental correlations. In this paper, we intend to 
combine MLP-ABC and MLP-FF methods to construct 
a vigorous model for determining OFVF as a function 
of input data. Furthermore, the introduction of these 
recombination algorithms in the field of data 
forecasting is important for being implemented in 
crude oil data worldwide. 

Methodology  

Work Flow 

Figure 1 shows a workflow diagram that shows all 
steps in a quick scan to construct a model to 
determine OFVF. These steps are as follows: data 
collection, describing of the variables, and data 
normalization. Through data normalization process all 
data variables were normalized to range between +1 
and -1 by applying Eq. (2). 

𝑥
 = ቀ

௫
ି௫

௫௫ି௫
ቁ ∗ 2 − 1                                          (2) 

Where; 

𝑥
 = the value of attribute l for data records I; 

𝑥𝑚𝑖𝑛 = the minimum value of the attribute l 
among all the data records in the dataset; and,   

𝑥𝑚𝑎𝑥= the maximum value of the attribute l 
among all the data records in the dataset. 
Then we verify the data after normalization and then 
divide it into two parts: training and testing. At this 
time, we used 70% of the data for train and 30% of the 
data for test. Finally, the set of calculated outputs of 

each method is compared with experimental models 
using computational error and then the best result is 
obtained. 

 
Figure 1. schematic diagram of the workflow 
sequence 

Machine Learning Algorithm 

Today, artificial intelligence is rooted in various 
industries and sciences. It has found a wide variety of 
applications in various fields. The oil and gas industry, 
which has long been the focus of the whole world, and 
the reason is that the extracted oil and gas has 
changed the world. Many people did a lot of work to 
optimize and find important and key parameters in 
the oil and gas industry, for example in the following 
areas have been addressed:  prediction flow rate of 
orifice & choke flow [22-23; 39-40, 44]; prediction of 
casing collapse based on shear modulus & 
geomechanical approach [41, 43]; prediction of 
bubble point pressure [42].  

Artificial Neural Network 

Multilayer Perceptron (MLP) Algorithm 

One of the best up-to-date tools in the world is to 
create complex nonlinear relationships between sets 
and create a black box, artificial neural network [45; 
49-50]. This ANN algorithm covers a wide range of 
methods used in various industries. Important factors 
in choosing ANN type are selecting attributes (i.e., 
input variables to be considered), network 
architecture (number of layers and nodes), 
transferring functions between layers, and selecting 
training algorithm to optimize their prediction 
performance [46]. One of the most widely used neural 
networks is the multilayer perceptron (MLP), which is 
a versatile and flexible neural network that is suitable 
for all data sets (large and small) [47]. This network 
was used to predict OFVF. One of the methods that 
teaches MLP and causes data aggregation is the 
Levenberg-Marquardt (LM) algorithm. Using the 
Levenberg-Marquardt (LM) algorithm, which is 
implemented in MLP, in conjunction with two 
optimization algorithms named artificial bee colony 
(ABC) and Firefly algorithm (FF), two recombinant 
algorithms can be created. Figure 2 shows the 
structure of MLP. 
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Figure 2. Schematic of MLP algorithm. 

Firefly (FF) Algorithm 

Fireflies are a species of beetles that emit of 
themselves a green or yellow light. The fireflies have a 
great tendency to move toward, which makes them 
brighter than they were. The factors affecting 
receiving light from a source are the distance between 
the fireflies, the ability of ambient in light absorption, 
the type of light source, and the amount of emitting 
light from the emitting source.  

Firefly algorithm (FF) is an optimization method 
striving to find the optimal solution for the problem 
by simulating the fireflies’ behavior. The flow diagram 
for FF algorithm is displayed in Figure 3. The 
procedure of optimization method is described in the 
following [51-52].  

 

 

Figure 3. FF algorithm flowchart [69]. 

The first stage is setting the value for initial 
parameters in order to the FF algorithm to start. 
Required parameters for this algorithm are: number 
of fireflies (n), the number of repetitions (t), random 
vector coefficient (α), light absorption coefficient (γ), 
upper line (max) and lower line (min). 

After this stage, a population of n numbers of fireflies 
is created with random values. The brightness of a 
firefly is considered as its fitness amount [68].  The 
brightness amount is determined based on the 
problem type that is going to be optimized and the 
selected fitness function for that problem. The charm 
between each two fireflies can be determined using 
Eq. (3). This equation displays that how charm is the j 
firefly for the I firefly [68]. 

