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ABSTRACT

Kab Amiri area in the Central Eastern Desert of Egypt comprises a variety of basement rocks
including ophiolitic mélange (serpentinites and metasediments), metavolcanics, older granitoids and
younger granites. In this study, Landsat-8 image processing and airborne gamma-ray spectrometric data
were integrated to discriminate and mapping lithological units. The applied image processing including
Optimum Index Factor and data transformation techniques such as band ratios and principal component
analysis in addition to supervised classification were effective in discrimination the different rock units
especially the younger granites into two verities. The radioelement maps are correlated with the processed
Landsat-8 images to delineate different rock units and their radioactive penalties. They show a limited
capability in geological mapping compared with Landsat-8 image processing. They discriminate the
younger granites and older granitoids (relatively higher radioactivity) from the other rock units (relatively
lower radioactivity), but they failed to discriminate between the two varieties of the younger granites. Gabal
Kab Amiri granitic pluton possesses the highest radioactivity in the area relative to the other rock units.
Landsat-8 image processing results are confirmed by detailed filed work and petrographic investigation.
The petrographic investigation revealed that the younger granites are represented by monzogranites and
syenogranites, whereas the older granitoids are represented by granodiorites. A detailed geologic map of
scale 1:50,000 is constructed from the interpretation of the processed Landsat-8 images, airborne gamma-
ray spectrometry, fieldwork and petrographic studies. Consequently, remote sensing is recommend as a
rapid and cost effective tool for mapping lithological units in arid regions.

INTRODUCTION Orogeny during the collision between East
and West Gondwana and the closure of the
Mozambique Ocean 600 Ma (Stern, 1994 and
Kusky and Matsah, 2003). The Eastern Desert
is traditionally divided into northern (NED),
central (CED), and southern (SED)parts by
two rough lines are running from River Nile
to Red Sea; a) the first from Qena to Safaga
city and b) the second from Idfu to MarsaA-
lam city. These subdivisions confine parts

The basement rocks of Egypt cover about
100.000 km? (about 10% of the total area of
Egypt). The basement rocks of the Egyptian
Eastern Desert is a part of the Arabian Nu-
bian Shield that represent the north eastern
part of the U-shaped Pan African orogenic
beltand extend through Sudan, South Sudan,
Ethiopia, Somalia, Saudi Arabia and Yemen.
These rocks were formed in the East African
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with common geographic and lithostructural
discontinuities (Stern, 1979 and Abdel Me-
guid, 1992). The Central Eastern Desert is
generally built up of ophiolitic mélange and
associated rocks together with subordinate
molasse-type sediments and late-tectonic vol-
canics and granitoid intrusives (El Ramly et
al., 1993).

Kab Amiri area is located between lat.
26°18" 11" and 26°25° 04" N and long. 33°31°
48" and 33°40° 06"'E in the Central Eastern
Desert of Egypt (Fig. 1). It covers an area
of about 175 km? Three main Wadis,with
general NW-SE direction, are traversing the
area;Wadi (W.) Kab Amiri, W. Um El Abas
and W. Bohlog. Gabal (G.) Kab Amiri rep-
resents the highest elevation point in the area
about (952m).

Multispectral remote sensing has been
broadly wused for lithological mapping and
mineral exploration especially with the de-
velopment of their sensors and algorithms
(Sabins, 1999; Ferrier et al., 2002; Bishta,
2004;Mars and Rowan 2006; Gad and Kus-
ky, 2006; Zhang et al., 2007; Youssef et al.,
2009; Ramadan et al., 2013; Pour and Hashim,
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2015; Dawoud et al., 2017; Azzaz et al., 2018;
Hammed et al., 2020 and Abdel Ghani, 2020).

The present study aims at integratingthe
Landsat-8 image processing, airborne gam-
ma-ray spectrometric data,fieldwork and lab-
oratory investigation to discriminate and map-
ping lithological units of Kab Amiri area in the
Central Eastern Desert (CED) of Egypt.

GEOLOGIC SETTING

The basement rocks in the study area com-
prise, from the oldest to youngest: ophiolitic
mélange (rock fragments of serpentinites in a
matrix of metasediments), metavolcanics, old-
er granitoids and younger granites (Fig. 2).

