Homocysteine as a Diagnostic Marker in Spontaneous Bacterial Peritonitis

Samir M. Kabeel^a, Hany Ragheb^a, Sara M. Atef^b, Andrew R. Ragheb^a

^a Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of medicine – Benha University ^b Department of, clinical pathology in Ahmed Maher Teaching Hospital, Egypt.

Correspondence to: Andrew R. Ragheb, Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of medicine – Benha University

Email:

andrewragheb2021@gmail.com Received: 17 July 2021 Accepted: 23 February 2022

Abstract

Background: Spontaneous bacterial peritonitis (SBP) is a unique and a widespread complication in cirrhotic patients. The prevalence ranges from 10 to 30% in cirrhotic ascitic patients. **Aim of work**: to evaluate role of homocysteine level in ascetic fluid in diagnosis of ascetic fluid infection. **Methods:** Patients were classified into two groups: Group I includes 45 patients with cirrhotic ascites complicated with SBP and group II includes 45 patients with cirrhotic ascites and without SBP. All patients were subjected to full history taking, complete clinical examination, as well as laboratory investigations and measurement of homocysteine level in ascetic fluid sample. **Results and conclusion**: There was no statistically significant difference found between the two studied groups regarding glucose, total protein in ascetic fluid of the studied cases. While there was statistically significant difference

between them regarding albumin, TLC and neutrophils in ascetic fluid. There was highly statistically significant difference between the two studied groups regarding homocysteine in ascetic fluid of the studied cases. The predictive value for detection of SBP was 4.9, with a sensitivity of 91.11%, specificity of 93.33%, +ve predictive value of 93.2% and -ve predictive value of 91.3%, denoting that homocysteine measurement is considered as good test for prediction of spontaneous bacterial peritonitis.

Keywords: Homocysteine; liver; ascitic fluid; ascites

Introduction

Spontaneous bacterial peritonitis (SBP) is a unique and a widespread complication in cirrhotic patients. The prevalence ranges from 10 to 30% in cirrhotic ascitic patients at the time of hospital admission and about 50% develop during hospitalization, with a mortality rate about 20–30% depending on several factors. In ascitic fluid, local and systemic immune dysfunction with bacterial translocation and reduced opsonic activity are the cornerstone mechanisms in the pathogenesis of SBP (1).

The mortality rate exceeds 80% in patients with cirrhosis who develop septic shock secondary to spontaneous bacterial peritonitis. In addition, each hour of delay in appropriate antimicrobial therapy increases the in hospital mortality rate by 1.86 time. So, it is recommended to perform a diagnostic paracentesis in all cirrhotic ascites at the time of admission and/or in the case of occurrence of signs of inflammation, hepatic encephalopathy, shock, gastrointestinal bleeding, and worsening of hepatic or renal function (2). In SBP, the diagnosis of a classic case depends on the ascetic polymorphonuclear (PMN) cell count (> $250/mm^3$) and a positive ascitic fluid culture. According to the ascetic fluid analysis (culture/sensitivity and cell count) findings, two variants of SBP have been characterized, that is, bacterascites (BA) and culture-negative neutrocytic ascites (CNNA). BA has ascitic PMN cell count (< 250/mm3) and positive ascitic fluid culture. CNNA has ascitic PMN cell count (>250/mm3) and a negative culture. The diagnosis of SBP depends on the presence of ascetic PMN cell count exceeding 250/µl. Generally, this count is assessed using automated or manual counting (3).

Homocysteine (Hcy) is an amino acid that might be found in all cells in small amounts; it is a significant methionine metabolite quantitatively. In addition, Hcy can be present either in the form of disulfide proteins or freely in the body. Reduced or free form accounts for only 1– 2%, in relation to a total Hcy quantity. However, about 80% is protein-bound Hcy, mostly to albumins (4).