𝛽 = 𝛽 .  𝑒ି ఊ ೕ


 (3) 

 Where γ is the amount of ambient light absorption, 
the variable 𝑚 is the light source that can received one 
of the three values 0, 1, and 2, and 𝑟  is the Euclidean 
distance that can be determined using Eq. (4).   

R୧୨ = ට(x୧ − x୨)
ଶ + (y୧ − y୨)

ଶ (4) 

After computation of the distance between fireflies 
and determination of charm between fireflies’ pairs, if 
a firefly sees that the other firefly in their pair is 
brighter than itself, then it will move towards that 
brighter firefly [68]. The movement of dimmer firefly 
toward the brighter firefly is calculated using Eq. (5).  

X୧
ᇱ = x୧ + δ୧୨൫x୨ − x୧൯ + αε୧ (5) 

Where the variable  α is the random vector coefficient 
and takes a constant value, ε takes a small value, and 
x୧

ᇱ represents the new position of the firefly i.  

All the fireflies in the population move towards the 
best firefly, while the best firefly moves randomly. The 
random movement of the best firefly can be obtained 
using Eq. (6).   

𝑥௦௧
ᇱ = 𝑥௦௧ + 𝛼𝜀 (6) 

 

Artificial Bee Colony (ABC) Algorithm 

Artificial bee colony algorithm (ABC) is a simulation of 
the bee groups’ behavior in searching for food. Bees 
are divided into three categories: i) worker bees which 
go toward the pre-determined food sources ii) 
pioneer bees which perform a random search for a 
food source iii) search bees which stay in the dance 
area to make a decision on the selection of a source 
food [53-55]. Figure 4 displays the flowchart of ABC 
algorithm.    

Working with this algorithm, we initially specify the 
number of initial populations of the worker and 
pioneer bees as well as the main parameters including 
cost function, trial index, and problem range and 
allowable limit for the index trial.   
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Figure 4. ABC algorithm flowchart. 

At this stage, the pioneer bees start searching 
randomly and achieve the proper sources. The 
pioneer bees should not go beyond the specified 
range. The specified range can be obtained using Eq. 
(7), as follows:        

𝑋 = 𝑋 + 𝑟൫𝑋௫ − 𝑋൯ (7) 

 

Where in Eq. (7), 𝑋  is the ith response in jth 
dimension, r represents a random number from o to 
1, and 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the lower the upper limits, 
respectively.   

In this part, more bees are allocated to the sources 
with higher suability and eliminate few percent of the 
sources with lower suitability.  

After, the cost function is calculated, and then, based 
on calculated cost function, the sources’ performance 
is calculated (Eq. (8)).  

𝑓𝑖𝑡(𝑥) = ቐ

1

1 + 𝑓(𝑥)
          𝑓(𝑥) ≤ 0

1 + |𝑓(𝑥)|        𝑓(𝑥) ≥ 0

ቑ (8) 

 

Then, the employed bees move toward the sources 
found by the pioneer bees. The more efficient the 
sources, the more bees are allocated to them. The 
movement of bees is obtained by Eq. (9).  

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑟൫𝑋(𝑡) − 𝑋(𝑡)൯ (9) 

 

Where,  𝑋  represents the position of bee,  𝑋  
represents the random selection of an employed bee, 

𝑡 is the t bee,  𝑗 is the response dimension, and 𝑟 is a 
random number selected between 1 and -1.  

The sending of employed bees is performed using 
following methods: 

1. Sending more specified bees to better 
sources and sending specified number of 
bees to normal sources.  

2. Sending bees according to Roulette cycle (on 
the basis of the performance probability of 
each source) using Eq. (10).  

 

𝑃 =
𝑓𝑖𝑡(𝑥)

∑ 𝑓𝑖𝑡(𝑥)
ୀଵ

 (10) 

 

Where, 𝑃  is the probability of the 𝑖 source’s selection 
and 𝑓𝑖𝑡(𝑥) is the suitability value of the 𝑥  source.  