The ophiolitic mélange is comprising ser-
pentinites as blocks set in a metasedimentary
matrix and represent the oldest rock unit ex-
posed in the studied area. The serpentinites
are cropping out as elongated ridges with
general trend E-W and N-S directions at the
south and east of the Kab Amiri granitic plu-
ton respectively. They are enveloped by the
metasediments (Fig. 3). Serpentinitesare of
grayish green color, moderate to high re-
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Fig. 1: Location and topographic maps of Kab Amiri area, CED, Egypt
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3330E
Fig. 2: Geological map of Kab Amiri area, CED, Egypt (Modified after Ammar, 1993)

Fig. 3: Serpenﬁnite rocks (SERS enveloped.By
metasediments (MS)

lief,usually altered to talc-carbonate of dark
brown and buff colors (Fig. 4). The metased-
imentary rocks are cropping out form a curvi-
linear belt surrounding the Kab Amiri granitic
mass from south. They are mainly fine- to
medium-grained, grayish green in color and
have low-, to moderate-relief. The highest
relief (911m above sea level) is at G. Um El
Abas east of G.Kab Amiri. They are mostly
foliated, folded and the contacts with the me-
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Fig. 4: Serpentinites (SER) altered to talc-
carbonate (T)

tavolcanic rocks are structural. Several intru-
sive bodies of younger granites (Fig. 5) invade
them.

The metavolcanics are cropping out at the
north and northwestern parts of the studied
area with general trend (E-W) direction. The
metavolcanics are mainly basic in composi-
tion (altered metabasalts). These rocks form
moderate to high relief ridges, dark grey to
greenish grey in color. The metavolcanics are
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Fig. 5: Sharp contact between metasediments
(MS) and younger granite (YGR)

intruded from the southwest by the older gran-
itoids (Fig. 6).

The older granitoids are cropping out in
the northwestern part of the mapped area at
W. Bohlog-W. Kab Amiri and at G. Abu Qa-
rahish at the northeastern part of the area. G.
Abu Qarahish is an oval shaped body about
6x4 km?. It is elongated in the NN'W direction
and is cut by a group of basic dykes having
NE-SW direction. Generally, the older gran-
itoids are medium-, to coarse-grained and are
grey in color. They are intruded into the me-
tavolcanics. These rocks are characterized by
the presence of metavolcanic xenoliths (Fig.
7).

The younger granites are cropping out in
the center of the study area as an oval shaped
body about 25 km?. W. Kab Amiri has gen-
eral NW-SE trend and separates the pluton
into two parts. The field check revealed that
the granitic pluton could be distinguished into
two concentric zones. The inner zone is me-
dium-, to coarse-grained, whitish pink granite
of low relief and highly weathered. It formed
of monzogranites with some intrusions of sy-
enogranites. The outer zone is mainly com-
posed of syenogranites with fine-grained size
and pink color. Syenogranites are higher in
relief and forming conspicuous peaks, the
highest onecalled Kab Amiri (952m above

YASSER S. BADR
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Fig. harp contact between older granitoids
(OGR) and metavolcanics (MV)

Fig. 7: Close up view showing xenoliths of
metavolcanic(MV) in older granitoids (OGR)

sea level). Several pegmatite bodies record-
ed along the contacts between the syenogran-
ites and the monzogranites in one hand (Fig.
8) and the metasediments on the other hand.
These pegmatite lenses exhibit high radioac-
tivity and enclose dark radioactive minerals.
Several, nearly parallel, basic dykes with a
general trend (NE-SW) direction cut G. Kab
Anmiri pluton. The pluton is intruding into the
metasediments and the metavolcanics (Fig. 9)
and carrying several xenoliths of them.

Another rounded shaped younger granitic
body (about 0.5km in diameter) are cropping
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Fig. 9: Sharp contact between younger
granite (YGR), metasediments (MS) and
serpentinites (SER)

out at the southeastern side of Kab Amiri
pluton (Fig. 10). This granitic body is me-
dium-grained, pink to red color, musco-
vite-bearing granite. The muscovite abun-
dance is however low and may be mainly
of secondary origin. It is highly faulted and
fractured. A great effect of hydrothermal
alteration processes is observed along these
fractures. The most effective alteration type
is desilicification of the younger granites.
This process leads to mineralogical composi-
tions of somewhat similar to that of a syenite
(Cathelineau, 1986). The increase of radio-
metric anomalies increases along these zones
of alteration.

s

10: Sharp contact between younger
granite (YGR), metasediments (MS) and
serpentinites (SER)

Fig.