Hcy accumulates in cells and reaches the blood if its catabolism is affected either due to enzyme defect or deficiency of required intracellular cofactors (5). Several studies of different biochemical markers in patients with ascites have been carried out for the diagnosis of SBP.

Aim of this work was to evaluate the role of homocysteine level in ascetic fluid in diagnosis of ascetic fluid infection.

Patients and methods

This cross-sectional study was conducted at Department of Hepatology, Gastroenterology and Infectious Diseases at Ahmed Maher Teaching Hospital, during the period from January 2020 to January 2021. The studied population consisted of 90 patients with ascites. Written informed consent were obtained from all participants who were fully informed about the study and advised that the study will have no extra expense for Benha medical journal, vol.39, issue 1, 2022 participants according to the Committee of Ethics of Scientific Research of Benha Faculty of Medicine in Benha University. Patients were classified into two groups: Group I includes 45 patients with cirrhotic ascites complicated with SBP and group II includes 45 patients with cirrhotic ascites and without SBP.

Inclusion criteria

- Patients >18 years old.
- Patients suffering from liver cirrhosis and ascites, both diagnosed by clinical, laboratory and radiological investigations.
- Approval of subjects.

Exclusion criteria

- Recent abdominal surgery.
- Solid organ transplant recipients.
- Patients with documented colitis or enteritis.

• Other non-peritoneal infections (skin infections, chest infections, urinary tract infections, meningitis, dental infections gastroenteritis and biliary tract infections).

• Presence of other causes associated with homocysteinemia, such as thrombosis, neuropsychiatric illness, fractures and severe renal failure.

- Subject's refusal.
- All patients were subjected to full history taking, complete clinical

examination, and laboratory investigations.

Venous blood samples (7.5 ml) were taken using sterile syringes under aseptic conditions. The collected samples were sent immediately to the laboratory of University Hospital Benha for the following laboratory investigations: complete blood count (CBC), fasting blood sugar (mg/dl), liver biochemical including: serum tests alanine aminotransferase (ALT) (IU/L) and serum aspartate aminotransferase (AST) (IU/L), serum bilirubin (total and direct) (mg/dl), serum albumin (mg/dl), serum creatinine (mg/dl).

Two milliliters of ascitic fluid were centrifuged and the supernatant was aliquoted and frozen at -20°C for the measurement of ascetic Hcy. Ascitic fluid samples were aspirated under complete conditions. Measurement aseptic of Polymorphonuclear leukocytes (PMN) hemocytometer count using and microscopic method, and measurement of homocysteine level in ascetic fluid sample were done by ELISA.

Statistical analysis

Data was analyzed using SPSS (statistical package for social sciences) version 22. Qualitative data were presented as number and percent, Quantitative data was tested for normality by Kolmogrov Smirnov test then described as mean and

standard deviation for normally distributed data and median and range for non-normally distributed. The appropriate statistical test was applied according to data type with the following suggested tests: Chi-Square for categorical variable. One Way ANOVA with post Hoc Tukey Test and Kruskal Wallis test with Mann-Whitney U test for pairwise comparison for comparing continuous Receiver variables. Operating characteristics curve was used to detect off point best cut for ascitic homocysteine for differentiating studied groups

Results

There was no statistically significant difference found between the two studied groups regarding gender , residence , occupation and special habit of the studied cases while there was statistically significant difference found between them regarding age of the studied cases (age in non SBP group was older than age in SBP group), (Table 1).

Fever and tachycardia were more frequent in SBP group than non SBP group while there was no statistically significant difference between the studied groups regarding blood pressure and respiratory rate. There was no statistically significant difference found between the two studied groups regarding splenomegaly, vomiting, diarrhea, jaundice, bleeding, history of diabetes, history of hypertension and other chronic diseases while there was statistically significant difference between them regarding tremors palmer erythema and hepatic encephalopathy (increase in SBP group in comparison to non SBP group) with highly significant difference between them regarding fever, abdominal pain, and history of SBP (increase in SBP group in comparison to non SBP group) (Table 2).