Abandoned sources are defined as the sources 
wasting the computational power, which makes 
efforts to convince them not to work. To determine 
the abandoned source, the trial index must be 
checked for each source. If the trial index is greater or 
equal to admissible limit and that source is not the 
best problem’s solution, the source is considered as 
an abandoned source. Indeed, to implement that, a 
counter need to be set, the value of which increases 
with each visit to that source, and if the number of 
visits to that source becomes greater than the 
specified limit and there is no improvement, then the 
source will be announce as an abandoned source, and 
it will no longer considered as a suitable source.  

For search a new source instead of abandoned source 
should be:  

 Global search 
 The sources having been abandoned must be 

replaced by new sources  
In fact, the pioneer bees, using Eq. (11), find 
another initial response once again. 

If the number of iterations meets a certain level or 
reaches a certain value of cost function, the algorithm 
ends.  

 

Hybrid Models 

FF-MLP Hybrid Algorithm 

The neural network has always been widely used as a 
problem-solving tool. In this study, we used a 
combination of MLP with optimization methods to 
better compare the results [56]. We did this 
combination with the same two methods FF and ABC 
that were used in sections before to make a logical 
comparison of the results. Figure 5 shows the 
flowchart of the FF-MLP method. 
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Figure 5. FL-MLP algorithm flowchart. 

In this method, we must first normalize the data. In 
this section, we used exactly the same two sets of 
training and testing datapoints. In this combined 
method, in principle, the network training operation 
is performed by FF, and in fact, the weights and bias 
of the perceptron’s in each layer are obtained by the 
FF optimization method. As shown in the flowchart, 
the MLP network has been used as a cost function for 
the FF algorithm. What is the error of new weights and 
biases? 

After the optimal weights are obtained, we create the 
network with those weights and this time we give the 
test data to it to find out how the network has been 
trained and what is the amount of error. 

The interaction between the network and the FF 
algorithm is such that we consider all the weights of 
the layers as well as the bias as a presenter or vector, 
and the FF algorithm creates its population according 
to the length of this presentation. In fact, each 
member of the population is a presentation of the 
length of all weights and bias. The weights of each 
layer are in the form of a matrix. For example, if the 
first layer it has 4 inputs and 8 perceptron’s, so a 4x8 
matrix represents the weights of the first layer and an 
8x1 vector represents the first layer bias. The next 
layers are the same. Table 2 presents the parameters 
related to the implementation of this method. 

Table 2. MLP-FF algorithm parameters 

FF control Value MLP algorithm Value 

Fireflies No. 50 Activation function 

Attraction coefficient 2 Hidden layer 

neuron No. 

10 & 5 

Light absorption 1 Activation function tansig 

Dependent variables 

No. 

1 Number of hidden 

layers 

2 

Uniform mutation 0.05 Input neurons  7 

input variables No. 7   

Iterations No. 100   

Fireflies No. 50   

Mutation coefficient 0.98   

Mutation coefficient 0.2   

 

ABC-MLP hybrid algorithm 

This method is the same as the previous method, only 
ABC is used instead of FF. Use of this optimization 
method is only for comparison of the methods. Figure 
6 shows the flowchart method. Table 3 presents the 
parameters related to the implementation of this 
method. 

 

 

Figure 6. ABC-MLP algorithm flowchart. 

Table 3. MLP-ABC algorithm parameters 

ABC parameter Value MLP 
algorithm 

Value 

Bees No. 100 Activation 
function  

purelin 

Scout bees No. 50 Hidden 
layers 
neuron No. 

10 & 5 

Trial upper 
limit 

60 Activation 
function 

tansig 

Dependent 
variables No. 

1 Hidden 
layers No. 

2 

Iterations No. 100 Input layers 
neuron No. 

7 

Bees No. 50   
Input variables 
No. 

7   

 

Data Collection & Data Analysis 

The data used in this study to determine an optimal 
model for OFVF from Moghadam et al. (2011b) [57], 
Omar and Todd (1993) [58], Dokla and Osman (1992) 
[19], Al-Marhoun (1998) [18], Ghorbani et al. (2020a) 
[42], Gharbi & Elsharkawy (1997) [24], Mahmood and 
Al-Marhoun (1996) [59] and Ganji et al. (2014) [60] 
which is a mixture of data samples from different 
parts of the World. Table 3 summarizes the statistical 
distributions of these four data variables for the 565 
data records compiled. 
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Table 4. Data record statistical characterization of 
the variables in this study. 