MATERIALS AND METHODS

The study area is covered by a single
Landsat-8 LI1T (terrain corrected) scene
(path174 / row 42), free cloud, acquired on
July 5, 2019 at 08:12 am local time. Scene
is obtained from USGS Earth Explorer site
(http://earth explorer.usgs.gov/). The Scene
is radiometrically calibrated, atmospherical-
ly corrected using the Fast Line of Sight At-
mospheric Analysis of Spectral Hypercube
(FLAASH) and subset to fit the study area. In
this study, only multispectral data (VNIR and
SWIR) bands are used. The map projection
is Universal Transverse Mercator (UTM) and
the datum is WGS 84. ENVI software (ver-
sion 5.3) is used in the preprocessing and pro-
cessing of the scene.

Optimum Index Factor (OIF) and other
transformation techniques including band ra-
tios (BR) and principal component analysis
(PCA) in addition to supervised classification
are applied to discriminate different rock units
at KabAmiri area. Finally, HIS-RGB image
enhancement technique applied for improved
visualizing of targets.

Optimum Index Factor is a mathematical
algorism used to determine the best (RGB)
band combination of the image (Chavez et al.,
1982; Sheffield, 1985; Yang et al., 2008 and
Pournamdari et al.,, 2014). The color band
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combination in RGB with the highest OIF
value have themaximum extractable spectral
information since it uses bands with the least
redundancy in the data.

Band ratios is a statistical approach used
to display spectral variation (Vincent and
Thomson, 1972 and Goetz and Rowan, 1981).
Band ratios enhance the spectral differences
between bands and reduce the effects of to-
pography (ENVI, 2005). Spectral band ra-
tios enhance compositional information while
suppressing other types of information about
earth's surface, such as terrain slope and grain
size differences (Vincent, 1997). Band ratios
technique has been used successfully in Geo-
logic mapping by many authors (Sultan et al.,
1986; Kaufmann, 1988; Frei and Jutz, 1989;
El-Rakaiby, 1993; Sabins, 1999; Abdel salam
et al., 2000; Abdeen et al., 2001; Rowan et al.,
2003; Velosky et al., 2003; Di Tommaso and
Rubinstein 2007; Gabr et al., 2010; Badr, 2017
and Abdel Ghani, 2020). The spectral profiles
of the exposed basement rock units of Kab
Amiri area that were extracted from OLI data
(Fig. 11) were considered the basic criteria for
choosing the applied band ratios.

Principal component analysis is a trans-
formation technique reduce multi-dimension-
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al data sets to lower dimensions for analysis
and for removing the redundancy of informa-
tion that exists between the different bands to
extract the pertinent information from them
(Loughlin, 1991; Gomez et al. 2005).

The airborne gamma-ray spectrometric
data of the study area was acquired, in 1984.
The survey was carried out along parallel
flight lines oriented in a NE-SW direction at
one km spacing, while the tie lines were flown
in a NW-SE direction at 10 km intervals at a
nominal flight altitude of 120 m terrain clear-
ance (Aero-Service, 1984). All the aero-spec-
trometric data (TC, K, eU and eTh values) are
multiplied by 10. The data were processed
and resulted in three radio elemental maps
of eU, eTh and K. These spectrometric data
also treated qualitatively and quantitatively to
stand on the radioactive anomalies in the study
area. The airborne gamma-ray spectromet-
ric data were processed using Geosoft Oasis
Montaj software (version 8.4). The method-
ology used in this study is summarized on
Figure (12).

Fieldworks carried out to verify the pro-
cessed remote sensing data. Identification of
different rock units cropping out in the area
and their boundaries has been confirmed.

0.35

0.30

0.25

Value

0.20

T I [T T T[T TP [T T[T T[]

0.5 1.0

1.5 2.0

Wavelength

Fig. 11: Spectral signature profiles for the exposed

Amiri area, CED, Egypt
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Fig. 12: Flowchart of the main processing steps that performed in the present study

Representative samples from only granitic
rockswere collected for petrographic studies.