Direct bilirubin and alkaline phosphatase and total leukocyte count and low serum albumin were more frequent in SBP group in comparison to non SBP group while there was no statistically significant difference between the two groups regarding hemoglobin, platelets, AST, ALT, total bilirubin, creatinine and fasting blood sugar of the studied cases, (Table 3).

Tense ascites was more frequent in SBP group and there was no statistically significant difference found between the two studied groups regarding size of spleen and corticomedullary differentiation in ultrasound, (Table 4). There was no statistically significant difference found between the two studied groups regarding glucose, total protein in ascetic fluid of the studied cases while there statistically significant was difference between them regarding albumin in ascetic fluid with highly significant difference between them regarding TLC and neutrophils in ascetic fluid (increase in SBP group in comparison to non SBP group), (Table 5).

There was highly statistically significant difference between the two studied groups regarding homocysteine in ascetic fluid of the studied cases, (fig. 1). ROC curve shows that the best cut off point for homocysteine level to differentiate between SBP and non SBP groups was > 4.9 with sensitivity of 91.11%, specificity of 93.33% and area under curve (AUC) of 89.1%, (fig. 2).

 Table 1: Comparison between cases with SBP and non SBP regarding demographic data of the studied patients

		SBP	Non SBP				
		No.= 45	No.= 45	Test valu	Test value P- valueSig.		
	Male	25 (55.6%)	20 (44.4%)	1 1114	0.000	NG	
Gender	Female	20 (44.4%)	25 (55.6%)	1.111*	0.292	NS	
	Mean±SD	59.93 ± 8.81	66.76 ± 8.98				
Age	Range	30 - 87	49 – 95	-3.637•	0.001*	* HS	
Residence	Rural	5 (11.1 %)	3(6.7%)	1.451	0.093	NS	
Residence	Urban	40 (88.9)	42(93.3%)	1.451	0.093	145	
0	Farmer	5 (11.1 %)	3(6.7%)	1.958	0.001	NS	
Occupation	Non farmer	40 (88.9)	42(93.3%)	1.938	0.081	112	
Special habi	t Smoker	15(33.3%)	12 (26.7%)	1 722	0.653	NS	
	No smoker	30(66.7%)	33 (73.3%)	1.732		142	

P-value >0.05: Non significant (NS); P-value <0.05: Significant (S); P-value< 0.01: highly significant (HS) *: Chi-square test; •: Independent t-test