Parameters T Rs γg API OFVF 

Units (F) SCF/STB - - RB/STB 

N Valid 565 565 565 565 565 

Missing 0 0 0 0 0 

Mean 193 637 1.20 35 1.44 

Std. 
Deviation 

52 406 0.46 5.9 0.27 

Variance 2707 164926 0.21 35.6 0.07 

Minimum 74 26 0.159 19.4 1.032 

Maximum 306 2496 3.4445 56.5 2.916 
 

The parameters that affect the determination of OFVF 
are: T, Rs, γg and API, which are interpreted in detail 
for data related to samples collected from worldwide. 
In order to describe the input data, the contour plot 
diagram (Figure 3) is used. The description of this 
diagram is as follows:  

In the Figure 7 for the T parameter, about 70% of the 
data are related to T < 200 F0 and the remaining 30% 
are related to T > 200 F0. For T <100 F0 (OFVF < 1.3 
bbl/STB), the T data contains about 17% of the data 
and> 300 F0 (2 < OFVF < 2.7 bbl/STB) about 5% of the 
data. For the Rs parameter, approximately 45% of the 
data are related to Rs <400 Scf / STB and the 
remaining 14% are related to Rs > 1200Scf / STB. 

For the γg parameter, approximately 70% of the data 
is related to γg <1.5 and 26% of the data is related to 
γg> 1.5. of these, 35% of the data are related to 0.5 < 
γg <1. For the API parameter, approximately 80% of 
the data is related to 30 <API <40 and of these, 17% of 
the data is related to 20 <API <30 (OFVF < 1.2 bbl/STB). 
Histogram plots (Figure 8) confirm the positively 
skewed character of the Swir and K distributions.   

 

Figure 7. Contour plots of OFVF versus data index for 
the input variables 

 

 

Figure 8. Histogram of OFVF versus data index for the 
input variables 

Results and Discussion 

Performance accuracy assessment of the two-hybrid 
machine-learning-optimization algorithms and other 
empirical equations is computational errors between 
measured and predicted OFVF. The statistical 
measures of prediction accuracy used are percentage 
deviation (PDi), average percentage deviation (APD), 
average absolute percentage deviation (AAPD), 
standard deviation (STD), mean squared error (MSE), 
root mean square error (RMSE), and coefficient of 
determination (R2). The computation formulas for 
these statistical accuracy measures are expressed in 
Eq. (12) to Eq. (19). 

Percentage difference (PD): 

PD୧ =
ஞ(౩౫౨ౚ)ିஞ(ౌ౨ౚౙ౪ౚ)

ஞ(౩౫౨ౚ)
𝑥 100                                            (12) 

Average percent deviation (APD): (13) 

𝐴𝑃𝐷 =
∑ 

సభ 

୬
                                                                                                    

Absolute average percent deviation 
(AAPD):  

 

𝐴𝐴𝑃𝐷 =
∑ ||

సభ

୬
                                                                                       (14) 

Standard Deviation (SD):  

𝑆𝐷 = ට
∑ (ି)మ

సభ

୬ିଵ
                                                                                      

(15) 

𝐷𝑖𝑚𝑒𝑎𝑛 =
ଵ


∑ ൫ξெ௦௨ௗ 

−
ୀଵ

ξௗ௧ௗ ൯                                                        

(16) 

Mean Square Error (MSE):  

𝑀𝑆𝐸 =
ଵ


∑ ൫ξெ௦௨ௗ 

− ξௗ௧ௗ
൯

ଶ
ୀଵ                                                            (17) 

Root Mean Square Error (RMSE):   
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𝑅𝑀𝑆𝐸 = √MSE     =  ට
∑ (௫ି௬)మ

సభ


                                                                                             

(18) 

Where; 

n = number of data records; 

𝑥  = measured dependent variable value 
for the ith data record; and, 

𝑦 = predicted dependent variable value 
for the ith data record.  