RESULTS AND DISCUSSION

The spectral differences between rock
units were better visually displayed with col-
or composites. There are 35 possible RGB
color composite for the 7 reflected bandsof
Landsat-8. Selection of the best color com-
posite for visual interpretation and litholog-
ical mapping of images was made using a
statistical approach known as Optimum Index
Factor (OIF). The OIF is a statistical approach
introduced by (Chavez et al., 1982) to select
the most informative six color bands compos-
ites. The index is given by the following for-
mula:

OIF=Xs/ZIr]

Where (s) is the standard deviation for
band, I, is the correlation coefficient between

any two of the three bands being evaluated.

The covariance matrix and correlated co-
efficient matrix of every two bands were cal-
culated. The results are shown in Tables (1 &
2). The OIF value of the seven reflected bands
of Landsat-8 is calculated and the results are
listed in Table (3).

Bands 7, 5, 1 in RGB (Fig. 13) is the most
informative color composite with OIF rank
= 71.10 highlighting differences between the
different rock units and facilitating geolog-
ic mapping of them. The image could dis-
criminate the serpentinites, younger granites,
metavolcanics and metasediments in blue,
yellow, deep brown and pale purple colors re-
spectively.

Band ratios exaggerate lithological dis-
crimination due to each mineral has its own
characteristic spectral absorption features.
Serpentinite and argillic zone indicated by us-
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Table 1: Band covariance matrix of study area

bl b2 b3 b4 b5 b6 b7
bl 3437.68
b2 3419.54 34108
b3 3409.29 3407 3474.01
b4 3240.32  3243.1 3403.43 3566.83
b5 3023.66 3031.52 3246.21 3557.36 3688.52
b6 2890.91 2903.07 3110.11 3394.49 3523.23 3721.28
b7 2680.77 2693.51 2853.6 3047.49 3127.42 3432.92 3448.56

Table 2 : Band correlation matrix of study area ing the band ratios 6/7 (Fig. 14). The choice

of this ratio is based on that the OH-bearing
minerals have a strong reflection in band 6,

and show a great absorption feature in band
7 between 2.12 to 2.23um, this absorption is
due to AI-OH. Silicate minerals have absorp-
tion features in band 2 and relative reflection
in band 6 (Sabin, 1999; Safari et al., 2017). So
that band ratio 6/2 used to delineate silicate
minerals and phylliczone (Fig. 15). Accord-
ing to band ratio 6/2 image, the granitic plu-
ton differentiated according to the silica con-
tent into two varieties. The content of silica

increases towards the outer parts of the pluton
(syenogranites). The discrimination of differ-
ent rock units with accurate trace of their con-
tacts has been achieved by used two band ra-

tio images in RGB (Figs.16 & 17). The visual
interpretation of them confirmed their effi-

b1 b2 b3 b4 b5 b6 b7
bl 1.00
b2 1.00 1.00
b3 099 099 1.00
b4 093 093 097 1.00
b5 085 085 091 098 1.00
b6 081 0.81 086 093 095 1.00
b7 078 0.79 0.82 0.87 088 096 1.00
Table 3: The OIF of study area image
R G B Rank
1 b7 b5 bl 71.10
2 b7 bs b2 70.67
3 b7 b6 bl 70.08
4 b7 b6 b2 69.62
5 b6 b5 b1 69.15
6 b7 b4 bl 68.83

ciency in geologic mapping especially in high
lighting the granitic rocks and serpentinites.
The first false color composite image (6/2,
4/3, 6/7 in RGB), differentiated the granitic
pluton in the area into two verities. The sy-
enogranites appear as yellowish red and the
monzogranites appear as brownish red. The
serpentinite appears as dark blue color. The
false color composite image (4/2, 5/6, 6/7
in RGB) differentiated the granitic pluton in
the area into two verities. The syenogranites
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Fig. 15: b6/b2 ratio image showing silicate minerals and phyllic zone in brightened
areas, Kab Amiri area, CED, Egypt
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appear as yellow and the monzogranites ap-
pear as pale brownish red. The serpentinite
appears as dark blue color in the two images.
The metasediments appears as pale to deep
green color and the metavolcanics appears as
deep brown color.