		SBP Non SBP			Test value*P- valueSig.			
		No.	%	No.	%	Test value	e*P- valu	ieSig.
Former	Absent	15	33.3%	39	86.7%	26.667	0.000	110
Fever	Present	30	66.7%	6	13.3%	26.667	0.000	HS
Abd Dain	Absent	5	11.1%	36	80.0%	42.051	0.000	HS
Abd Pain	Present	40	88.9%	9	20.0%	43.051		
Lowon Limn Oodomo	Absent	0	0.0%	0	0.0%		-	
Lower Limp Oedema	Present	45	100.0%	45	100.0%	-		-
Tuomong	Absent	34	75.6%	42	93.3%	5 414	0.000	S
Tremors	Present	11	24.4%	3	6.7%	5.414	0.020	3
Palmer Erythema	Absent	30	66.7%	40	88.9%	6.429	0.011	S
таппет плушеша	Present	15	33.3%	5	11.1%	0.429	0.011	3
Splenomegaly	Absent	7	15.6%	7	15.6%	0.000	1.000	NS
spicifoliegaly	Present	38	84.4%	38	84.4%	0.000		
Vomiting	Absent	42	93.3%	43	95.6%	0.212	0.645	NS
vonnung	Present	3	6.7%	2	4.4%	0.212		цлЭ
Diarreha	Absent	43	95.6%	43	95.6%	0.000	1.000	NS
Diarrella	Present	2	4.4%	2	4.4%	0.000	1.000	ци р
Jaundice	Absent	7	15.6%	12	26.7%	1.668	0.197	NS
Jaullult	Present	38	84.4%	33	73.3%	1.000		140
Bleeding	Absent	43	95.6%	40	88.9%	1.394	0.238	NS
Dictuing	Present	2	4.4%	5	11.1%	1.374		112
Hepatic	Absent	34	75.6%	42	93.3%	5.414	0.020	S
Encephalopathy	Present	11	24.4%	3	6.7%	J.+14	0.020	G
History of S R D	Absent	31	68.9%	41	91.1%	6.944	0.008	HS
History of S.B.P	Present	14	31.1%	4	8.9%	0.744	0.000	115
History of diabetis	Absent	34	75.6%	39	86.7%	1.813	0.178	NS
mistory of ulabelis	Present	11	24.4%	6	13.3%	1.015	0.170	140
History 0	ofAbsent	43	95.6%	44	97.8%	0.345	0.557	NS
hypertension	Present	2	4.4%	1	2.2%	0.545	0.557	140
History of othe	rAbsent	38	84.4%	39	86.7%	0.090	0.764	NS
chronic diseases	CKD	7	15.6%	6	13.3%	0.070	0.704	цир Сит
Histomy of Dlaading	Absent	39	86.7%	38	84.4%	0.000	0.764	NS
History of Bleeding	Present	6	13.3%	7	15.6%	0.090	0.704	UND
History Of Operation	Absent	43	95.6%	43	95.6%	0.000	1 000	NS
	Cholecystecton	ny2	4.4%	2	4.4%	0.000	1.000	142

Table (2): Comparison between the two groups regarding clinical manifestation

P-value >0.05: Non significant (NS); P-value <0.05: Significant (S); P-value< 0.01: highly significant (HS) *: Chi-square test

		SBP No.= 45	Non SBP No.= 45	Test valueP- valueSig		
HGB	Mean±SD	<u>10.13 ± 1.55</u>	9.62 ± 1.66	1.499•	0.138	NS
IIGD	Range	5 – 13	4.9 - 12.7	1.499*	0.156	IND
TLC	Median (IQ)	R)13 (8.81 – 16.9)	7.2 (5.2 – 8.9)	<i>-</i> 4.219≠	0.000	HS
ILC	Range	2.2 - 32.8	3.49 - 25.26	- - .21 <i>9</i> +		115
PLAT	Median (IQ	R)94 (80 – 125)	96 (74 – 110)	-0.222•	0.824	NS
ILAI	Range	32 - 237	22 - 386	-0.222	0.024	IND
AST	Median (IQI	R)55 (34 – 70)	45 (34 - 69)	-0.509≠	0.611	NS
ASI	Range	21 - 261	12 - 461	-0.309+		CN1
ALT	Median (IQI	R)27 (20 – 39)	23 (18 - 35)	<i>-</i> 1.082≠	0.279	NS
ALI	Range	10 - 116	6 - 320	-1.082+		IND
Serum .ALB	Mean±SD	2.20 ± 0.33	2.57 ± 0.43	<i>-</i> 4.569≠	0.000	HS
Serum .ALB	Range	1.7 - 3	1.7 - 3.4	-4.3097		пз
	Median (IQ	R)2.2 (1.9 – 4.2)	2 (1.2 – 2.5)	1.060/	0.050	NC
Bil Total	Range	0.3 - 8.7	0.5 - 29	<i>-</i> 1.960≠		NS
D'I D'arrat	Median (IQI	R)1.4 (0.6 – 3)	0.8 (0.5 – 1.3)	2.056	0.040	S
Bil. Direct	Range	0.1 - 6.4	0.2 - 21	-2.056≠		3
A 11 1	Mean±SD	235.11 ± 111.52	183.22 ± 83.41	2 500-	0.014	C
Alk.phosp	Range	61 - 620	52 - 450	2.500•	0.014	S
рт	Mean±SD	24.62 ± 9.68	21.89 ± 6.76	1 552-	0.124	NS
РТ	Range	13 - 49.4	13 - 44.4	1.553•	0.124	IN2
IND	Mean±SD	1.90 ± 0.75	1.66 ± 0.59	1 (5(0 101	NG
INR	Range	1 - 3.8	0.15 - 3.58	1.656•	0.101	NS
Cr	Median (IQI	R)1 (0.8 – 2)	1.1 (0.8 – 1.8)	0.045 /	0.965	NG
	Range	0.5 - 3.8	0.3 - 5	<i>-</i> 0.045≠		NS
F.B.S	Mean±SD	101.82 ± 40.10	96.89 ± 27.12	0.604		NG
	Range	59 - 243	62 - 200	0.684•	0.496	NS