Coefficient of Determination (R2): 

 

𝑅ଶ = 1 −
∑ (ஞುೝିஞಾೌೞೠೝ)మಿ

సభ

∑ (ುೝି
∑ ಖಾೌೞೠೝ


సభ


)మಿ

సభ

                                                               (19) 

 

Table 5 and Figure 9 reveal that all two-hybrid 
machine-learning-optimizer models evaluated, MLP-
FF, MLP-ABC and plus empirical equation, deliver 
accurate and credible OFVF prediction for test data. 
The MLP-ABC model is the least accurate, whereas the 
models by providing OFVF prediction accuracy in 
terms of RMSE < 0.002573 bbl/STB and R2 = 0.998 for 
this test dataset. 

 

Table 5 :OFVF Prediction performance compared for 
hybrid models 

 

 

 

 

Figure 9. R2 and RMSE for empirical models and 
hybrid models used to predict OFVF. 

 

Figure 10 reveal that two-hybrid machine-learning-
optimizer models evaluated, MLP-FF and MLP-ABC, 
deliver accurate and credible OFVF prediction for test 
data. The MLP-ABC model is the least accurate, 
whereas the models by providing OFVF prediction 
accuracy in test dataset. The results of Figures 10 and 
11 as well as Table 5 show that Dokla and Osman show 
better results among the experimental models with 
RMSE = 0.26019 for test data, which is more accurate 
than other models.  

 

Authors APD% AAPD% SD MSE RMSE  R^2
Standing 4.352 5.01341 4.3141 0.0165962 0.1288262 0.8754
Vazquez & Beggs 12.882 21.954 21.7354 0.1554528 0.3942750 0.8246
Glaso 12.882 13.0756 12.7550 0.0778458 0.2790087 0.6489
Al-Marhoun 11.274 11.6543 11.1639 0.0556283 0.2358564 0.7131
Dokla and Osman -8.716 8.76535 8.6315 0.0234548 0.1531495 0.9333
Petrosky & Farshad 13.229 13.4035 13.0981 0.0817121 0.2858533 0.6052
MLP-FF -0.058 0.86221 0.2257 0.0001953 0.0139749 0.9967
MLP-ABC 0.002 0.18167 0.2186 0.0000083 0.0028758 0.9999
Standing 9.788 9.78825 9.7201 0.0938710 0.3063838 0.6699
Vazquez & Beggs 16.669 25.9205 25.6721 0.2698263 0.5194480 0.6688
Glaso 16.669 16.6691 16.5196 0.1739648 0.4170909 0.6116
Al-Marhoun 12.180 12.1884 12.0819 0.1233881 0.3512664 0.5546
Dokla and Osman 1.875 6.02602 2.0097 0.0677033 0.2601986 0.9119
Petrosky & Farshad 16.834 16.8341 16.6829 0.1775154 0.4213257 0.6278
MLP-FF 0.030 0.83693 0.7604 0.0002016 0.0142003 0.998
MLP-ABC 0.005 0.14689 0.7596 0.0000066 0.0025733 0.998
Standing 5.959 6.42474 5.9049 0.0394367 0.1985868 0.8754
Vazquez & Beggs 14.001 23.1264 22.8964 0.1892587 0.4350388 0.8246
Glaso 14.001 14.1378 13.8637 0.1062562 0.3259697 0.6489
Al-Marhoun 11.542 11.8122 11.4296 0.0756564 0.2750571 0.7131
Dokla and Osman -5.585 7.95567 5.5360 0.0365335 0.1911375 0.9333
Petrosky & Farshad 14.294 14.4175 14.1537 0.1100292 0.3317065 0.6052
MLP-FF -0.032 0.85474 0.2528 0.0001972 0.0140419 0.9999
MLP-ABC 0.003 0.17139 0.2511 0.0000078 0.0027898 0.9967

Performance of the developed regression models based on fIve statistical error metrics 
for OFVF (Train, Test and Total Data)

Train 
Data 
(398 

Dataset)

Test 
Data 
(167 

Dataset)

Test 
Data 
(565 

Dataset)
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Figure 10. Cross plot of OFVF versus data index for 
the input variables 

 

 

Figure 11. Cross plot of OFVF versus data index for the 
input variables: hybrid models (MLP-ABC and MLP-FF) 
with the four independent T, Rs, γg and API for the 
worldwide sample. 

Using Pearson's correlation coefficient, which is in the 
range -1 (perfect negative correlation) or +1 (perfect 
positive correlation) with a zero-value indicating a 
total lack of correlation, the sensitivity of each 

parameter to the OFVF showed. Spearman’s 
correlation coefficient (ρ) is calculated for ranked data 
using Eq. (20). 