The PCA transformation for the Landsat-8
seven reflected bands has been calculated with
their eigen vector values as listed in Table 4.
PC1 account 98.07 % of the total variance and
has positive loading for all bands. PC1 mapped
the albedo and topographic information (Ke-
nea and Haenisch, 1996; Ranjbar et al., 2004).
PC2 has negative signs for band 6 and band 7
indicate the contrast between the visible (VIS)
and shortwave infrared (SWIR) bands. The
PC3, PC1 and PC2 as Red, Green and Blue
(RGB) composite image of the study area is
created (Fig. 18). Principal component color
composite images appear more colorful due to
their uncorrelated components. As shown on
Figure (18), the metavolcanics appear as dark
green color, serpentinite appears in deep blue
color, the older granitoids appear in pale blue
color and the younger granites appear in pale
green color.

The remote sensing images have been
verified in the field through more than 90
ground truth area (training samples) repre-
sent all rock unites cropping out in the study
area with focusing on granitic rocks. After
masking Quaternary sediments (Wadis), su-
pervised areas of interests (AOls) are selected
and controlled to the exposed basement rock
units. The spectral Signatures of the selected
AOIs are shown on Figure (19). The super-
vised classification processed using the En-
hanced Maximum Likelihood (EML) method.
The output is shown on Figure (20). Seven
classes are given to seven colors each is cor-
responding to a certain rock unit. serpentinites
(black), metasediments (cyan), metavolcanics
(deep violet), older granitoids (yellow), mon-
zogranites (pink), syenogranites (red) and
stream sediments (white).

YASSER S. BADR

AIRBORNE GAMMA-RAY SPEC-
TROMETRY

Airborne gamma-ray spectrometry mea-
sures the abundance of potassium, thorium
and uranium in rocks and weathered materials
by detecting gamma-ray emitted due to the
natural radioelement decay of these elements.
Three Radio-elements colored contour maps
comprising (eU in ppm), (eTh in ppm) and
(K%) are shown in (Figs. 21,22 & 23) respec-
tively, all values are multiplied by 10.

The equivalent uranium (eU) contour map
(Fig. 21) can be classified into three levels.
The highest level of radioactivity (from bright
magenta to strong magenta). This level ex-
pands from 32.5 ppm up to 80.9ppm and is
essentially associated with younger granites.
The intermediate level of radioactivity (from
yellow to red). This level expands from 7.6
ppm up to 32 ppm and is mainly associated
with the older granitoids. The metavolcanics,
metasediments, serpentinites have the lowest
radioactivity level (from dark blue to pale
green) with values less than 7.6 ppm.

The equivalent thorium (eTh) contour
map (Fig. 22) can be classified into three lev-
els. The highest level of radioactivity (red to
strong magenta). This level expands from 80
ppm up to 269.8 ppm and is essentially associ-
ated with G. Kab Amiri younger granites. The
older granitoids possess the intermediate level
of radioactivity (from deep yellow to pale red).
This level expands from 30 ppm up to 63 ppm.
The lowest radioactivity level (from dark blue
to pale green) is associated with the metavol-
canics, metasediments and serpentinites.

The distribution of relative potassium con-
centration overall the study area was illustrat-
ed as on Figure (23). The high level (>10%)
is associated with the younger granites. The
older granitoids possess the intermediate level
from 7 to 10 %, while the serpentinites repre-
sent the lowest level (less than 7%).

The Radio-elements composite image ter-
nary map (Fig. 24) combines the data K, eTh
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Table 4 : Eigenvector PCA for the first seven bands of the used landsat-8 data

Eigenvector Band1 Band2 Band3 Band4 Band5 Band6 Band7 Eigenvalue

PC1 0.160 0.181 0271 0401 0474 0530  0.449 98.07
PC2 0.308 0338 0411 0355 0187 -0.375  -0.566 1.158
PC3 -0.337 -0371 -0.335 0126  0.610 0.159 -0.472 0.639
PC4 -0.119 -0.125 -0.091 0157 0360 -0.744  0.504 0.113
PCs -0.392  -0351 0216  0.684 -0.457  0.019  0.000 0.017
PC6 -0.442 -0.143  0.744 -0448 0.171 -0.010 -0.003 0.003
PC7 0.634 -0.746  0.190 -0.067  0.018 -0.002  0.003 0.002
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0.30 Older granitoids -
Metasediments -

EO'ZS — Serpentinites —
“ i T i -
~0.20F Metavolcanics -
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0.10F _.