Table (3): Comparison	between the two	groups according	to Laboratory data

P-value >0.05: Non significant (NS); P-value <0.05: Significant (S); P-value< 0.01: highly significant (HS)

•: Independent t-test; \neq : Mann Whitney test

	1	0 1	U				1	
		SBP		Non SBP		Test value*P- valueSig.		
		No.	%	No.	%	l est van	ie*P- van	iesig.
Cirrhotic shrunken liver	Present	45	100.0%	45	100.0%	%		
	Normal size	7	15.6%	7	15.6%	0.000	1.000	NS
Size Of Spleen	Splenomegaly	38	84.4%	38	84.4%	0.000		
A	Moderate ascities	5	11.1%	27	60.0%	22 470	0.000	HS
Ascitis	Tense	40	88.9%	18	40.0%	23.470		
Kidney	Normal	38	84.4%	39	86.7%			
	Abnormal					0.000	0764	NG
	corticomedullary	7	15.6%	6	13.3%	0.090	0.764	NS
	differentiation							

P-value >0.05: Non significant (NS); P-value <0.05: Significant (S); P-value< 0.01: highly significant (HS) *: Chi-square test

		SBP	BP Non SBP		Test value•P- valueSig.			
		No.= 45	No.= 45	rest value r - value				
	Mean±SD	156.93 ± 53.98	155.98 ± 47.93	0.089	0.929	NS		
Glucose	Range	93 - 397	87 – 308	0.089		IND		
T-4-1 D4-*	Mean±SD	1.26 ± 0.59	1.19 ± 0.40	0.712	0.479	NC		
Total Protein	Range	0.5 - 3.1	0.4 - 2.8	0.712		NS		
	Mean±SD	0.60 ± 0.30	0.48 ± 0.15	0.507	0.013	S		
Alb	Range	0.2 - 1.7	0.2 - 0.9	2.527		3		
TLO	Mean±SD	0.70 ± 0.31	0.27 ± 0.15	0 241	0.000	HS		
TLC	Range	0.3 – 1.9	0.1 - 0.7	8.241		нз		
N	Mean±SD	68.58 ± 12.57	51.18 ± 21.30	4 720	0.000	110		
Neutrophil	Range	40 - 90	10 - 80	4.720	0.000	HS		
homocys	Mean±SD	6.67 ± 2.53	3.83 ± 1.83	6 09 1	0.000	HS		
	Range	1.9 – 15.5	1 - 12.5	6.081		пэ		

Table 5: Comparison between cases with SBP and non SBP according to Ascetic fluid analysis of the studied patients

P-value >0.05: Non significant (NS); P-value <0.05: Significant (S); P-value< 0.01: highly significant (HS)

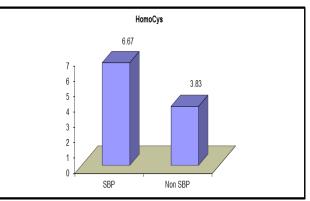


Fig 1: Comparison between cases with SBP and non SBP according to homocysteine in ascetic fluid