𝜌 =
∑ (𝑉 − 𝑉ഥ)(𝑍 − 𝑍ത)

ୀଵ

ට∑ (𝑉 − 𝑉)ଶ ∑ (𝑍 − 𝑍ത)ଶ
ୀଵ


ୀଵ

 
(20) 

Where;  

Vi = the value of data record i for input variable V;  

𝑉ഥ = the average value of the input variable V;  

Zi = the value of data record i for input variable Z;  

𝑍ത = the average of the input variable Z; and,  

n = the number of data points in the population. 

 

Figures 12 displays the p values for the relationships 
between OFVF and the seven input variables 
considered.   

 

 

Figure 12. Spearman’s correlation coefficient 
relationships (𝝆) for OFVF prediction 
 

As shown in the figure, based on 565 available data 
from around the world and input variables from this 
data, all input parameters have a positive effect on 
OFVF prediction, which are as follows: Rs> T> API> γg 
and these results show that the effect of Rs is more 
than other input variables and the effect of γg is the 
lowest. 

Conclusion 

In this research, 565 data collected from worldwide 
have been used. The input data for forecasting OFVF, 
solution gas oil ratio (Rs), gas specific gravity (γg), API 
gravity (API0) (or oil density γo), and temperature (T). 
These input variables are very important for 
predicting OFVF because these variables are routinely 
taken in the oil industry and through this data can be 
an important parameter that is important for the 
development of oil and gas reservoirs. Calculated 
without spending time and money.  
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In this paper, the combination of MLP method, which 
is a network of artificial intelligence, with ABC and FF 
optimization methods has been used, which are the 
new combination methods for predicting OFVF. 

For MLP-ABC model OFVF prediction accuracy in 
terms of RMSE < 0.002573 bbl/STB and R2 = 0.998 for 
this test dataset. After comparing the results of the 
experimental equations, it was concluded that the 
Dokla and Osman model gives the best results. 

Based on Spearman’s correlation coefficient 
relationships all input parameters have a positive 
effect on OFVF prediction, which are as follows: Rs> 
T> API> γg and these results show that the effect of Rs 
is more than other input variables and the effect of γg 
is the lowest. 

Nomenclature 
ABC = Artificial bee colony algorithm  
ACE = Alternating conditional expectations algorithm 

ANFIS = Neuro-fuzzy algorithm 
ANN = Artificial neural network 
BPP = Bubble point pressure 
EOR = Enhance oil recovery 
FF = Firefly algorithm 
GA = Genetic algorithm 

GSA = Gravitational search algorithm 
ICA = Imperialist Competitive Algorithm 

KNN = K-nearest neighbor 
LSSVM = Least squares support vector machine 

max = Upper line 
min = Lower line 
MLP = Distance-Weighted K-nearest neighbor 
MSE = Mean square error 
MSE = Mean square error 
N1 = The number of data points in the population 
n = Number of fireflies 

OFVF = Oil formation volume factor 
PDi = Percentage difference 
R2 = Coefficient of Determination 

RBF = Radial basis function 
RMSE = Route mean square error 

SD = Standard deviation 
SVM = Support vector machine algorithm 
SVR = Support vector regression algorithm 

t = The number of repetitions 
Vi = The value of data record i for input variable V 
Zi = The value of data record i for input variable Z 
ρ = Spearman’s correlation coefficient 
𝑦ො  = Predicted value of 𝑖௧  testing data records 
𝐶 = Predicted value of the dependent variable for the testing data record 
𝐶௧ = Values of dependent variable for the tth nearest neighbor 
𝐷  = Euclidean distance 
𝑉ഥ = The average value of the input variable V 

𝑋  = Training samples 
𝑋  = Testing samples 
𝑍ത = The average of the input variable Z 
𝑤  = Weight variable of dependent variable 
𝑥

  = The value of attribute 𝑙 for data record I 
𝑥𝑚𝑎𝑥  = The maximum value of the attribute 𝑙 among all the data records in the dataset 
𝑥𝑚𝑖𝑛  = The minimum value of the attribute 𝑙 among all the data records in the dataset 

𝑦  = Measured value of 𝑖௧ testing data records 
α = Random vector coefficient 

Γ = Light absorption coefficient 
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