1 2 3 4 - * 5 = 6 P 7

Band Number
Fig. 19: The spectral profile of the end members presented to OLI band number
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and eU in RGB. From the map, it is observed
that the high concentration of K, eTh and eU
(white color) is great correlated with the expo-
sure of G. Kab Amiri younger granites at the
center of the study area. In addition, the older
granitoids at G. Abu Qarahish at the northeast-
ern part of the area.

The airborne gamma-ray spectrometric
data for both younger granites and granodi-
orites were subjected to primary statistical
treatment in order to determine their distribu-
tion characteristics in the study area, whereas
those of the serpentinites, metasediments and
metavolcanics were excluded because of their
low radioactivity level. Descriptive statisti-
cal analysis of the younger granites and older
granitoids is shown in Table (5). The average
radioactive contents of eU and eTh are about
40.2 ppm, 126 ppm respectively in the young-
er granites (Fig. 25). Noteworthy, the inner
zone of granitic pluton (monzogranites) has
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many intrusions and offshoots of syenogran-
ites so that quantitative interpretation was car-
ried out for the younger granites as one rock
unit. The contents of eU and eTh are about
22.87 ppm, 56.5 ppm respectively in the older
granitoids (granodiorites), (Fig. 26). Because
of its small area,the younger granite body that
is cropping out at the southeastern side of
Kab Amiri pluton does not subjected to quan-
titative interpretation.

Normally, thorium is three times as abun-
dant as uranium in rocks (Rogers and Adams,
1969). When this ratio is disturbed, it indi-
cates a depletion or enrichment of uranium.
The Kab Amiri younger granites show eTh/
eU average ratios slightly higher than three
(3.34) suggesting slight uranium depletion.
On the other hand, granodiorites show eTh/eU
average ratios lower than three (2.7) suggest-
ing slight uranium addition.

Table 5: eU, eTh, K and eTh/eU of the younger granites and older
granitoids of Kab Amiri area, CED, Egypt

Rock type Younger granites Older granitoids
Contents (N=125) (N=64)
Minimum 3 3.8

eU(ppm) Maximum 79.5 27.3
Average 40.2 15.5

Minimum 19 31

eTh(ppm) Maximum 265 77
Average 126 56.5

Minimum 5 8.5

K (%) Maximum 41 25.9
Average 27.3 18.1

Minimum 1.6 1.33

eTh/eU Maximum 5.83 4.43
Average 3.34 2.71
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Fig. 25: Bar diagram showing minimum, maximum and averages of eU, eTh, K and
eTh/eU in the younger granites of Kab Amiri area, CED, Egypt
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PETROGRAPHIC AND
MINERALOGICAL INVESTIGATIONS

Petrographic investigation of seventeen
thin sections, representing the younger granit-
ic pluton as well as the older granitoids, were
selected for determining the volume percent-
age of the rock forming minerals in the studied
rock types. Table (6) shows the mineral con-
stituents of these granitic samples. According
to the modal classification of (Streckeisen,
1976), the older granitoids plot in the granodi-
orite field, whereas the younger granites plot
in the fields of monzogranite and syenogranite
(Fig. 27).

The older granitoids are mainly represent-
ed by granodiorites of hypidiomorphic tex-
ture and are mainly composed of plagioclase,
quartz, K-feldspars, biotite and hornblende.
Sphene, zircon and iron oxides are the main
accessory minerals. Plagioclase represents
the main mineral constituent in granodiorite.
It occurs as euhedral to subhedral prismatic
crystals. Their crystals exhibit albite, carls-
bad and combined albite-carlsbad twinning
as well as zoning. Plagioclase crystals are
partially saussuritized and altered to clay
minerals. Quartz occurs as anhedral crystals
varying in size from small interstitial grains
to large engaged crystals (up to 3.5 mm).
Alkali-feldspars are represented by orthoclase
and orthoclase perthite. Biotite is pleochroic
from yellowish green to dark brown. Biotite
shows different degrees of chloritization and
segregation of iron oxides along cleavage
planes. Sometimes biotite is completely al-
tered to chlorite. Hornblende occurs as prisms
and sometimes in the rhomb shape with green
color and mostly tend to be replaced by biotite
and/or chlorite. Sphene occurs as sphenoidal
form. It is fairly pleochroic from pale brown
to reddish brown.