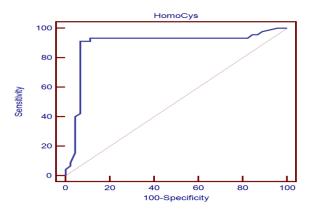


Fig 2: ROC curve of Homo Cys as a predictor between SBP and Non-SBP

Discussion

This study involved 90 patients; 45 of them (25 males and 20 females) aged between 30 - 87 with a mean age of 59.93 \pm 8.81 years with liver cirrhotic ascites and spontaneous bacterial peritonitis (patient's group) and 45 (20 males and 25 females) aged between 49 – 95 years with a mean age of 66.76 \pm 8.98 years with liver cirrhotic ascites without spontaneous bacterial peritonitis (control group).

In the present study, there were no statistically significant differences in the gender, residence, occupation and special habit among cases with and without spontaneous bacterial peritonitis, while there was statistically significant difference between them regarding age of the studied cases.

There was no statistically significant difference between the two studied groups vomiting, regarding splenomegaly, diarrhea, jaundice, bleeding, history of diabetes, hypertension, other chronic diseases and operations of the studied while there was statistically cases, significant difference between them regarding tremors, palmer erythema and hepatic encephalopathy with highly significant difference between then regarding fever, abdominal pain and history of SBP.

It was estimated that almost all patients with SBP had symptoms or signs that clearly suggested the presence of peritoneal infection, especially abdominal pain, fever and chills. Other patients expressed minor symptoms with deteriorating liver or renal function (6).

The clinical features among the patients of SBP were not specific and asymptomatic patients constitute a relatively high percentage (16%). Presence of ascites usually prevents the development of a rigid abdomen by separating the visceral from the parietal peritoneal surfaces (7).

It was found that fever is the most common manifestation of SBP and signs of hepatic encephalopathy, abdominal tenderness, diarrhea, ileus, shock and hypothermia. Approximately 10% of the patients with SBP are asymptomatic. Presence of ascitis usually prevents the development of a rigid abdomen by separating the visceral from the parietal peritoneal surfaces (8). In a study done in 2007 it reported 8% of their 133 cirrhotic ascitic patients as being asymptomatic and abdominal pain and tenderness were more common in their patients with SBP (9).

The present study showed that there was statistically significant difference between the two studied groups regarding tremors, palmer erythema, hepatic encephalopathy, direct bilirubin, alkaline phosphatase and albumin in ascetic fluid with highly significant difference between them regarding fever, abdominal pain, and history of SBP, TLC, serum albumin and neutrophils in ascetic fluid.

It was found that glucose concentration in the serum and ascites were similar even during early SBP (7). It was concluded in another study that low protein concentration in the ascitic fluid has been identified as a risk factor for SBP and these patients are candidates to receive long-term prophylaxis to reduce the risk of infections and improve survival (10).

To the best for our knowledge, no previous studies evaluated the role of homocysteine in diagnosis of spontaneous bacterial peritonitis except **Abdel-Razik** (11) who studied the role of homocysteine in serum and ascetic fluid in diagnosis of spontaneous bacterial peritonitis

In our study, there was highly statistically significant difference between the two studied groups regarding homocysteine in ascetic fluid of the studied cases. In a 2018 study done in (11,serum homocysteine was assessed as a precise indicative marker for the diagnosis of all variants of SBP. Participants were classified into a non-SBP group, including 262 participants and 61 patients with SBP.

Serum and ascitic homocysteine were considerably elevated in the SBP group compared to the non-SBP group.

The present study showed that SBP group had statistically significant positive correlation between homocysteine level and platelet, AST and glucose level in ascetic fluid while there was no statistically significant correlation with the other studied parameters.

It was found that homocysteine was positively correlated with the C-reactive polymorphonuclear count, protein, Child-Pugh score, and Model For End-Stage Liver Disease score as well as negatively correlated with the protein content in the ascitic fluid and estimated glomerular filtration rate. After SBP therapy, there was a marked reduction in serum and ascitic homocysteine levels (11).

In our study, there was statistically significant increase in the level of homocysteine in cases with splenomegaly while no statistically significant relation with the other studied parameters in SBP group. Also, there was statistically significant increase in the level of homocysteine in cases with splenomegaly in ultrasound while no statistically significant relation with ascitis in SBP group. But, non-SBP group showed no statistically significant relation between homocysteine level and the clinical examination parameters.

It was demonstrated that serum and ascitic homocysteine are considerably higher in SBP participants versus non-SBP patients. Serum homocysteine may provide a reliable and noninvasive diagnostic marker for all variants of SBP (11).

Regarding the ROC curve for the prediction of SBP according to homocysteine, a cutoff value of 4.9, with a sensitivity of 91.11% and specificity of 93.33%, has a positive predictive value of 93.2% and a negative predictive value of 91.3%.

It was also found that at a cutoff value of 17.79 μ mol/l, serum homocysteine had 89.3% specificity and 95.1% sensitivity for distinguishing SBP (area under the curve: 0.932) and, at a cutoff value of 16.1 μ mol/l, ascitic homocysteine had 84.4% specificity and 92.7% sensitivity for distinguishing SBP (area under the curve: 0.901) (11).

Several studies have evaluated several biomarkers for diagnosis of ascetic fluid infection; however, studies evaluating the role of Hcy in SBP are still limited, e.g. the study done 2018 (11), which denoted that homocysteine measurement is considered as good test for prediction of spontaneous bacterial peritonitis.

Conclusion

Ascetic fluid homocysteine level can represent a potential marker for diagnosis of spontaneous bacterial peritonitis.

References

- Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60(1):197–209.
- Runyon BA. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology. 2013;57(4):1651–3.
- Yachha SK, Khanna V. Ascites in childhood liver disease. Indian J Pediatr. 2006;73(9):819– 24.
- Fiskerstrand T, Refsum H, Kvalheim G, Ueland PM. Homocysteine and other thiols in plasma and urine: automated determination and sample stability. Clin Chem. 1993;39(2):263– 71.
- Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. 2016;17(10):1733.
- Yang Y-Y, Lin H-C. Bacterial infections in patients with cirrhosis. J Chinese Med Assoc. 2005;68(10):447–51.
- Akriviadis EA, Runyon BA. Utility of an algorithm in differentiating spontaneous from secondary bacterial peritonitis. Gastroenterology. 1990;98(1):127–33.
- Căruntu FA, Benea L. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, treatment. J Gastrointestin Liver Dis. 2006;15(1):51–6.
- Wallerstedt S, Olsson R, Simrén M, Broomé U, Wahlin S, Lööf L, et al. Abdominal tenderness

in ascites patients indicates spontaneous bacterial peritonitis. Eur J Intern Med. 2007;18(1):44–7.

 Terg R, Fassio E, Guevara M, Cartier M, Longo C, Lucero R, et al. Ciprofloxacin in primary prophylaxis of spontaneous bacterial peritonitis: a randomized, placebo-controlled study. J Hepatol. 2008;48(5):774-9.

 Abdel-Razik A, Eldars W, Elhelaly R, Eldeeb AA, Abdelsalam M, El-Wakeel N, et al. Homocysteine: a new diagnostic marker in spontaneous bacterial peritonitis. Eur J Gastroenterol Hepatol. 2018;30(7):779–85.

To cite this article: Samir M. Kabeel, Hany Ragheb, Sara M. Atef, Andrew R. Ragheb. Homocysteine as a Diagnostic Marker in Spontaneous Bacterial Peritonitis. BMFJ 2022;39(1):164-175. DOI: 10.21608/bmfj.2021.86746.1443 Benha medical journal, vol.39, issue 1, 2022