The monzogranites are mainly equigran-
ularbut sometimes porphyritic. They are
mainly composed of quartz, plagioclase,
K-feldspars and biotite. Chlorite and musco-
vite are secondary minerals. Zircon, apatite
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and opaques are the main accessory minerals.
Quartz is the most dominant mineral. It oc-
curs as anhedral to subhedral crystals rang-
ing in size from 0.7mm to 3.8mm across. It
corrodes the plagioclase and potash feldspars
(Fig. 28). Sometimes, they exhibit undulose
extinction due to strain effects especially
near fault planes. Plagioclase occurs as eu-
hedral to subhedral prismatic crystals, show-
ing Carlsbad and lamellar twinning (Fig.
29). Potash feldspars occur as subhedral to
anhedralcrystals of microcline and orthoclase
perthites. Microcline is characterized by the
cross-hatching twinning(Fig. 30). Biotite
flakes usually appear corroded by quartz and
plagioclase;they show different degrees of
chloritization (Fig. 31). Both euhedral zircon
and apatite are encountered as accessory min-
erals(Figs. 32 & 33).

The syenogranites are mainly composed
of K-feldspars, quartz and plagioclase with
biotite and muscovite as essential minerals.
Garnet, fluorite, allanite and zircon are ac-
cessory minerals. K-feldspars are the most
dominant minerals mainly represented by mi-
crocline perthite and perthite. Quartz ranks
second in abundance and is found in two
forms. The first is a very small interstitial
crystal between feldspar crystals (Fig. 34),
while the second occurs as anhedral to sub-
hedral crystals ranging in size from 0.5 mm to
2.9 mm across. Plagioclase occurs as euhe-
dral to subhedral prismatic crystals of about
0.7mm in width and 1.8mm in length, show-
ing lamellar, Carlsbad twinning. Plagioclase
is corroded by K-feldspars and quartz. Biotite
occurs as anhedral to subhedral flakes partial-
ly altered to chlorite. Muscovite occurs as pri-
mary irregular large flakes(Figs. 35 and 36).
Garnet, colorless fluorite, allanite and zircon
are recorded as accessory minerals (Figs. 37,
38 & 39).

The mineralogical study of the black me-
tallic minerals collected from the pegmati-
tesat the contact between the syenogranites
and monzogranites was performed using the
Environmental Scanning Electron Micro-
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Table 6: Modal analysis of the granitic rocks of Kab Amiri area, CED, Egypt

Mineral constituents

Sample No. Alkali. Total
Quartz feldspars Plagioclase Micas  Accessories
1 30.3 38.0 26.1 4.3 1.3 100
2 394 26.4 275 4.8 1.9 100
3 36.2 30.4 28.3 4.1 1.0 100
4 43.8 28.1 23.2 34 1.5 100
5 35.6 311 26.2 5.7 14 100
.‘g 6 29.3 32.0 34.2 3.2 1.3 100
%‘J 7 32,5 47.0 16.7 3.0 0.8 100
% 8 31.0 45.1 18.1 4.3 1.5 100
- 9 32,5 36.7 25.7 4.0 1.2 100
10 30.1 43.5 21.2 4.0 1.2 100
11 374 29.3 28.0 4.2 1.0 999
12 33.0 41.1 20.2 4.3 1.3 99.92
13 29.3 42.5 19.2 6.3 27 100
z 14 234 12.0 48.2 13.5 29 100
-‘E 15 26.2 9.3 52.1 9.0 34 100
?‘3 16 24.5 14.5 46.5 11.3 32 100
g 17 23.5 13.5 50.4 8.5 41 100
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Fig. 27: Modal composition for the granitic rocks of Kab Amiri area, CED, Egypt (After
Streckeisen, 1976)
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Fig. 38: Euhedral crystal of allanite (Aln)
in biotite and muscovite, Gabal Kab Amiri
syenogranites, XPL
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Fig. 39: Colourless flourite (F) associated with
opaques(O) and metamecited zircon (Zr),
Gabal Kab Amiri syenogranites, XPL

scope (ESEM) at the laboratory of Nuclear
Materials Authority (NMA). The identified
minerals are briefly described at the following
paragraphs:

Fergusonite (Y, REE) (Nb, Ta, Ti) O,

Fergusonite presents in the form of tabu-
lar prismatic shape (Fig. 40), which contain-
ing potential concentration of the high field
strength elements (HFSE) such as Nb, Ta, and
Ti, besides U.

Uranothorite (Th, U) SiO,

Uranothoriteis a variety of thorite. It is
a radioactive mineral that consists mainly of
Thand U silicatespresent in amounts up to
10% (Heinrich, 1958). Uranothorite found as
fine opaque inclusions on the surface of fergu-
sonite (Fig. 41).

CONCLUSIONS

The application of image processing tech-
niques of Landsat-8 proved its capability in
lithological discrimination. Optimum Index
Factor (OIF) and data transformation tech-
niques such as band ratios (BR) and principal
component analysis (PCA) high lighting the
subtle spectral differences between different
rock units within the study area and facilitate
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T Elem. | Wt. % | At %
AlK | 242 | 6.90
SiK | 243 | 6.65
UM |34.34 | 11.10
CaK | 3.83 | 7.36
TiK | 24.27 | 39.00
FeK | 5.51 | 7.60
Tal | 3.73 | 1.58
Yk | 9.78 | 8.47
Nb K | 13.69 | 11.34
Total | 100 | 100
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Fig. 40: BSE image and its Semi-quantitative EDX analysis of fergusonite mineral in

anomalous pegmatite
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Elem. | Wt. % | At. %
SiK | 14.03 | 50.21
UM | 24.37 | 10.29
KK 0.00 0.00
CaK| 146 | 3.67
Fe K 2.54 4.57
ThL | 48.52 | 21.01
Yk 9.07 | 10.25
Total | 100 100
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Fig. 41: BSE image and its Semi-quantitative EDX analysis of uranothorite mineral in

anomalous pegmatite

the visual interpretation. The false color com-
posite image of bands (7, 5, 1 in RGB) with
high OIF rank value enhanced visualization of
the lithological units in the study area. The
band ratios [(4/2, 5/6, 6/7), (6/2, 4/3, 6/7)]
are successful in differentiating the younger
granites of G. Kab Amiri into two varieties
(monzogranites and syenogranites) and well
discriminate the other rock units. The uncor-
related components (PC3, PC1 and PC2 in
RGB) success in discriminate serpentinites,
metasediments, metavolcanics, granodiorites
but failed in differentiate younger granites into
their varieties.

The airborne radiometric data contribute in
the lithological mapping of the exposed rock
units. The radio-elements contour images as
well as radio-elements composite image ter-
nary map could well discriminate the younger
granites and older granitoids (relatively higher
radioactivity) from the other rock units (rela-
tively lower radioactivity). Nevertheless, the
images could not well discriminate between
the two varieties of the younger granites be-
cause the monzogranites have many intrusions
and offshoots of syenogranites. The anoma-
lous zones are restricted to the pegmatites that
occurred along the monzogranite-syenogran-
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ite contacts, which comprising fergusonite and
uranothorite as rare earth elements and radio-
active minerals.

Based on the fieldwork verification, pe-
trographic investigations, landsat-8 image
processing, spatial distribution and contact
relationships, the main rock units of the study
area are represented by ophiolitic mélange
(rock fragments of serpentinites in a matrix of
metasediments), metavolcanics, older granit-
oids (granodiorites), younger granites (mon-
zogranites and syenogranites) and basic dykes
and pegmatites. The mineralogical study of
the black metallic minerals collected from the
pegmatites revealed the presences of fergu-
sonite and uranothorite.

The integration of Landsat-8 images and
airborne radiometric data followed by field
observations and petrographic study resulted
in a geologic map of scale1:50,000 (Fig. 42)
with an accuracy 85.24% with a kappa coeffi-
cient value of 0.825.
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